Add files via upload

This commit is contained in:
MoritzSiem
2025-06-05 18:47:18 +02:00
committed by GitHub
parent 6f871feaa7
commit 85c7f2d3d6

View File

@@ -62,7 +62,7 @@
" \n",
"# data (as pandas dataframes) \n",
"X = data.drop(columns='Classification')\n",
"y = data['Classification'].map({2: 1, 1: 0}) # Map 2 to 1 and 1 to 0, 1 = pacient healthy, 0 = pacient sick\n",
"y = data['Classification'].map({2: 1, 1: 0}) # Map 2 to 1 and 1 to 0, 1 = sick patient, 0 = healthy patient\n",
" \n",
"print(\"Dataset shape:\", data.shape)\n",
"print(data.head())"
@@ -81,7 +81,7 @@
"id": "082c143b",
"metadata": {},
"source": [
"### 1) No curse of dimention "
"### 1) No curse of dimension "
]
},
{
@@ -111,7 +111,7 @@
"id": "01bb817a",
"metadata": {},
"source": [
"Then d is small enough to insure that we are not in the curse of dimention"
"Then d is small enough to ensure that we do not suffer under the curse of dimension"
]
},
{
@@ -138,7 +138,7 @@
],
"source": [
"k_scores = []\n",
"K_list = np.arange(1, X.shape[0] // 4 ) # concidering 1/4 of the samples as neaighbors is large enough for k-NN to don't overfit\n",
"K_list = np.arange(1, X.shape[0] // 4 ) # considering 1/4 of the samples as neighbors is large enough for k-NN not to overfit\n",
"\n",
"\n",
"for k in K_list:\n",
@@ -167,7 +167,7 @@
"id": "9f74eaee",
"metadata": {},
"source": [
"### 3) train-test split and rescaling of the feature "
"### 3) train-test split and rescaling of the features"
]
},
{
@@ -205,7 +205,7 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 10,
"id": "064a5aa7",
"metadata": {},
"outputs": [
@@ -250,7 +250,7 @@
}
],
"source": [
"knn = KNeighborsClassifier(n_neighbors=k_optimal) # using the best k founded earlier\n",
"knn = KNeighborsClassifier(n_neighbors=k_optimal) # using the best k found earlier\n",
"knn.fit(X_train_scaled, y_train)\n",
"\n",
"y_pred = knn.predict(X_test_scaled)\n",
@@ -267,7 +267,7 @@
"print(\"Classification Report:\\n\", class_report)\n",
"\n",
"# Plotting the confusion matrix\n",
"cm = confusion_matrix(y_test, y_pred)\n",
"cm = confusion_matrix(y_true=y_test,y_pred= y_pred)\n",
"plt.figure(figsize=(8, 6))\n",
"plt.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues)\n",
"plt.title('Confusion Matrix')\n",
@@ -321,7 +321,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
"version": "3.9.6"
}
},
"nbformat": 4,