From 85c7f2d3d65e28e2c2d3b64f9edf2d46a293a185 Mon Sep 17 00:00:00 2001 From: MoritzSiem Date: Thu, 5 Jun 2025 18:47:18 +0200 Subject: [PATCH] Add files via upload --- knn.ipynb | 18 +++++++++--------- 1 file changed, 9 insertions(+), 9 deletions(-) diff --git a/knn.ipynb b/knn.ipynb index d4ee2e1..d299fa5 100644 --- a/knn.ipynb +++ b/knn.ipynb @@ -62,7 +62,7 @@ " \n", "# data (as pandas dataframes) \n", "X = data.drop(columns='Classification')\n", - "y = data['Classification'].map({2: 1, 1: 0}) # Map 2 to 1 and 1 to 0, 1 = pacient healthy, 0 = pacient sick\n", + "y = data['Classification'].map({2: 1, 1: 0}) # Map 2 to 1 and 1 to 0, 1 = sick patient, 0 = healthy patient\n", " \n", "print(\"Dataset shape:\", data.shape)\n", "print(data.head())" @@ -81,7 +81,7 @@ "id": "082c143b", "metadata": {}, "source": [ - "### 1) No curse of dimention " + "### 1) No curse of dimension " ] }, { @@ -111,7 +111,7 @@ "id": "01bb817a", "metadata": {}, "source": [ - "Then d is small enough to insure that we are not in the curse of dimention" + "Then d is small enough to ensure that we do not suffer under the curse of dimension" ] }, { @@ -138,7 +138,7 @@ ], "source": [ "k_scores = []\n", - "K_list = np.arange(1, X.shape[0] // 4 ) # concidering 1/4 of the samples as neaighbors is large enough for k-NN to don't overfit\n", + "K_list = np.arange(1, X.shape[0] // 4 ) # considering 1/4 of the samples as neighbors is large enough for k-NN not to overfit\n", "\n", "\n", "for k in K_list:\n", @@ -167,7 +167,7 @@ "id": "9f74eaee", "metadata": {}, "source": [ - "### 3) train-test split and rescaling of the feature " + "### 3) train-test split and rescaling of the features" ] }, { @@ -205,7 +205,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 10, "id": "064a5aa7", "metadata": {}, "outputs": [ @@ -250,7 +250,7 @@ } ], "source": [ - "knn = KNeighborsClassifier(n_neighbors=k_optimal) # using the best k founded earlier\n", + "knn = KNeighborsClassifier(n_neighbors=k_optimal) # using the best k found earlier\n", "knn.fit(X_train_scaled, y_train)\n", "\n", "y_pred = knn.predict(X_test_scaled)\n", @@ -267,7 +267,7 @@ "print(\"Classification Report:\\n\", class_report)\n", "\n", "# Plotting the confusion matrix\n", - "cm = confusion_matrix(y_test, y_pred)\n", + "cm = confusion_matrix(y_true=y_test,y_pred= y_pred)\n", "plt.figure(figsize=(8, 6))\n", "plt.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues)\n", "plt.title('Confusion Matrix')\n", @@ -321,7 +321,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.9" + "version": "3.9.6" } }, "nbformat": 4,