Merge branch 'master' into feature_es

This commit is contained in:
2024-11-28 15:14:30 +01:00
8 changed files with 106 additions and 17 deletions

View File

@@ -27,7 +27,7 @@ const tags: Array<{ label: string, icon: string } & Tag> = [
icon: 'i-ph-books-duotone',
color: 'black',
},
...TAGS,
...TAGS.filter(tag => tag.sort).sort((a, b) => a.label.localeCompare(b.label)),
]
function updateTag(index: number) {
@@ -50,8 +50,7 @@ function updateTag(index: number) {
icon="i-ph-warning-duotone"
variant="outline"
/>
<UTabs :items="tags" class="hidden md:block" @change="updateTag" />
<UTabs :items="tags" orientation="vertical" class="md:hidden" @change="updateTag" />
<UTabs :items="tags" @change="updateTag" />
<ul class="grid grid-cols-1 md:grid-cols-2 gap-8">
<NuxtLink
v-for="(writing, id) in writings"
@@ -80,16 +79,21 @@ function updateTag(index: number) {
</h3>
</article>
<div class="flex gap-2 mt-4 flex-wrap">
<UBadge
v-for="tag in writing.tags"
:key="tag"
:color="TAGS.find(color => color.label.toLowerCase() === tag)?.color || 'black'"
variant="soft"
size="sm"
:ui="{ rounded: 'rounded-full' }"
>
{{ TAGS.find(color => color.label.toLowerCase() === tag)?.label }}
</UBadge>
<ClientOnly>
<UBadge
v-for="tag in writing.tags.sort((a: any, b: any) => a.localeCompare(b))"
:key="tag"
:color="TAGS.find(color => color.label.toLowerCase() === tag)?.color"
variant="soft"
size="sm"
:ui="{ rounded: 'rounded-full' }"
>
<div class="flex gap-1 items-center">
<UIcon :name="TAGS.find(icon => icon.label.toLowerCase() === tag)?.icon" size="16" />
<p>{{ TAGS.find(color => color.label.toLowerCase() === tag)?.label }}</p>
</div>
</UBadge>
</ClientOnly>
</div>
</li>
</NuxtLink>

View File

@@ -0,0 +1,26 @@
---
slug: monte-carlo-project
title: Monte Carlo Methods Project
description: ⚠️ Still in progress - A project to demonstrate the use of Monte Carlo methods in R.
publishedAt: 2024/11/24
readingTime: 3
tags:
- project
- r
- maths
---
This is the report for the Monte Carlo Methods Project. The project was done as part of the course `Monte Carlo Methods` at the Paris-Dauphine University. The goal was to implement different methods and algorithms using Monte Carlo methods in R.
Methods and algorithms implemented:
- Plotting graphs of functions
- Inverse c.d.f. Random Variation simulation
- Accept-Reject Random Variation simulation
- Random Variable simulation with stratification
- Cumulative density function
- Empirical Quantile Function
You can find the code here: [Monte Carlo Project Code](https://github.com/ArthurDanjou/Studies/blob/0c83e7e381344675e113c43b6f8d32e88a5c00a7/M1/Monte%20Carlo%20Methods/Project%201/003_rapport_DANJOU_DUROUSSEAU.rmd)
<iframe src="/portfolio/monte-carlo-project/Report.pdf" width="100%" height="1000px">
</iframe>

View File

@@ -0,0 +1,32 @@
---
slug: python-data-ml
title: Python Data & ML
description: 🧠 A repository dedicated to learning and practicing Python libraries for machine learning.
publishedAt: 2024/11/01
readingTime: 1
tags:
- project
- data
- ml
- python
- r
---
[Python Data & ML](https://github.com/ArthurDanjou/Python-Data-Machine-Learning) is a repository dedicated to learning and practicing Python libraries for machine learning. It includes a variety of projects and exercises that cover the following topics.
This project explores tools like NumPy, Pandas, scikit-learn, and others to understand and master key machine learning concepts. Perfect for strengthening skills in data processing, modeling, and algorithm optimization.
The goal is to improve my level of understanding of machine learning and data science concepts, as well as to practice Python programming and using libraries like NumPy, Pandas, scikit-learn, etc., to manipulate and analyze data, during my free time.
## Tech Stack
- [Python](https://www.python.org/)
- [NumPy](https://numpy.org/)
- [Pandas](https://pandas.pydata.org/)
- [scikit-learn](https://scikit-learn.org/stable/)
- [Matplotlib](https://matplotlib.org/)
- [Seaborn](https://seaborn.pydata.org/)
- [Jupyter Notebook](https://jupyter.org/)
- [TensorFlow](https://www.tensorflow.org/)
- [Keras](https://keras.io/)
- [PyTorch](https://pytorch.org/)

View File

@@ -0,0 +1,18 @@
---
slug: schelling-segregation-model
title: Schelling Segregation Model
description: 📊 A Python implementation of the Schelling Segregation Model using Statistics and Data Visualization.
publishedAt: 2024/05/03
readingTime: 4
tags:
- project
- python
- maths
---
This is the French version of the report for the Schelling Segregation Model project. The project was done as part of the course `Projet Numérique` at the Paris-Saclay University. The goal was to implement the Schelling Segregation Model in Python and analyze the results using statistics and data visualization.
You can find the code here: [Schelling Segregation Model Code](https://github.com/ArthurDanjou/Studies/blob/e1164f89bd11fc59fa79d94aa51fac69b425d68b/L3/Projet%20Num%C3%A9rique/Segregation.ipynb)
<iframe src="/portfolio/schelling/Projet.pdf" width="100%" height="1000px">
</iframe>

View File

@@ -7,6 +7,7 @@ publishedAt: 2024/11/26
tags:
- article
- ml
- maths
---
## Introduction
@@ -81,8 +82,8 @@ For regression problems, the **R² score** measures the proportion of the target
$$R2 = 1 - \frac{\text{SS}_{\text{residual}}}{\text{SS}_{\text{total}}}$$ where:
- $$\text{SS}\_{\text{residual}}$$ : Sum of squared residuals between actual and predicted values.
- $$\text{SS}\_{\text{total}}$$ : Total sum of squares relative to the targets mean.
- $$\text{SS}_{\text{residual}}$$ : Sum of squared residuals between actual and predicted values.
- $$\text{SS}_{\text{total}}$$ : Total sum of squares relative to the targets mean.
A $$R^2$$ close to 1 indicates a good fit.

Binary file not shown.

Binary file not shown.

View File

@@ -52,18 +52,21 @@ export interface Tag {
label: string
icon: string
color: BadgeColor
sort?: boolean
}
export const TAGS = [
export const TAGS: Array<Tag> = [
{
label: 'Article',
icon: 'i-ph-pencil-line-duotone',
color: 'red',
sort: true,
},
{
label: 'Project',
icon: 'i-ph-briefcase-duotone',
color: 'blue',
sort: true,
},
{
label: 'R',
@@ -90,4 +93,9 @@ export const TAGS = [
icon: 'i-vscode-icons-file-type-python',
color: 'amber',
},
].sort((a, b) => a.label.localeCompare(b.label))
{
label: 'Maths',
icon: 'i-ph-calculator-duotone',
color: 'pink',
},
]