diff --git a/app/pages/portfolio/index.vue b/app/pages/portfolio/index.vue
index acf0291..25a1438 100644
--- a/app/pages/portfolio/index.vue
+++ b/app/pages/portfolio/index.vue
@@ -27,7 +27,7 @@ const tags: Array<{ label: string, icon: string } & Tag> = [
icon: 'i-ph-books-duotone',
color: 'black',
},
- ...TAGS,
+ ...TAGS.filter(tag => tag.sort).sort((a, b) => a.label.localeCompare(b.label)),
]
function updateTag(index: number) {
@@ -50,8 +50,7 @@ function updateTag(index: number) {
icon="i-ph-warning-duotone"
variant="outline"
/>
-
-
+
-
- {{ TAGS.find(color => color.label.toLowerCase() === tag)?.label }}
-
+
+
+
+
+
{{ TAGS.find(color => color.label.toLowerCase() === tag)?.label }}
+
+
+
diff --git a/content/portfolio/monte-carlo-project.md b/content/portfolio/monte-carlo-project.md
new file mode 100644
index 0000000..7ce3639
--- /dev/null
+++ b/content/portfolio/monte-carlo-project.md
@@ -0,0 +1,26 @@
+---
+slug: monte-carlo-project
+title: Monte Carlo Methods Project
+description: ⚠️ Still in progress - A project to demonstrate the use of Monte Carlo methods in R.
+publishedAt: 2024/11/24
+readingTime: 3
+tags:
+ - project
+ - r
+ - maths
+---
+
+This is the report for the Monte Carlo Methods Project. The project was done as part of the course `Monte Carlo Methods` at the Paris-Dauphine University. The goal was to implement different methods and algorithms using Monte Carlo methods in R.
+
+Methods and algorithms implemented:
+- Plotting graphs of functions
+- Inverse c.d.f. Random Variation simulation
+- Accept-Reject Random Variation simulation
+- Random Variable simulation with stratification
+- Cumulative density function
+- Empirical Quantile Function
+
+You can find the code here: [Monte Carlo Project Code](https://github.com/ArthurDanjou/Studies/blob/0c83e7e381344675e113c43b6f8d32e88a5c00a7/M1/Monte%20Carlo%20Methods/Project%201/003_rapport_DANJOU_DUROUSSEAU.rmd)
+
+
\ No newline at end of file
diff --git a/content/portfolio/python-data-ml.md b/content/portfolio/python-data-ml.md
new file mode 100644
index 0000000..44e9415
--- /dev/null
+++ b/content/portfolio/python-data-ml.md
@@ -0,0 +1,32 @@
+---
+slug: python-data-ml
+title: Python Data & ML
+description: 🧠 A repository dedicated to learning and practicing Python libraries for machine learning.
+publishedAt: 2024/11/01
+readingTime: 1
+tags:
+ - project
+ - data
+ - ml
+ - python
+ - r
+---
+
+[Python Data & ML](https://github.com/ArthurDanjou/Python-Data-Machine-Learning) is a repository dedicated to learning and practicing Python libraries for machine learning. It includes a variety of projects and exercises that cover the following topics.
+This project explores tools like NumPy, Pandas, scikit-learn, and others to understand and master key machine learning concepts. Perfect for strengthening skills in data processing, modeling, and algorithm optimization.
+
+The goal is to improve my level of understanding of machine learning and data science concepts, as well as to practice Python programming and using libraries like NumPy, Pandas, scikit-learn, etc., to manipulate and analyze data, during my free time.
+
+## Tech Stack
+
+- [Python](https://www.python.org/)
+- [NumPy](https://numpy.org/)
+- [Pandas](https://pandas.pydata.org/)
+- [scikit-learn](https://scikit-learn.org/stable/)
+- [Matplotlib](https://matplotlib.org/)
+- [Seaborn](https://seaborn.pydata.org/)
+- [Jupyter Notebook](https://jupyter.org/)
+- [TensorFlow](https://www.tensorflow.org/)
+- [Keras](https://keras.io/)
+- [PyTorch](https://pytorch.org/)
+
diff --git a/content/portfolio/schelling-segregation-model.md b/content/portfolio/schelling-segregation-model.md
new file mode 100644
index 0000000..fe8e321
--- /dev/null
+++ b/content/portfolio/schelling-segregation-model.md
@@ -0,0 +1,18 @@
+---
+slug: schelling-segregation-model
+title: Schelling Segregation Model
+description: 📊 A Python implementation of the Schelling Segregation Model using Statistics and Data Visualization.
+publishedAt: 2024/05/03
+readingTime: 4
+tags:
+ - project
+ - python
+ - maths
+---
+
+This is the French version of the report for the Schelling Segregation Model project. The project was done as part of the course `Projet Numérique` at the Paris-Saclay University. The goal was to implement the Schelling Segregation Model in Python and analyze the results using statistics and data visualization.
+
+You can find the code here: [Schelling Segregation Model Code](https://github.com/ArthurDanjou/Studies/blob/e1164f89bd11fc59fa79d94aa51fac69b425d68b/L3/Projet%20Num%C3%A9rique/Segregation.ipynb)
+
+
\ No newline at end of file
diff --git a/content/portfolio/what-is-machine-learning.md b/content/portfolio/what-is-machine-learning.md
index 4da2deb..9c39654 100644
--- a/content/portfolio/what-is-machine-learning.md
+++ b/content/portfolio/what-is-machine-learning.md
@@ -7,6 +7,7 @@ publishedAt: 2024/11/26
tags:
- article
- ml
+ - maths
---
## Introduction
@@ -81,8 +82,8 @@ For regression problems, the **R² score** measures the proportion of the target
$$R2 = 1 - \frac{\text{SS}_{\text{residual}}}{\text{SS}_{\text{total}}}$$ where:
-- $$\text{SS}\_{\text{residual}}$$ : Sum of squared residuals between actual and predicted values.
-- $$\text{SS}\_{\text{total}}$$ : Total sum of squares relative to the target’s mean.
+- $$\text{SS}_{\text{residual}}$$ : Sum of squared residuals between actual and predicted values.
+- $$\text{SS}_{\text{total}}$$ : Total sum of squares relative to the target’s mean.
A $$R^2$$ close to 1 indicates a good fit.
diff --git a/public/portfolio/monte-carlo-project/Report.pdf b/public/portfolio/monte-carlo-project/Report.pdf
new file mode 100644
index 0000000..9bc9787
Binary files /dev/null and b/public/portfolio/monte-carlo-project/Report.pdf differ
diff --git a/public/portfolio/schelling/Projet.pdf b/public/portfolio/schelling/Projet.pdf
new file mode 100644
index 0000000..83553b0
Binary files /dev/null and b/public/portfolio/schelling/Projet.pdf differ
diff --git a/types.ts b/types.ts
index 623e947..818b18c 100644
--- a/types.ts
+++ b/types.ts
@@ -52,18 +52,21 @@ export interface Tag {
label: string
icon: string
color: BadgeColor
+ sort?: boolean
}
-export const TAGS = [
+export const TAGS: Array = [
{
label: 'Article',
icon: 'i-ph-pencil-line-duotone',
color: 'red',
+ sort: true,
},
{
label: 'Project',
icon: 'i-ph-briefcase-duotone',
color: 'blue',
+ sort: true,
},
{
label: 'R',
@@ -90,4 +93,9 @@ export const TAGS = [
icon: 'i-vscode-icons-file-type-python',
color: 'amber',
},
-].sort((a, b) => a.label.localeCompare(b.label))
+ {
+ label: 'Maths',
+ icon: 'i-ph-calculator-duotone',
+ color: 'pink',
+ },
+]