Change page title

This commit is contained in:
2024-11-26 14:13:39 +01:00
committed by GitHub
parent 2c90cf2224
commit 6586abf407

View File

@@ -9,7 +9,7 @@ tags:
- ML
---
# What Is Machine Learning page
# What Is Machine Learning ?
## Introduction
@@ -68,15 +68,12 @@ Once the model type is defined, the next step is to delve into the full workflow
A machine learning project generally follows these steps:
1. **Data Preparation**
- Splitting data into training and testing sets.
- Preprocessing: scaling, handling missing values, etc.
2. **Model Training**
- Fitting the model on training data: `model.fit(X, y)`.
- Optimising parameters and hyperparameters.
3. **Prediction and Evaluation**
- Making predictions on unseen data: `model.predict(X)`.
- Comparing predictions ($$\hat{y}$$) with actual values ($$y$$).
1. **Data Preparation*** Splitting data into training and testing sets.
* Preprocessing: scaling, handling missing values, etc.
2. **Model Training*** Fitting the model on training data: `model.fit(X, y)`.
* Optimising parameters and hyperparameters.
3. **Prediction and Evaluation*** Making predictions on unseen data: `model.predict(X)`.
* Comparing predictions ($$\hat{y}$$) with actual values ($$y$$).
![Modelization in Prog.png](/portfolio/ML/model.png)
@@ -86,7 +83,7 @@ Evaluation is a crucial step to verify the performance of a model. For regressio
For regression problems, the **R² score** measures the proportion of the targets variance explained by the model:
$$R2 = 1 - \frac{\text{SS}_{\text{residual}}}{\text{SS}_{\text{total}}}$$ where:
$$R2 = 1 - \frac{\text{SS}_{\text{residual}}}{\text{SS}_{\text{total}}}$$ where:
- $$\text{SS}\_{\text{residual}}$$ : Sum of squared residuals between actual and predicted values.
- $$\text{SS}\_{\text{total}}$$ : Total sum of squares relative to the targets mean.