From 6586abf4077a4549db75d6d139b68a8b9c64b79b Mon Sep 17 00:00:00 2001 From: Arthur Danjou Date: Tue, 26 Nov 2024 14:13:39 +0100 Subject: [PATCH] Change page title --- content/portfolio/what-is-machine-learning.md | 19 ++++++++----------- 1 file changed, 8 insertions(+), 11 deletions(-) diff --git a/content/portfolio/what-is-machine-learning.md b/content/portfolio/what-is-machine-learning.md index c5afc43..18fd953 100644 --- a/content/portfolio/what-is-machine-learning.md +++ b/content/portfolio/what-is-machine-learning.md @@ -9,7 +9,7 @@ tags: - ML --- -# What Is Machine Learning page +# What Is Machine Learning ? ## Introduction @@ -68,15 +68,12 @@ Once the model type is defined, the next step is to delve into the full workflow A machine learning project generally follows these steps: -1. **Data Preparation** - - Splitting data into training and testing sets. - - Preprocessing: scaling, handling missing values, etc. -2. **Model Training** - - Fitting the model on training data: `model.fit(X, y)`. - - Optimising parameters and hyperparameters. -3. **Prediction and Evaluation** - - Making predictions on unseen data: `model.predict(X)`. - - Comparing predictions ($$\hat{y}$$) with actual values ($$y$$). +1. **Data Preparation*** Splitting data into training and testing sets. + * Preprocessing: scaling, handling missing values, etc. +2. **Model Training*** Fitting the model on training data: `model.fit(X, y)`. + * Optimising parameters and hyperparameters. +3. **Prediction and Evaluation*** Making predictions on unseen data: `model.predict(X)`. + * Comparing predictions ($$\hat{y}$$) with actual values ($$y$$). ![Modelization in Prog.png](/portfolio/ML/model.png) @@ -86,7 +83,7 @@ Evaluation is a crucial step to verify the performance of a model. For regressio For regression problems, the **R² score** measures the proportion of the target’s variance explained by the model: -$$R2 = 1 - \frac{\text{SS}_{\text{residual}}}{\text{SS}_{\text{total}}}$$ where: +$$R2 = 1 - \frac{\text{SS}_{\text{residual}}}{\text{SS}_{\text{total}}}$$ where: - $$\text{SS}\_{\text{residual}}$$ : Sum of squared residuals between actual and predicted values. - $$\text{SS}\_{\text{total}}$$ : Total sum of squares relative to the target’s mean.