Files
ArtStudies/README.md
2026-02-09 11:54:33 +01:00

107 lines
3.8 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
# ArtStudies
[ArtStudies Projects](https://github.com/ArthurDanjou/artstudies) is a curated collection of academic projects completed throughout my mathematics studies. The repository showcases work in both _Python_ and _R_, focusing on mathematical modeling, data analysis, and numerical methods.
- **L3** Third year of the Bachelor's degree in Mathematics
- **M1** First year of the Master's degree in Mathematics
- **M2** Second year of the Master's degree in Mathematics
## 📁 Project Structure
### L3 - Bachelor's Degree
| Course | Description |
|--------|-------------|
| `Analyse Matricielle` | Matrix analysis and numerical linear algebra |
| `Analyse Multidimensionnelle` | Multivariate data analysis (PCA, MCA, CA) |
| `Calculs Numériques` | Numerical computation methods |
| `Equations Différentielles` | Differential equations solving |
| `Méthodes Numériques` | Numerical methods implementation |
| `Projet Numérique` | Numerical project |
| `Statistiques` | Applied statistics |
### M1 - Master's Degree 1st Year
| Course | Description |
|--------|-------------|
| `Data Analysis` | Exploratory data analysis and visualization |
| `General Linear Models` | Regression and ANOVA models |
| `Monte Carlo Methods` | Statistical simulation techniques |
| `Numerical Methods` | Numerical algorithms implementation |
| `Numerical Optimisation` | Optimization algorithms |
| `Portfolio Management` | Financial portfolio optimization |
| `Statistical Learning` | Machine learning fundamentals |
### M2 - Master's Degree 2nd Year
| Course | Description |
|--------|-------------|
| `Advanced Machine Learning` | Advanced ML techniques |
| `Classification and Regression` | Supervised learning methods |
| `Clustering In Practice` | Unsupervised learning and clustering |
| `Data Visualisation` | Data visualization principles and tools |
| `Deep Learning` | Neural networks and deep architectures |
| `Enjeux Climatiques` | Climate issues and data analysis |
| `Generative AI` | Generative models (LLMs, diffusion) |
| `Linear Models` | Linear modeling techniques |
| `Machine Learning` | Core machine learning algorithms |
| `Reinforcement Learning` | Reinforcement learning algorithms |
| `SQL` | Database and SQL queries |
| `Statistiques Non Paramétrique` | Non-parametric statistics |
| `Time Series` | Time series analysis and forecasting |
| `Unsupervised Learning` | Unsupervised learning methods |
| `VBA` | Visual Basic for Applications |
## 🛠️ Technologies & Tools
### Python
- **Data Science**: `numpy`, `pandas`, `scipy`, `matplotlib`, `seaborn`, `plotly`, `geopandas`
- **Machine Learning**: `scikit-learn`, `xgboost`, `catboost`, `shap`, `umap-learn`, `imblearn`
- **Deep Learning**: `tensorflow`, `keras`, `torch`, `accelerate`
- **LLM/RAG**: `langchain`, `langchain-community`, `sentence-transformers`, `faiss-cpu`
- **Other**: `statsmodels`, `plotly`, `polars`, `requests`, `openpyxl`
### R
- **Core**: tidyverse, ggplot2, FactoMineR, caret, glmnet
- **Shiny**: RShiny for interactive web applications
- **Reporting**: RMarkdown for reproducible reports
### Tools
- **Jupyter** Interactive notebooks for reproducible research
- **RStudio** R development environment
- **uv** Fast Python package manager and virtual environment
- **ruff** Python linter and formatter
- **lintr** R linter
## 🚀 Getting Started
1. Clone the repository:
```bash
git clone <repository-url>
cd studies
```
2. Set up the Python environment:
```bash
uv sync
```
3. Run the linter:
```bash
ruff check .
```
4. Format code:
```bash
ruff format .
```
## 📝 Notes
- Some subprojects have isolated `pyproject.toml` files (e.g., `M2/Reinforcement Learning/project/`)
- Large datasets are not versioned—download via notebook code when needed
- Course materials and documentation are primarily in French