# ArtStudies [ArtStudies Projects](https://github.com/ArthurDanjou/artstudies) is a curated collection of academic projects completed throughout my mathematics studies. The repository showcases work in both _Python_ and _R_, focusing on mathematical modeling, data analysis, and numerical methods. - **L3** – Third year of the Bachelor's degree in Mathematics - **M1** – First year of the Master's degree in Mathematics - **M2** – Second year of the Master's degree in Mathematics ## 📁 Project Structure ### L3 - Bachelor's Degree | Course | Description | |--------|-------------| | `Analyse Matricielle` | Matrix analysis and numerical linear algebra | | `Analyse Multidimensionnelle` | Multivariate data analysis (PCA, MCA, CA) | | `Calculs Numériques` | Numerical computation methods | | `Equations Différentielles` | Differential equations solving | | `Méthodes Numériques` | Numerical methods implementation | | `Projet Numérique` | Numerical project | | `Statistiques` | Applied statistics | ### M1 - Master's Degree 1st Year | Course | Description | |--------|-------------| | `Data Analysis` | Exploratory data analysis and visualization | | `General Linear Models` | Regression and ANOVA models | | `Monte Carlo Methods` | Statistical simulation techniques | | `Numerical Methods` | Numerical algorithms implementation | | `Numerical Optimisation` | Optimization algorithms | | `Portfolio Management` | Financial portfolio optimization | | `Statistical Learning` | Machine learning fundamentals | ### M2 - Master's Degree 2nd Year | Course | Description | |--------|-------------| | `Advanced Machine Learning` | Advanced ML techniques | | `Classification and Regression` | Supervised learning methods | | `Clustering In Practice` | Unsupervised learning and clustering | | `Data Visualisation` | Data visualization principles and tools | | `Deep Learning` | Neural networks and deep architectures | | `Enjeux Climatiques` | Climate issues and data analysis | | `Generative AI` | Generative models (LLMs, diffusion) | | `Linear Models` | Linear modeling techniques | | `Machine Learning` | Core machine learning algorithms | | `Reinforcement Learning` | Reinforcement learning algorithms | | `SQL` | Database and SQL queries | | `Statistiques Non Paramétrique` | Non-parametric statistics | | `Time Series` | Time series analysis and forecasting | | `Unsupervised Learning` | Unsupervised learning methods | | `VBA` | Visual Basic for Applications | ## 🛠️ Technologies & Tools ### Python - **Data Science**: `numpy`, `pandas`, `scipy`, `matplotlib`, `seaborn`, `plotly`, `geopandas` - **Machine Learning**: `scikit-learn`, `xgboost`, `catboost`, `shap`, `umap-learn`, `imblearn` - **Deep Learning**: `tensorflow`, `keras`, `torch`, `accelerate` - **LLM/RAG**: `langchain`, `langchain-community`, `sentence-transformers`, `faiss-cpu` - **Other**: `statsmodels`, `plotly`, `polars`, `requests`, `openpyxl` ### R - **Core**: tidyverse, ggplot2, FactoMineR, caret, glmnet - **Shiny**: RShiny for interactive web applications - **Reporting**: RMarkdown for reproducible reports ### Tools - **Jupyter** – Interactive notebooks for reproducible research - **RStudio** – R development environment - **uv** – Fast Python package manager and virtual environment - **ruff** – Python linter and formatter - **lintr** – R linter ## 🚀 Getting Started 1. Clone the repository: ```bash git clone cd studies ``` 2. Set up the Python environment: ```bash uv sync ``` 3. Run the linter: ```bash ruff check . ``` 4. Format code: ```bash ruff format . ``` ## 📝 Notes - Some subprojects have isolated `pyproject.toml` files (e.g., `M2/Reinforcement Learning/project/`) - Large datasets are not versioned—download via notebook code when needed - Course materials and documentation are primarily in French