mirror of
https://github.com/ArthurDanjou/ArtStudies.git
synced 2026-01-14 15:54:13 +01:00
Add tp3 bis
This commit is contained in:
206
M1/General Linear Models/TP3-bis/TP3.Rmd
Normal file
206
M1/General Linear Models/TP3-bis/TP3.Rmd
Normal file
@@ -0,0 +1,206 @@
|
||||
```{r}
|
||||
setwd('/Users/arthurdanjou/Workspace/studies/M1/General Linear Models/TP3-bis')
|
||||
|
||||
library(GGally)
|
||||
library(broom)
|
||||
library(scales)
|
||||
library(car)
|
||||
library(glue)
|
||||
library(janitor)
|
||||
library(marginaleffects)
|
||||
library(tidyverse)
|
||||
library(qqplotr)
|
||||
options(scipen = 999, digits = 5)
|
||||
```
|
||||
```{r}
|
||||
data03 <- read.csv('data03.csv', header = TRUE, sep = ',', dec = '.')
|
||||
data03$sexe <- as.factor(data03$sexe)
|
||||
data03$travail <- as.factor(data03$travail)
|
||||
head(data03, 15)
|
||||
```
|
||||
```{r}
|
||||
tab_sexe <- data03 |>
|
||||
count(sexe) |>
|
||||
mutate(freq1 = n / sum(n)) |>
|
||||
mutate(freq2 = glue("{n} ({label_percent()(freq1)})")) |>
|
||||
rename(Sexe = 1, Effectif = n, Proportion = freq1, "n (%)" = freq2)
|
||||
tab_sexe
|
||||
```
|
||||
|
||||
```{r}
|
||||
tab_travail <- data03 |>
|
||||
count(travail) |>
|
||||
mutate(freq1 = n / sum(n)) |>
|
||||
mutate(freq2 = glue("{n} ({label_percent()(freq1)})")) |>
|
||||
rename(Travail = 1, Effectif = n, Proportion = freq1, "n (%)" = freq2)
|
||||
tab_travail
|
||||
```
|
||||
|
||||
```{r}
|
||||
cross_sexe_travail <- data03 |>
|
||||
count(sexe, Travail = travail) |>
|
||||
group_by(sexe) |>
|
||||
mutate(freq1 = n / sum(n)) |>
|
||||
mutate(freq2 = glue("{n} ({label_percent(0.1)(freq1)})"), n = NULL, freq1 = NULL) |>
|
||||
pivot_wider(names_from = sexe, values_from = freq2)
|
||||
cross_sexe_travail
|
||||
```
|
||||
|
||||
```{r}
|
||||
data03 <- mutate(data03, logy = log(y))
|
||||
|
||||
data03 |>
|
||||
pivot_longer(c(y, logy), names_to = "variable", values_to = "value") |>
|
||||
mutate(variable = factor(
|
||||
variable,
|
||||
levels = c("y", "logy"),
|
||||
labels = c("Salaire", "Log-Salaire"))
|
||||
) |>
|
||||
ggplot(aes(x = value)) +
|
||||
facet_wrap(vars(variable), scales = "free") +
|
||||
geom_histogram(
|
||||
fill = "dodgerblue",
|
||||
color = "black",
|
||||
bins = 15) +
|
||||
scale_y_continuous(expand = expansion(c(0, 0.05))) +
|
||||
scale_x_continuous(breaks = pretty_breaks()) +
|
||||
labs(x = "Valeur", y = "Effectif") +
|
||||
theme_bw(base_size = 14) +
|
||||
theme(strip.text = element_text(size = 11, face = "bold"))
|
||||
```
|
||||
```{r}
|
||||
data03 |>
|
||||
pivot_longer(c(y, logy), names_to = "variable", values_to = "value") |>
|
||||
mutate(variable = factor(
|
||||
variable,
|
||||
levels = c("y", "logy"), labels = c("Salaire", "Log-Salaire")
|
||||
)) |>
|
||||
ggplot(aes(x = sexe, y = value)) +
|
||||
facet_wrap(vars(variable), scales = "free") +
|
||||
geom_boxplot(
|
||||
width = 0.5, fill = "cyan", linewidth = 0.5, outlier.size = 2, outlier.alpha = 0.3
|
||||
) +
|
||||
scale_y_continuous(breaks = pretty_breaks()) +
|
||||
labs(x = NULL, y = "Valeur") +
|
||||
theme_bw(base_size = 14) +
|
||||
theme(
|
||||
strip.text = element_text(size = 11, face = "bold"),
|
||||
panel.border = element_rect(linewidth = 0.5)
|
||||
)
|
||||
```
|
||||
```{r}
|
||||
data03 |>
|
||||
pivot_longer(c(y, logy), names_to = "variable", values_to = "value") |>
|
||||
mutate(variable = factor(
|
||||
variable,
|
||||
levels = c("y", "logy"), labels = c("Salaire", "Log-Salaire")
|
||||
)) |>
|
||||
ggplot(aes(x = travail, y = value)) +
|
||||
facet_wrap(vars(variable), scales = "free") +
|
||||
stat_boxplot(width = 0.25, geom = "errorbar", linewidth = 0.5) +
|
||||
geom_boxplot(
|
||||
width = 0.5, fatten = 0.25, fill = "cyan", linewidth = 0.5,
|
||||
outlier.size = 2, outlier.alpha = 0.3
|
||||
) +
|
||||
scale_y_continuous(breaks = pretty_breaks()) +
|
||||
labs(x = NULL, y = "Valeur") +
|
||||
theme_bw(base_size = 14) +
|
||||
theme(
|
||||
strip.text = element_text(size = 11, face = "bold"),
|
||||
panel.border = element_rect(linewidth = 0.5)
|
||||
)
|
||||
```
|
||||
|
||||
```{r}
|
||||
data03 |>
|
||||
group_by(sexe) |>
|
||||
summarise(n = n(), "Mean (Salaire)" = mean(y), "SD (Salaire)" = sd(y))
|
||||
```
|
||||
|
||||
```{r}
|
||||
data03 |>
|
||||
group_by(travail) |>
|
||||
summarise(n = n(), "Mean (Salaire)" = mean(y), "SD (Salaire)" = sd(y))
|
||||
```
|
||||
|
||||
```{r}
|
||||
data03 |>
|
||||
group_by(sexe, travail) |>
|
||||
summarise(n = n(), "Mean (Salaire)" = mean(y), "SD (Salaire)" = sd(y))
|
||||
```
|
||||
```{r}
|
||||
data03 |>
|
||||
group_by(sexe) |>
|
||||
summarise(n = n(), "Mean (Salaire)" = mean(logy), "SD (Salaire)" = sd(logy))
|
||||
```
|
||||
|
||||
```{r}
|
||||
data03 |>
|
||||
group_by(travail) |>
|
||||
summarise(n = n(), "Mean (Salaire)" = mean(logy), "SD (Salaire)" = sd(logy))
|
||||
```
|
||||
|
||||
```{r}
|
||||
data03 |>
|
||||
group_by(sexe, travail) |>
|
||||
summarise(n = n(), "Mean (Salaire)" = mean(logy), "SD (Salaire)" = sd(logy))
|
||||
```
|
||||
```{r}
|
||||
data03 <- data03 |>
|
||||
mutate(sexef = ifelse(sexe == "Femme", 1, 0), sexeh = 1 - sexef) |>
|
||||
mutate(job1 = (travail == "Type 1") * 1) |>
|
||||
mutate(job2 = (travail == "Type 2") * 1) |>
|
||||
mutate(job3 = (travail == "Type 3") * 1)
|
||||
head(data03, 15)
|
||||
```
|
||||
```{r}
|
||||
mod1 <- lm(y ~ sexeh, data = data03)
|
||||
mod2 <- lm(y ~ job2 + job3, data = data03)
|
||||
mod3 <- lm(y ~ sexeh + job2 + job3, data = data03)
|
||||
tidy(mod1)
|
||||
tidy(mod2)
|
||||
tidy(mod3)
|
||||
```
|
||||
|
||||
Interprétations des coefficients du modèle 1
|
||||
$𝑦_i = β_0 + β_1 sexeh_i + ϵ_i$
|
||||
• (Intercept): $\hat{β_0} = 7.88$ : Salaire moyen chez les femmes
|
||||
• sexeh: $\hat{𝛽1} = 2.12$ : Les hommes gagnent en moyenne 2.12 dollars par heure de plus que les femmes
|
||||
(significatif).
|
||||
|
||||
Interprétations des coefficients du modèle 2
|
||||
$𝑦_i = β_0 + β_1 job2_i + β_2 job3_i + ϵ_i$
|
||||
• (Intercept): $\hat{β_0} = 12.21$ : Salaire moyen pour le travail de type 1.
|
||||
• job2: $\hat{β_1} = −5.09$ : la différence de salaire entre le travail de type 2 et celui de type 1 est de −5.09 dollars par heure en moyenne (significatif)
|
||||
• job3: $\hat{β_2} = −3.78$ : la différence de salaire entre le travail de type 3 et celui de type 1 est de −3.78 dollarspar heure en moyenne (significatif).
|
||||
|
||||
Interprétations des coefficients du modèle 3
|
||||
$𝑦_i = β_0 + β_1 sexeh_i + β_2 job2_i + β_3 job3_i + ϵ_i$
|
||||
• (Intercept): $\hat{β_0} = 11.13$ : Salaire moyen chez les femmes avec un travail de type 1
|
||||
• sexeh: $\hat{β_1 = 1.97$ : Les hommes gagnent en moyenne 1.97 dollars par heure de plus que les femmes
|
||||
(significatif), quelque soit le type de travail.
|
||||
• job2: $\hat{β_2} = −4.71$ : la différence de salaire entre le travail de type 2 et celui de type 1 est de −4.71 dollars par heure en moyenne (significatif), quelque soit le sexe.
|
||||
• job3: $\hat{β_3} = −4.3$ : la différence de salaire entre le travail de type 3 et celui de type 1 est de −4.3 dollars par heure en moyenne (significatif), quelque soit le sexe.
|
||||
|
||||
```{r}
|
||||
anova(mod1, mod3)
|
||||
```
|
||||
La p-value du test est inférieur à 0.05, on rejette donc $𝐻0$ et on conclue qu’au moins un des coefficients (𝛽1, 𝛽2) est significativement non nulle.
|
||||
• On vient de tester si le type de travail est associé au salaire horaire. C’est donc le cas pour ces données.
|
||||
```{r}
|
||||
linearHypothesis(mod3, c("job2", "job3"))
|
||||
linearHypothesis(mod3, "job2 = job3")
|
||||
```
|
||||
Le test est non significatif (𝑝 = 0.44). On ne rejette pas $𝐻0$ et on conclue qu’il n’y pas de différence de salaire horaire entre le travail de type 2 et le travail de type 3, quelque soit le sexe.
|
||||
```{r}
|
||||
mod3bis <- lm(y ~ sexe + travail, data = data03)
|
||||
summary(mod3bis)
|
||||
```
|
||||
Les modèles mod3bis1 et mod3 sont identiques
|
||||
• Pas besoins de créer toutes ces variables indicatrices si nos variables catégorielles sont de type factor !
|
||||
• La référence sera toujours la première modalité du factor.
|
||||
• On peut changer la référence avec `relevel()` ou avec `C()`. Par exemple, si on veut la modalité 2 en référence pour le travail
|
||||
```{r}
|
||||
lm(y ~ sexe + relevel(travail, ref = 2), data = data03) |>
|
||||
tidy()
|
||||
```
|
||||
535
M1/General Linear Models/TP3-bis/data03.csv
Executable file
535
M1/General Linear Models/TP3-bis/data03.csv
Executable file
@@ -0,0 +1,535 @@
|
||||
id,y,education,experience,sexe,travail
|
||||
1,3.75,12,6,Femme,Type 3
|
||||
2,12,16,14,Femme,Type 1
|
||||
3,15.73,16,4,Homme,Type 1
|
||||
4,5,12,0,Femme,Type 2
|
||||
5,9,12,20,Homme,Type 2
|
||||
6,6.88,17,15,Femme,Type 1
|
||||
7,9.1,13,16,Homme,Type 2
|
||||
8,3.35,16,3,Homme,Type 2
|
||||
9,10,16,10,Femme,Type 1
|
||||
10,4.59,12,36,Femme,Type 2
|
||||
11,7.61,12,20,Homme,Type 3
|
||||
12,18.5,14,13,Femme,Type 3
|
||||
13,20.4,17,3,Homme,Type 1
|
||||
14,8.49,12,24,Femme,Type 2
|
||||
15,12.5,15,6,Femme,Type 2
|
||||
16,5.75,9,34,Femme,Type 1
|
||||
17,4,12,12,Homme,Type 2
|
||||
18,12.47,13,10,Homme,Type 3
|
||||
19,5.55,11,45,Femme,Type 2
|
||||
20,6.67,16,10,Femme,Type 1
|
||||
21,4.75,12,2,Femme,Type 2
|
||||
22,7,12,7,Homme,Type 3
|
||||
23,12.2,14,10,Homme,Type 3
|
||||
24,15,12,42,Homme,Type 1
|
||||
25,9.56,12,23,Homme,Type 3
|
||||
26,7.65,12,20,Homme,Type 2
|
||||
27,5.8,13,5,Homme,Type 2
|
||||
28,5.8,16,14,Homme,Type 1
|
||||
29,3.6,12,6,Femme,Type 2
|
||||
30,7.5,12,3,Homme,Type 3
|
||||
31,8.75,12,30,Homme,Type 1
|
||||
32,10.43,14,15,Femme,Type 2
|
||||
33,3.75,12,41,Femme,Type 2
|
||||
34,8.43,12,12,Homme,Type 2
|
||||
35,4.55,12,4,Femme,Type 1
|
||||
36,6.25,9,30,Homme,Type 3
|
||||
37,4.5,12,16,Homme,Type 3
|
||||
38,4.3,13,8,Homme,Type 3
|
||||
39,8,12,15,Femme,Type 2
|
||||
40,7,7,42,Homme,Type 3
|
||||
41,4.5,12,3,Femme,Type 1
|
||||
42,4.75,12,10,Femme,Type 2
|
||||
43,4.5,12,7,Femme,Type 1
|
||||
44,3.4,8,49,Femme,Type 2
|
||||
45,9.83,12,23,Homme,Type 3
|
||||
46,6.25,16,7,Femme,Type 1
|
||||
47,23.25,17,25,Femme,Type 1
|
||||
48,9,16,27,Femme,Type 2
|
||||
49,19.38,16,11,Femme,Type 1
|
||||
50,14,16,16,Femme,Type 1
|
||||
51,6.5,12,8,Homme,Type 3
|
||||
52,6,12,19,Femme,Type 2
|
||||
53,6.25,16,7,Femme,Type 1
|
||||
54,6.5,8,27,Homme,Type 3
|
||||
55,9.5,12,25,Femme,Type 2
|
||||
56,4.25,12,29,Femme,Type 2
|
||||
57,14.53,16,18,Homme,Type 1
|
||||
58,8.85,14,19,Femme,Type 2
|
||||
59,9.17,12,44,Femme,Type 2
|
||||
60,11,8,42,Homme,Type 3
|
||||
61,3.75,16,13,Femme,Type 3
|
||||
62,3.35,14,0,Homme,Type 2
|
||||
63,3.35,12,8,Femme,Type 3
|
||||
64,6.75,12,12,Homme,Type 3
|
||||
65,10,16,7,Femme,Type 2
|
||||
66,8.93,8,47,Homme,Type 2
|
||||
67,11.11,12,28,Homme,Type 2
|
||||
68,6.5,11,39,Homme,Type 2
|
||||
69,14,5,44,Homme,Type 3
|
||||
70,6.25,13,30,Femme,Type 2
|
||||
71,4.7,8,19,Homme,Type 3
|
||||
72,22.83,18,37,Femme,Type 1
|
||||
73,13.45,12,16,Homme,Type 3
|
||||
74,5,12,39,Femme,Type 2
|
||||
75,10,10,12,Homme,Type 3
|
||||
76,8.9,10,27,Homme,Type 3
|
||||
77,7,11,12,Femme,Type 2
|
||||
78,15,12,39,Homme,Type 1
|
||||
79,3.5,12,35,Homme,Type 2
|
||||
80,12.57,12,12,Homme,Type 3
|
||||
81,8,12,14,Femme,Type 2
|
||||
82,7,18,33,Homme,Type 1
|
||||
83,26,14,21,Homme,Type 3
|
||||
84,11.43,12,3,Homme,Type 3
|
||||
85,5.56,14,5,Homme,Type 2
|
||||
86,12,18,18,Femme,Type 1
|
||||
87,5,12,4,Homme,Type 2
|
||||
88,9.15,12,7,Homme,Type 3
|
||||
89,8.5,12,16,Femme,Type 1
|
||||
90,6.25,16,4,Homme,Type 2
|
||||
91,3.35,7,43,Homme,Type 3
|
||||
92,15.38,16,33,Homme,Type 1
|
||||
93,6.1,12,33,Femme,Type 1
|
||||
94,4.13,12,4,Femme,Type 2
|
||||
95,14.21,11,15,Homme,Type 3
|
||||
96,7.53,14,1,Homme,Type 2
|
||||
97,3.5,10,33,Femme,Type 2
|
||||
98,6.58,12,24,Femme,Type 1
|
||||
99,4.85,10,13,Homme,Type 3
|
||||
100,7.81,12,1,Femme,Type 1
|
||||
101,6,13,31,Homme,Type 2
|
||||
102,4.5,11,14,Homme,Type 3
|
||||
103,24.98,18,29,Homme,Type 1
|
||||
104,13.33,18,10,Homme,Type 2
|
||||
105,20.5,16,14,Homme,Type 1
|
||||
106,10,12,20,Homme,Type 2
|
||||
107,11.22,18,19,Homme,Type 1
|
||||
108,10.58,16,9,Homme,Type 1
|
||||
109,12.65,17,13,Femme,Type 1
|
||||
110,12,12,14,Homme,Type 3
|
||||
111,5.1,8,21,Femme,Type 3
|
||||
112,9.86,15,13,Homme,Type 1
|
||||
113,10,12,11,Homme,Type 3
|
||||
114,8,18,33,Homme,Type 1
|
||||
115,22.2,18,40,Femme,Type 1
|
||||
116,4.25,13,0,Femme,Type 2
|
||||
117,5,16,3,Homme,Type 3
|
||||
118,4,12,15,Femme,Type 2
|
||||
119,12.5,13,16,Femme,Type 2
|
||||
120,6.5,11,17,Homme,Type 3
|
||||
121,3.6,12,43,Femme,Type 2
|
||||
122,9.45,12,13,Homme,Type 3
|
||||
123,10.81,12,40,Femme,Type 2
|
||||
124,6.25,18,14,Homme,Type 1
|
||||
125,4.35,8,37,Femme,Type 2
|
||||
126,16,12,12,Homme,Type 1
|
||||
127,7.69,12,19,Homme,Type 2
|
||||
128,9,8,33,Homme,Type 3
|
||||
129,4.25,12,2,Femme,Type 2
|
||||
130,7.8,17,7,Homme,Type 1
|
||||
131,3.8,12,4,Femme,Type 2
|
||||
132,3.75,15,4,Homme,Type 2
|
||||
133,8,12,8,Femme,Type 2
|
||||
134,9.6,9,33,Homme,Type 2
|
||||
135,3.5,12,34,Homme,Type 2
|
||||
136,13.75,14,21,Homme,Type 2
|
||||
137,5.13,12,5,Femme,Type 2
|
||||
138,4.8,9,16,Homme,Type 3
|
||||
139,15.56,16,10,Homme,Type 1
|
||||
140,20.55,12,33,Homme,Type 3
|
||||
141,7.5,12,9,Femme,Type 2
|
||||
142,7.78,16,6,Femme,Type 1
|
||||
143,4.5,12,7,Femme,Type 3
|
||||
144,3.5,9,48,Homme,Type 2
|
||||
145,10.2,17,26,Femme,Type 1
|
||||
146,12,17,24,Femme,Type 1
|
||||
147,4,12,6,Homme,Type 3
|
||||
148,6,17,3,Femme,Type 1
|
||||
149,13.51,18,14,Homme,Type 1
|
||||
150,7.5,16,10,Homme,Type 1
|
||||
151,12,12,20,Homme,Type 3
|
||||
152,4,11,25,Femme,Type 3
|
||||
153,12.5,12,43,Homme,Type 2
|
||||
154,15,12,33,Homme,Type 3
|
||||
155,10,18,13,Femme,Type 1
|
||||
156,3.65,11,16,Homme,Type 3
|
||||
157,7,11,16,Femme,Type 2
|
||||
158,8.9,14,13,Homme,Type 3
|
||||
159,25,14,4,Homme,Type 2
|
||||
160,7,12,32,Femme,Type 1
|
||||
161,14.29,14,32,Femme,Type 2
|
||||
162,4.22,8,39,Femme,Type 3
|
||||
163,7.3,12,37,Homme,Type 3
|
||||
164,13.65,16,11,Homme,Type 1
|
||||
165,7.5,12,16,Femme,Type 2
|
||||
166,10,10,25,Femme,Type 2
|
||||
167,7.78,12,23,Homme,Type 3
|
||||
168,4.5,12,15,Femme,Type 3
|
||||
169,10.58,14,25,Homme,Type 3
|
||||
170,10,16,0,Femme,Type 1
|
||||
171,17.25,15,31,Homme,Type 1
|
||||
172,12,17,13,Homme,Type 2
|
||||
173,14,18,31,Femme,Type 1
|
||||
174,3.35,13,2,Femme,Type 2
|
||||
175,6,12,9,Homme,Type 3
|
||||
176,6.5,12,5,Homme,Type 3
|
||||
177,10,16,4,Femme,Type 1
|
||||
178,13,12,25,Homme,Type 2
|
||||
179,4.28,12,38,Femme,Type 2
|
||||
180,9.65,12,38,Femme,Type 2
|
||||
181,5.79,12,42,Femme,Type 1
|
||||
182,6.93,12,26,Homme,Type 2
|
||||
183,12.67,16,15,Homme,Type 1
|
||||
184,4.55,13,33,Femme,Type 2
|
||||
185,6.8,9,30,Femme,Type 3
|
||||
186,13,12,8,Homme,Type 3
|
||||
187,3.35,12,0,Homme,Type 3
|
||||
188,5.4,12,18,Femme,Type 2
|
||||
189,10.67,12,36,Homme,Type 3
|
||||
190,11.25,15,5,Homme,Type 1
|
||||
191,4.1,12,15,Femme,Type 2
|
||||
192,10.28,15,10,Femme,Type 1
|
||||
193,5.71,18,3,Homme,Type 1
|
||||
194,5,13,6,Femme,Type 2
|
||||
195,3.75,2,16,Homme,Type 2
|
||||
196,3.75,11,11,Homme,Type 3
|
||||
197,10.62,12,45,Femme,Type 2
|
||||
198,15.79,18,7,Homme,Type 1
|
||||
199,6.36,12,9,Homme,Type 3
|
||||
200,10.53,14,12,Femme,Type 2
|
||||
201,8.63,12,18,Femme,Type 2
|
||||
202,16,14,20,Homme,Type 3
|
||||
203,7.45,12,25,Femme,Type 1
|
||||
204,4.84,15,1,Homme,Type 1
|
||||
205,6,4,54,Homme,Type 2
|
||||
206,3.8,12,16,Femme,Type 2
|
||||
207,15,12,40,Homme,Type 3
|
||||
208,7,12,5,Homme,Type 2
|
||||
209,12,18,23,Homme,Type 1
|
||||
210,5.25,10,15,Homme,Type 3
|
||||
211,9.36,12,8,Homme,Type 3
|
||||
212,7.14,14,17,Homme,Type 2
|
||||
213,19.98,9,29,Homme,Type 3
|
||||
214,12,12,5,Homme,Type 2
|
||||
215,10.75,12,24,Homme,Type 3
|
||||
216,5.5,12,3,Homme,Type 3
|
||||
217,9.25,12,19,Homme,Type 3
|
||||
218,8.99,12,15,Femme,Type 2
|
||||
219,3.5,11,17,Femme,Type 2
|
||||
220,22.5,16,22,Homme,Type 1
|
||||
221,5,12,5,Homme,Type 3
|
||||
222,12.5,14,19,Femme,Type 2
|
||||
223,7,17,2,Homme,Type 1
|
||||
224,16.42,14,19,Homme,Type 1
|
||||
225,19.98,14,44,Homme,Type 2
|
||||
226,6.5,10,30,Homme,Type 3
|
||||
227,9.5,12,39,Femme,Type 2
|
||||
228,11.25,12,41,Homme,Type 3
|
||||
229,8.06,13,17,Homme,Type 1
|
||||
230,6,15,26,Femme,Type 2
|
||||
231,24.98,17,18,Homme,Type 1
|
||||
232,5,12,28,Femme,Type 3
|
||||
233,3.98,14,6,Femme,Type 2
|
||||
234,4.5,13,0,Femme,Type 2
|
||||
235,7.75,12,24,Femme,Type 2
|
||||
236,2.85,12,1,Homme,Type 3
|
||||
237,9,16,7,Homme,Type 1
|
||||
238,9.63,14,22,Homme,Type 2
|
||||
239,12,14,10,Femme,Type 1
|
||||
240,7.5,12,27,Femme,Type 2
|
||||
241,13.45,16,16,Homme,Type 1
|
||||
242,7.5,12,23,Femme,Type 2
|
||||
243,4.5,7,14,Homme,Type 2
|
||||
244,3.75,12,17,Femme,Type 2
|
||||
245,5.75,12,3,Homme,Type 1
|
||||
246,12.5,17,13,Femme,Type 1
|
||||
247,6.5,12,11,Femme,Type 1
|
||||
248,6.94,12,7,Femme,Type 2
|
||||
249,11.36,18,5,Homme,Type 1
|
||||
250,3.35,12,0,Femme,Type 2
|
||||
251,9.22,14,13,Femme,Type 1
|
||||
252,9.75,15,9,Femme,Type 3
|
||||
253,24.98,17,5,Femme,Type 1
|
||||
254,5.62,13,2,Femme,Type 2
|
||||
255,9.57,12,5,Femme,Type 2
|
||||
256,5.5,12,11,Femme,Type 3
|
||||
257,7,12,10,Femme,Type 2
|
||||
258,17.86,13,36,Homme,Type 1
|
||||
259,5.5,16,2,Femme,Type 2
|
||||
260,8.8,14,41,Homme,Type 1
|
||||
261,5.35,12,13,Femme,Type 2
|
||||
262,4.95,9,42,Femme,Type 3
|
||||
263,13.89,16,17,Femme,Type 1
|
||||
264,6,12,1,Homme,Type 3
|
||||
265,4.17,14,24,Femme,Type 2
|
||||
266,8.5,12,13,Homme,Type 3
|
||||
267,9.37,16,26,Femme,Type 1
|
||||
268,3.35,16,14,Femme,Type 2
|
||||
269,6.25,13,4,Femme,Type 2
|
||||
270,13,11,18,Homme,Type 2
|
||||
271,11.25,16,3,Femme,Type 1
|
||||
272,6.1,10,44,Femme,Type 3
|
||||
273,10.5,13,14,Femme,Type 1
|
||||
274,5.83,13,3,Homme,Type 2
|
||||
275,5.25,12,8,Femme,Type 2
|
||||
276,10,16,14,Homme,Type 1
|
||||
277,8.5,12,25,Femme,Type 2
|
||||
278,10.62,12,34,Homme,Type 1
|
||||
279,5.2,12,24,Femme,Type 2
|
||||
280,21.25,13,32,Homme,Type 1
|
||||
281,15,18,12,Homme,Type 1
|
||||
282,5,12,14,Femme,Type 2
|
||||
283,4.55,8,45,Femme,Type 2
|
||||
284,3.5,8,8,Homme,Type 3
|
||||
285,8,16,17,Femme,Type 1
|
||||
286,11.84,12,26,Homme,Type 1
|
||||
287,13.45,16,8,Homme,Type 1
|
||||
288,9,16,6,Femme,Type 2
|
||||
289,8.75,11,36,Femme,Type 2
|
||||
290,15,14,22,Homme,Type 2
|
||||
291,13.95,18,14,Femme,Type 1
|
||||
292,11.25,12,30,Femme,Type 1
|
||||
293,10.5,12,29,Femme,Type 2
|
||||
294,8.5,9,38,Homme,Type 3
|
||||
295,8.63,14,4,Femme,Type 1
|
||||
296,22.5,15,12,Homme,Type 1
|
||||
297,13.12,12,33,Femme,Type 2
|
||||
298,12.5,12,14,Femme,Type 2
|
||||
299,9.75,11,37,Homme,Type 3
|
||||
300,4.5,14,14,Homme,Type 2
|
||||
301,12.5,12,11,Homme,Type 3
|
||||
302,18,16,38,Homme,Type 1
|
||||
303,3.55,13,1,Femme,Type 2
|
||||
304,12.22,12,19,Homme,Type 3
|
||||
305,5.5,16,29,Homme,Type 1
|
||||
306,8.89,16,22,Femme,Type 1
|
||||
307,3.35,16,9,Homme,Type 1
|
||||
308,13.98,14,14,Homme,Type 3
|
||||
309,7.5,14,2,Homme,Type 2
|
||||
310,5.62,14,32,Femme,Type 2
|
||||
311,11.32,12,13,Femme,Type 2
|
||||
312,3.84,11,25,Femme,Type 2
|
||||
313,6.88,14,10,Femme,Type 2
|
||||
314,18.16,17,14,Homme,Type 1
|
||||
315,6,13,7,Homme,Type 3
|
||||
316,22.5,16,17,Homme,Type 1
|
||||
317,6.67,12,1,Homme,Type 3
|
||||
318,3.64,12,42,Femme,Type 1
|
||||
319,4.5,12,3,Femme,Type 3
|
||||
320,5,14,0,Homme,Type 2
|
||||
321,8.75,13,18,Homme,Type 3
|
||||
322,11.11,13,13,Homme,Type 2
|
||||
323,5,12,4,Homme,Type 1
|
||||
324,4,12,4,Homme,Type 3
|
||||
325,10.62,16,6,Femme,Type 1
|
||||
326,10,14,24,Femme,Type 2
|
||||
327,4.35,11,20,Femme,Type 2
|
||||
328,5.3,12,14,Homme,Type 1
|
||||
329,24.98,17,31,Homme,Type 1
|
||||
330,3.4,8,29,Femme,Type 2
|
||||
331,12.5,12,9,Homme,Type 3
|
||||
332,9.5,17,14,Femme,Type 1
|
||||
333,7.38,14,15,Femme,Type 1
|
||||
334,7.5,12,10,Femme,Type 2
|
||||
335,3.75,12,9,Homme,Type 3
|
||||
336,24.98,16,18,Homme,Type 1
|
||||
337,6.85,12,8,Homme,Type 2
|
||||
338,3.51,10,37,Femme,Type 2
|
||||
339,7.5,12,17,Homme,Type 1
|
||||
340,6.88,8,22,Femme,Type 3
|
||||
341,8,12,19,Femme,Type 3
|
||||
342,5.75,12,21,Femme,Type 1
|
||||
343,5.77,16,3,Homme,Type 2
|
||||
344,5,16,4,Femme,Type 2
|
||||
345,5.25,16,2,Femme,Type 2
|
||||
346,26.29,17,32,Homme,Type 1
|
||||
347,3.5,12,25,Femme,Type 2
|
||||
348,15.03,12,24,Femme,Type 2
|
||||
349,22.2,12,26,Homme,Type 3
|
||||
350,4.85,9,16,Femme,Type 3
|
||||
351,18.16,18,7,Homme,Type 1
|
||||
352,3.95,12,9,Femme,Type 2
|
||||
353,6.73,12,2,Homme,Type 3
|
||||
354,10,16,7,Homme,Type 1
|
||||
355,4,12,46,Femme,Type 3
|
||||
356,14.67,14,16,Homme,Type 2
|
||||
357,10,10,20,Homme,Type 1
|
||||
358,17.5,16,13,Homme,Type 1
|
||||
359,5,12,6,Homme,Type 3
|
||||
360,6.25,12,6,Femme,Type 3
|
||||
361,11.25,12,28,Femme,Type 1
|
||||
362,5.71,12,16,Femme,Type 3
|
||||
363,5,12,12,Homme,Type 3
|
||||
364,9.5,11,29,Homme,Type 3
|
||||
365,14,11,13,Homme,Type 3
|
||||
366,11.71,16,42,Femme,Type 2
|
||||
367,3.35,11,3,Homme,Type 3
|
||||
368,18,18,15,Homme,Type 1
|
||||
369,10,12,22,Homme,Type 3
|
||||
370,5.5,11,24,Femme,Type 2
|
||||
371,16.65,14,21,Homme,Type 1
|
||||
372,6.75,10,13,Homme,Type 3
|
||||
373,5.87,17,6,Femme,Type 2
|
||||
374,6,12,8,Homme,Type 3
|
||||
375,8.56,14,14,Femme,Type 1
|
||||
376,5.65,14,2,Homme,Type 3
|
||||
377,5,17,1,Femme,Type 3
|
||||
378,10,13,34,Homme,Type 1
|
||||
379,8.75,10,19,Homme,Type 2
|
||||
380,8,7,44,Homme,Type 3
|
||||
381,7.5,12,20,Femme,Type 2
|
||||
382,5,14,17,Femme,Type 2
|
||||
383,6.15,16,16,Femme,Type 1
|
||||
384,9,10,27,Homme,Type 3
|
||||
385,11.02,14,12,Homme,Type 2
|
||||
386,9.42,12,32,Homme,Type 2
|
||||
387,7,10,9,Homme,Type 3
|
||||
388,5,12,14,Femme,Type 2
|
||||
389,4.15,11,4,Homme,Type 2
|
||||
390,7.5,12,17,Homme,Type 3
|
||||
391,8.75,13,10,Femme,Type 2
|
||||
392,5.5,12,10,Homme,Type 2
|
||||
393,20,16,28,Femme,Type 1
|
||||
394,5.5,12,33,Femme,Type 2
|
||||
395,8.89,8,29,Femme,Type 2
|
||||
396,8,12,9,Femme,Type 2
|
||||
397,6.4,12,6,Femme,Type 2
|
||||
398,6.28,12,38,Femme,Type 3
|
||||
399,15.95,17,13,Femme,Type 1
|
||||
400,10,14,22,Homme,Type 1
|
||||
401,5.65,16,6,Femme,Type 2
|
||||
402,2.01,13,0,Homme,Type 2
|
||||
403,11,14,14,Homme,Type 3
|
||||
404,6.5,12,28,Homme,Type 3
|
||||
405,10,12,35,Homme,Type 3
|
||||
406,19.47,12,9,Homme,Type 3
|
||||
407,7,12,26,Femme,Type 2
|
||||
408,11.67,12,43,Femme,Type 2
|
||||
409,22.2,18,8,Homme,Type 1
|
||||
410,15,16,12,Homme,Type 3
|
||||
411,5.95,13,9,Homme,Type 2
|
||||
412,12,12,11,Femme,Type 1
|
||||
413,13.2,16,10,Homme,Type 1
|
||||
414,20,18,19,Femme,Type 1
|
||||
415,6,7,15,Femme,Type 3
|
||||
416,4.25,12,20,Femme,Type 2
|
||||
417,11.35,12,17,Homme,Type 3
|
||||
418,22,14,15,Homme,Type 1
|
||||
419,5.5,11,18,Homme,Type 3
|
||||
420,4.5,11,2,Homme,Type 2
|
||||
421,4.5,16,21,Homme,Type 2
|
||||
422,5.4,16,10,Femme,Type 1
|
||||
423,5.25,12,2,Homme,Type 3
|
||||
424,4.62,6,33,Femme,Type 3
|
||||
425,7.5,16,22,Femme,Type 1
|
||||
426,11.5,12,19,Homme,Type 3
|
||||
427,13,12,19,Homme,Type 3
|
||||
428,10.25,14,26,Femme,Type 1
|
||||
429,16.14,14,16,Homme,Type 1
|
||||
430,9.33,12,15,Femme,Type 2
|
||||
431,5.5,12,21,Femme,Type 2
|
||||
432,8.5,17,3,Homme,Type 2
|
||||
433,4.75,12,8,Homme,Type 3
|
||||
434,5.75,6,45,Homme,Type 3
|
||||
435,3.43,12,2,Homme,Type 2
|
||||
436,4.45,10,27,Homme,Type 3
|
||||
437,5,12,26,Femme,Type 2
|
||||
438,9,12,10,Homme,Type 2
|
||||
439,13.28,16,11,Homme,Type 3
|
||||
440,7.88,16,17,Homme,Type 2
|
||||
441,8,13,15,Femme,Type 2
|
||||
442,4,12,7,Homme,Type 2
|
||||
443,13.07,13,9,Homme,Type 3
|
||||
444,5.2,18,13,Femme,Type 2
|
||||
445,8,14,15,Femme,Type 2
|
||||
446,8.75,12,9,Homme,Type 3
|
||||
447,3.5,9,47,Homme,Type 2
|
||||
448,5.25,12,45,Femme,Type 2
|
||||
449,3.65,11,8,Femme,Type 2
|
||||
450,6.25,12,1,Homme,Type 3
|
||||
451,7.96,14,12,Femme,Type 2
|
||||
452,7.5,11,3,Homme,Type 2
|
||||
453,4.8,12,16,Femme,Type 3
|
||||
454,16.26,12,14,Homme,Type 2
|
||||
455,6.25,18,27,Homme,Type 1
|
||||
456,15,18,11,Femme,Type 1
|
||||
457,5.71,18,7,Homme,Type 1
|
||||
458,13.1,10,38,Femme,Type 2
|
||||
459,5.75,12,15,Femme,Type 2
|
||||
460,10.5,12,4,Homme,Type 3
|
||||
461,22.5,18,14,Homme,Type 1
|
||||
462,16,12,35,Homme,Type 3
|
||||
463,17.25,18,5,Homme,Type 1
|
||||
464,9.37,17,7,Homme,Type 1
|
||||
465,3.5,14,6,Femme,Type 2
|
||||
466,3.35,12,7,Femme,Type 2
|
||||
467,19.88,12,13,Homme,Type 1
|
||||
468,10.78,11,28,Homme,Type 3
|
||||
469,5.5,12,20,Homme,Type 2
|
||||
470,4,12,8,Homme,Type 2
|
||||
471,12.5,15,10,Homme,Type 1
|
||||
472,5.15,13,1,Homme,Type 2
|
||||
473,5.5,12,12,Homme,Type 3
|
||||
474,4,13,0,Homme,Type 3
|
||||
475,4.17,12,27,Femme,Type 2
|
||||
476,4,16,20,Femme,Type 2
|
||||
477,8.5,12,2,Homme,Type 2
|
||||
478,12.05,16,6,Femme,Type 1
|
||||
479,7,3,55,Homme,Type 3
|
||||
480,4.85,12,14,Femme,Type 2
|
||||
481,10.32,13,28,Femme,Type 2
|
||||
482,1,12,24,Homme,Type 1
|
||||
483,9.5,9,46,Femme,Type 2
|
||||
484,7.5,12,38,Homme,Type 3
|
||||
485,24.98,16,5,Femme,Type 1
|
||||
486,6.4,12,45,Femme,Type 2
|
||||
487,44.5,14,1,Femme,Type 1
|
||||
488,11.79,16,6,Femme,Type 1
|
||||
489,11,16,13,Homme,Type 3
|
||||
490,3.5,11,33,Femme,Type 2
|
||||
491,5.21,18,10,Homme,Type 2
|
||||
492,10.61,15,33,Femme,Type 1
|
||||
493,6.75,12,22,Homme,Type 2
|
||||
494,8.89,12,18,Homme,Type 3
|
||||
495,6,16,8,Homme,Type 1
|
||||
496,5.85,18,12,Homme,Type 1
|
||||
497,11.25,17,10,Femme,Type 1
|
||||
498,3.35,12,10,Femme,Type 3
|
||||
499,8.2,14,17,Homme,Type 3
|
||||
500,3,12,28,Femme,Type 2
|
||||
501,9.24,16,5,Homme,Type 1
|
||||
502,9.6,12,14,Femme,Type 2
|
||||
503,19.98,12,23,Homme,Type 3
|
||||
504,6.85,14,34,Homme,Type 2
|
||||
505,3.56,12,12,Femme,Type 2
|
||||
506,15,16,26,Homme,Type 1
|
||||
507,13.16,12,38,Femme,Type 1
|
||||
508,3,6,43,Femme,Type 3
|
||||
509,9,13,8,Homme,Type 3
|
||||
510,8.5,12,8,Homme,Type 3
|
||||
511,19,18,13,Homme,Type 1
|
||||
512,15,16,10,Homme,Type 1
|
||||
513,1.75,12,5,Femme,Type 2
|
||||
514,12.16,12,32,Femme,Type 2
|
||||
515,9,12,16,Homme,Type 2
|
||||
516,5.5,12,20,Homme,Type 2
|
||||
517,8.93,12,18,Femme,Type 3
|
||||
518,4.35,12,3,Femme,Type 1
|
||||
519,6.25,14,2,Homme,Type 1
|
||||
520,11.5,16,16,Homme,Type 2
|
||||
521,3.45,13,1,Femme,Type 2
|
||||
522,10,14,22,Homme,Type 1
|
||||
523,5,14,0,Homme,Type 1
|
||||
524,7.67,15,11,Femme,Type 1
|
||||
525,8.4,13,17,Homme,Type 3
|
||||
526,11.25,13,14,Homme,Type 3
|
||||
527,6.25,14,12,Femme,Type 1
|
||||
528,13.26,12,16,Homme,Type 3
|
||||
529,11.25,17,32,Femme,Type 2
|
||||
530,6.75,10,41,Homme,Type 3
|
||||
531,7.7,13,8,Femme,Type 2
|
||||
532,5.26,8,38,Femme,Type 2
|
||||
533,13.71,12,43,Homme,Type 2
|
||||
534,8,12,43,Femme,Type 2
|
||||
|
Reference in New Issue
Block a user