diff --git a/M1/General Linear Models/TP3-bis/TP3.Rmd b/M1/General Linear Models/TP3-bis/TP3.Rmd new file mode 100644 index 0000000..7f236d3 --- /dev/null +++ b/M1/General Linear Models/TP3-bis/TP3.Rmd @@ -0,0 +1,206 @@ +```{r} +setwd('/Users/arthurdanjou/Workspace/studies/M1/General Linear Models/TP3-bis') + +library(GGally) +library(broom) +library(scales) +library(car) +library(glue) +library(janitor) +library(marginaleffects) +library(tidyverse) +library(qqplotr) +options(scipen = 999, digits = 5) +``` +```{r} +data03 <- read.csv('data03.csv', header = TRUE, sep = ',', dec = '.') +data03$sexe <- as.factor(data03$sexe) +data03$travail <- as.factor(data03$travail) +head(data03, 15) +``` +```{r} +tab_sexe <- data03 |> + count(sexe) |> + mutate(freq1 = n / sum(n)) |> + mutate(freq2 = glue("{n} ({label_percent()(freq1)})")) |> + rename(Sexe = 1, Effectif = n, Proportion = freq1, "n (%)" = freq2) +tab_sexe +``` + +```{r} +tab_travail <- data03 |> + count(travail) |> + mutate(freq1 = n / sum(n)) |> + mutate(freq2 = glue("{n} ({label_percent()(freq1)})")) |> + rename(Travail = 1, Effectif = n, Proportion = freq1, "n (%)" = freq2) +tab_travail +``` + +```{r} +cross_sexe_travail <- data03 |> + count(sexe, Travail = travail) |> + group_by(sexe) |> + mutate(freq1 = n / sum(n)) |> + mutate(freq2 = glue("{n} ({label_percent(0.1)(freq1)})"), n = NULL, freq1 = NULL) |> + pivot_wider(names_from = sexe, values_from = freq2) +cross_sexe_travail +``` + +```{r} +data03 <- mutate(data03, logy = log(y)) + +data03 |> + pivot_longer(c(y, logy), names_to = "variable", values_to = "value") |> + mutate(variable = factor( + variable, + levels = c("y", "logy"), + labels = c("Salaire", "Log-Salaire")) + ) |> + ggplot(aes(x = value)) + + facet_wrap(vars(variable), scales = "free") + + geom_histogram( + fill = "dodgerblue", + color = "black", + bins = 15) + + scale_y_continuous(expand = expansion(c(0, 0.05))) + + scale_x_continuous(breaks = pretty_breaks()) + + labs(x = "Valeur", y = "Effectif") + + theme_bw(base_size = 14) + + theme(strip.text = element_text(size = 11, face = "bold")) +``` +```{r} +data03 |> + pivot_longer(c(y, logy), names_to = "variable", values_to = "value") |> + mutate(variable = factor( + variable, + levels = c("y", "logy"), labels = c("Salaire", "Log-Salaire") + )) |> + ggplot(aes(x = sexe, y = value)) + + facet_wrap(vars(variable), scales = "free") + + geom_boxplot( + width = 0.5, fill = "cyan", linewidth = 0.5, outlier.size = 2, outlier.alpha = 0.3 + ) + + scale_y_continuous(breaks = pretty_breaks()) + + labs(x = NULL, y = "Valeur") + + theme_bw(base_size = 14) + + theme( + strip.text = element_text(size = 11, face = "bold"), + panel.border = element_rect(linewidth = 0.5) + ) +``` +```{r} +data03 |> + pivot_longer(c(y, logy), names_to = "variable", values_to = "value") |> + mutate(variable = factor( + variable, + levels = c("y", "logy"), labels = c("Salaire", "Log-Salaire") + )) |> + ggplot(aes(x = travail, y = value)) + + facet_wrap(vars(variable), scales = "free") + + stat_boxplot(width = 0.25, geom = "errorbar", linewidth = 0.5) + + geom_boxplot( + width = 0.5, fatten = 0.25, fill = "cyan", linewidth = 0.5, + outlier.size = 2, outlier.alpha = 0.3 + ) + + scale_y_continuous(breaks = pretty_breaks()) + + labs(x = NULL, y = "Valeur") + + theme_bw(base_size = 14) + + theme( + strip.text = element_text(size = 11, face = "bold"), + panel.border = element_rect(linewidth = 0.5) + ) +``` + +```{r} +data03 |> + group_by(sexe) |> + summarise(n = n(), "Mean (Salaire)" = mean(y), "SD (Salaire)" = sd(y)) +``` + +```{r} +data03 |> + group_by(travail) |> + summarise(n = n(), "Mean (Salaire)" = mean(y), "SD (Salaire)" = sd(y)) +``` + +```{r} +data03 |> + group_by(sexe, travail) |> + summarise(n = n(), "Mean (Salaire)" = mean(y), "SD (Salaire)" = sd(y)) +``` +```{r} +data03 |> + group_by(sexe) |> + summarise(n = n(), "Mean (Salaire)" = mean(logy), "SD (Salaire)" = sd(logy)) +``` + +```{r} +data03 |> + group_by(travail) |> + summarise(n = n(), "Mean (Salaire)" = mean(logy), "SD (Salaire)" = sd(logy)) +``` + +```{r} +data03 |> + group_by(sexe, travail) |> + summarise(n = n(), "Mean (Salaire)" = mean(logy), "SD (Salaire)" = sd(logy)) +``` +```{r} +data03 <- data03 |> + mutate(sexef = ifelse(sexe == "Femme", 1, 0), sexeh = 1 - sexef) |> + mutate(job1 = (travail == "Type 1") * 1) |> + mutate(job2 = (travail == "Type 2") * 1) |> + mutate(job3 = (travail == "Type 3") * 1) +head(data03, 15) +``` +```{r} +mod1 <- lm(y ~ sexeh, data = data03) +mod2 <- lm(y ~ job2 + job3, data = data03) +mod3 <- lm(y ~ sexeh + job2 + job3, data = data03) +tidy(mod1) +tidy(mod2) +tidy(mod3) +``` + +Interprétations des coefficients du modèle 1 +$𝑦_i = β_0 + β_1 sexeh_i + ϵ_i$ +• (Intercept): $\hat{β_0} = 7.88$ : Salaire moyen chez les femmes +• sexeh: $\hat{𝛽1} = 2.12$ : Les hommes gagnent en moyenne 2.12 dollars par heure de plus que les femmes +(significatif). + +Interprétations des coefficients du modèle 2 +$𝑦_i = β_0 + β_1 job2_i + β_2 job3_i + ϵ_i$ +• (Intercept): $\hat{β_0} = 12.21$ : Salaire moyen pour le travail de type 1. +• job2: $\hat{β_1} = −5.09$ : la différence de salaire entre le travail de type 2 et celui de type 1 est de −5.09 dollars par heure en moyenne (significatif) +• job3: $\hat{β_2} = −3.78$ : la différence de salaire entre le travail de type 3 et celui de type 1 est de −3.78 dollarspar heure en moyenne (significatif). + +Interprétations des coefficients du modèle 3 +$𝑦_i = β_0 + β_1 sexeh_i + β_2 job2_i + β_3 job3_i + ϵ_i$ +• (Intercept): $\hat{β_0} = 11.13$ : Salaire moyen chez les femmes avec un travail de type 1 +• sexeh: $\hat{β_1 = 1.97$ : Les hommes gagnent en moyenne 1.97 dollars par heure de plus que les femmes +(significatif), quelque soit le type de travail. +• job2: $\hat{β_2} = −4.71$ : la différence de salaire entre le travail de type 2 et celui de type 1 est de −4.71 dollars par heure en moyenne (significatif), quelque soit le sexe. +• job3: $\hat{β_3} = −4.3$ : la différence de salaire entre le travail de type 3 et celui de type 1 est de −4.3 dollars par heure en moyenne (significatif), quelque soit le sexe. + +```{r} +anova(mod1, mod3) +``` +La p-value du test est inférieur à 0.05, on rejette donc $𝐻0$ et on conclue qu’au moins un des coefficients (𝛽1, 𝛽2) est significativement non nulle. +• On vient de tester si le type de travail est associé au salaire horaire. C’est donc le cas pour ces données. +```{r} +linearHypothesis(mod3, c("job2", "job3")) +linearHypothesis(mod3, "job2 = job3") +``` +Le test est non significatif (𝑝 = 0.44). On ne rejette pas $𝐻0$ et on conclue qu’il n’y pas de différence de salaire horaire entre le travail de type 2 et le travail de type 3, quelque soit le sexe. +```{r} +mod3bis <- lm(y ~ sexe + travail, data = data03) +summary(mod3bis) +``` +Les modèles mod3bis1 et mod3 sont identiques +• Pas besoins de créer toutes ces variables indicatrices si nos variables catégorielles sont de type factor ! +• La référence sera toujours la première modalité du factor. +• On peut changer la référence avec `relevel()` ou avec `C()`. Par exemple, si on veut la modalité 2 en référence pour le travail +```{r} +lm(y ~ sexe + relevel(travail, ref = 2), data = data03) |> + tidy() +``` diff --git a/M1/General Linear Models/TP3-bis/data03.csv b/M1/General Linear Models/TP3-bis/data03.csv new file mode 100755 index 0000000..eaba26d --- /dev/null +++ b/M1/General Linear Models/TP3-bis/data03.csv @@ -0,0 +1,535 @@ +id,y,education,experience,sexe,travail +1,3.75,12,6,Femme,Type 3 +2,12,16,14,Femme,Type 1 +3,15.73,16,4,Homme,Type 1 +4,5,12,0,Femme,Type 2 +5,9,12,20,Homme,Type 2 +6,6.88,17,15,Femme,Type 1 +7,9.1,13,16,Homme,Type 2 +8,3.35,16,3,Homme,Type 2 +9,10,16,10,Femme,Type 1 +10,4.59,12,36,Femme,Type 2 +11,7.61,12,20,Homme,Type 3 +12,18.5,14,13,Femme,Type 3 +13,20.4,17,3,Homme,Type 1 +14,8.49,12,24,Femme,Type 2 +15,12.5,15,6,Femme,Type 2 +16,5.75,9,34,Femme,Type 1 +17,4,12,12,Homme,Type 2 +18,12.47,13,10,Homme,Type 3 +19,5.55,11,45,Femme,Type 2 +20,6.67,16,10,Femme,Type 1 +21,4.75,12,2,Femme,Type 2 +22,7,12,7,Homme,Type 3 +23,12.2,14,10,Homme,Type 3 +24,15,12,42,Homme,Type 1 +25,9.56,12,23,Homme,Type 3 +26,7.65,12,20,Homme,Type 2 +27,5.8,13,5,Homme,Type 2 +28,5.8,16,14,Homme,Type 1 +29,3.6,12,6,Femme,Type 2 +30,7.5,12,3,Homme,Type 3 +31,8.75,12,30,Homme,Type 1 +32,10.43,14,15,Femme,Type 2 +33,3.75,12,41,Femme,Type 2 +34,8.43,12,12,Homme,Type 2 +35,4.55,12,4,Femme,Type 1 +36,6.25,9,30,Homme,Type 3 +37,4.5,12,16,Homme,Type 3 +38,4.3,13,8,Homme,Type 3 +39,8,12,15,Femme,Type 2 +40,7,7,42,Homme,Type 3 +41,4.5,12,3,Femme,Type 1 +42,4.75,12,10,Femme,Type 2 +43,4.5,12,7,Femme,Type 1 +44,3.4,8,49,Femme,Type 2 +45,9.83,12,23,Homme,Type 3 +46,6.25,16,7,Femme,Type 1 +47,23.25,17,25,Femme,Type 1 +48,9,16,27,Femme,Type 2 +49,19.38,16,11,Femme,Type 1 +50,14,16,16,Femme,Type 1 +51,6.5,12,8,Homme,Type 3 +52,6,12,19,Femme,Type 2 +53,6.25,16,7,Femme,Type 1 +54,6.5,8,27,Homme,Type 3 +55,9.5,12,25,Femme,Type 2 +56,4.25,12,29,Femme,Type 2 +57,14.53,16,18,Homme,Type 1 +58,8.85,14,19,Femme,Type 2 +59,9.17,12,44,Femme,Type 2 +60,11,8,42,Homme,Type 3 +61,3.75,16,13,Femme,Type 3 +62,3.35,14,0,Homme,Type 2 +63,3.35,12,8,Femme,Type 3 +64,6.75,12,12,Homme,Type 3 +65,10,16,7,Femme,Type 2 +66,8.93,8,47,Homme,Type 2 +67,11.11,12,28,Homme,Type 2 +68,6.5,11,39,Homme,Type 2 +69,14,5,44,Homme,Type 3 +70,6.25,13,30,Femme,Type 2 +71,4.7,8,19,Homme,Type 3 +72,22.83,18,37,Femme,Type 1 +73,13.45,12,16,Homme,Type 3 +74,5,12,39,Femme,Type 2 +75,10,10,12,Homme,Type 3 +76,8.9,10,27,Homme,Type 3 +77,7,11,12,Femme,Type 2 +78,15,12,39,Homme,Type 1 +79,3.5,12,35,Homme,Type 2 +80,12.57,12,12,Homme,Type 3 +81,8,12,14,Femme,Type 2 +82,7,18,33,Homme,Type 1 +83,26,14,21,Homme,Type 3 +84,11.43,12,3,Homme,Type 3 +85,5.56,14,5,Homme,Type 2 +86,12,18,18,Femme,Type 1 +87,5,12,4,Homme,Type 2 +88,9.15,12,7,Homme,Type 3 +89,8.5,12,16,Femme,Type 1 +90,6.25,16,4,Homme,Type 2 +91,3.35,7,43,Homme,Type 3 +92,15.38,16,33,Homme,Type 1 +93,6.1,12,33,Femme,Type 1 +94,4.13,12,4,Femme,Type 2 +95,14.21,11,15,Homme,Type 3 +96,7.53,14,1,Homme,Type 2 +97,3.5,10,33,Femme,Type 2 +98,6.58,12,24,Femme,Type 1 +99,4.85,10,13,Homme,Type 3 +100,7.81,12,1,Femme,Type 1 +101,6,13,31,Homme,Type 2 +102,4.5,11,14,Homme,Type 3 +103,24.98,18,29,Homme,Type 1 +104,13.33,18,10,Homme,Type 2 +105,20.5,16,14,Homme,Type 1 +106,10,12,20,Homme,Type 2 +107,11.22,18,19,Homme,Type 1 +108,10.58,16,9,Homme,Type 1 +109,12.65,17,13,Femme,Type 1 +110,12,12,14,Homme,Type 3 +111,5.1,8,21,Femme,Type 3 +112,9.86,15,13,Homme,Type 1 +113,10,12,11,Homme,Type 3 +114,8,18,33,Homme,Type 1 +115,22.2,18,40,Femme,Type 1 +116,4.25,13,0,Femme,Type 2 +117,5,16,3,Homme,Type 3 +118,4,12,15,Femme,Type 2 +119,12.5,13,16,Femme,Type 2 +120,6.5,11,17,Homme,Type 3 +121,3.6,12,43,Femme,Type 2 +122,9.45,12,13,Homme,Type 3 +123,10.81,12,40,Femme,Type 2 +124,6.25,18,14,Homme,Type 1 +125,4.35,8,37,Femme,Type 2 +126,16,12,12,Homme,Type 1 +127,7.69,12,19,Homme,Type 2 +128,9,8,33,Homme,Type 3 +129,4.25,12,2,Femme,Type 2 +130,7.8,17,7,Homme,Type 1 +131,3.8,12,4,Femme,Type 2 +132,3.75,15,4,Homme,Type 2 +133,8,12,8,Femme,Type 2 +134,9.6,9,33,Homme,Type 2 +135,3.5,12,34,Homme,Type 2 +136,13.75,14,21,Homme,Type 2 +137,5.13,12,5,Femme,Type 2 +138,4.8,9,16,Homme,Type 3 +139,15.56,16,10,Homme,Type 1 +140,20.55,12,33,Homme,Type 3 +141,7.5,12,9,Femme,Type 2 +142,7.78,16,6,Femme,Type 1 +143,4.5,12,7,Femme,Type 3 +144,3.5,9,48,Homme,Type 2 +145,10.2,17,26,Femme,Type 1 +146,12,17,24,Femme,Type 1 +147,4,12,6,Homme,Type 3 +148,6,17,3,Femme,Type 1 +149,13.51,18,14,Homme,Type 1 +150,7.5,16,10,Homme,Type 1 +151,12,12,20,Homme,Type 3 +152,4,11,25,Femme,Type 3 +153,12.5,12,43,Homme,Type 2 +154,15,12,33,Homme,Type 3 +155,10,18,13,Femme,Type 1 +156,3.65,11,16,Homme,Type 3 +157,7,11,16,Femme,Type 2 +158,8.9,14,13,Homme,Type 3 +159,25,14,4,Homme,Type 2 +160,7,12,32,Femme,Type 1 +161,14.29,14,32,Femme,Type 2 +162,4.22,8,39,Femme,Type 3 +163,7.3,12,37,Homme,Type 3 +164,13.65,16,11,Homme,Type 1 +165,7.5,12,16,Femme,Type 2 +166,10,10,25,Femme,Type 2 +167,7.78,12,23,Homme,Type 3 +168,4.5,12,15,Femme,Type 3 +169,10.58,14,25,Homme,Type 3 +170,10,16,0,Femme,Type 1 +171,17.25,15,31,Homme,Type 1 +172,12,17,13,Homme,Type 2 +173,14,18,31,Femme,Type 1 +174,3.35,13,2,Femme,Type 2 +175,6,12,9,Homme,Type 3 +176,6.5,12,5,Homme,Type 3 +177,10,16,4,Femme,Type 1 +178,13,12,25,Homme,Type 2 +179,4.28,12,38,Femme,Type 2 +180,9.65,12,38,Femme,Type 2 +181,5.79,12,42,Femme,Type 1 +182,6.93,12,26,Homme,Type 2 +183,12.67,16,15,Homme,Type 1 +184,4.55,13,33,Femme,Type 2 +185,6.8,9,30,Femme,Type 3 +186,13,12,8,Homme,Type 3 +187,3.35,12,0,Homme,Type 3 +188,5.4,12,18,Femme,Type 2 +189,10.67,12,36,Homme,Type 3 +190,11.25,15,5,Homme,Type 1 +191,4.1,12,15,Femme,Type 2 +192,10.28,15,10,Femme,Type 1 +193,5.71,18,3,Homme,Type 1 +194,5,13,6,Femme,Type 2 +195,3.75,2,16,Homme,Type 2 +196,3.75,11,11,Homme,Type 3 +197,10.62,12,45,Femme,Type 2 +198,15.79,18,7,Homme,Type 1 +199,6.36,12,9,Homme,Type 3 +200,10.53,14,12,Femme,Type 2 +201,8.63,12,18,Femme,Type 2 +202,16,14,20,Homme,Type 3 +203,7.45,12,25,Femme,Type 1 +204,4.84,15,1,Homme,Type 1 +205,6,4,54,Homme,Type 2 +206,3.8,12,16,Femme,Type 2 +207,15,12,40,Homme,Type 3 +208,7,12,5,Homme,Type 2 +209,12,18,23,Homme,Type 1 +210,5.25,10,15,Homme,Type 3 +211,9.36,12,8,Homme,Type 3 +212,7.14,14,17,Homme,Type 2 +213,19.98,9,29,Homme,Type 3 +214,12,12,5,Homme,Type 2 +215,10.75,12,24,Homme,Type 3 +216,5.5,12,3,Homme,Type 3 +217,9.25,12,19,Homme,Type 3 +218,8.99,12,15,Femme,Type 2 +219,3.5,11,17,Femme,Type 2 +220,22.5,16,22,Homme,Type 1 +221,5,12,5,Homme,Type 3 +222,12.5,14,19,Femme,Type 2 +223,7,17,2,Homme,Type 1 +224,16.42,14,19,Homme,Type 1 +225,19.98,14,44,Homme,Type 2 +226,6.5,10,30,Homme,Type 3 +227,9.5,12,39,Femme,Type 2 +228,11.25,12,41,Homme,Type 3 +229,8.06,13,17,Homme,Type 1 +230,6,15,26,Femme,Type 2 +231,24.98,17,18,Homme,Type 1 +232,5,12,28,Femme,Type 3 +233,3.98,14,6,Femme,Type 2 +234,4.5,13,0,Femme,Type 2 +235,7.75,12,24,Femme,Type 2 +236,2.85,12,1,Homme,Type 3 +237,9,16,7,Homme,Type 1 +238,9.63,14,22,Homme,Type 2 +239,12,14,10,Femme,Type 1 +240,7.5,12,27,Femme,Type 2 +241,13.45,16,16,Homme,Type 1 +242,7.5,12,23,Femme,Type 2 +243,4.5,7,14,Homme,Type 2 +244,3.75,12,17,Femme,Type 2 +245,5.75,12,3,Homme,Type 1 +246,12.5,17,13,Femme,Type 1 +247,6.5,12,11,Femme,Type 1 +248,6.94,12,7,Femme,Type 2 +249,11.36,18,5,Homme,Type 1 +250,3.35,12,0,Femme,Type 2 +251,9.22,14,13,Femme,Type 1 +252,9.75,15,9,Femme,Type 3 +253,24.98,17,5,Femme,Type 1 +254,5.62,13,2,Femme,Type 2 +255,9.57,12,5,Femme,Type 2 +256,5.5,12,11,Femme,Type 3 +257,7,12,10,Femme,Type 2 +258,17.86,13,36,Homme,Type 1 +259,5.5,16,2,Femme,Type 2 +260,8.8,14,41,Homme,Type 1 +261,5.35,12,13,Femme,Type 2 +262,4.95,9,42,Femme,Type 3 +263,13.89,16,17,Femme,Type 1 +264,6,12,1,Homme,Type 3 +265,4.17,14,24,Femme,Type 2 +266,8.5,12,13,Homme,Type 3 +267,9.37,16,26,Femme,Type 1 +268,3.35,16,14,Femme,Type 2 +269,6.25,13,4,Femme,Type 2 +270,13,11,18,Homme,Type 2 +271,11.25,16,3,Femme,Type 1 +272,6.1,10,44,Femme,Type 3 +273,10.5,13,14,Femme,Type 1 +274,5.83,13,3,Homme,Type 2 +275,5.25,12,8,Femme,Type 2 +276,10,16,14,Homme,Type 1 +277,8.5,12,25,Femme,Type 2 +278,10.62,12,34,Homme,Type 1 +279,5.2,12,24,Femme,Type 2 +280,21.25,13,32,Homme,Type 1 +281,15,18,12,Homme,Type 1 +282,5,12,14,Femme,Type 2 +283,4.55,8,45,Femme,Type 2 +284,3.5,8,8,Homme,Type 3 +285,8,16,17,Femme,Type 1 +286,11.84,12,26,Homme,Type 1 +287,13.45,16,8,Homme,Type 1 +288,9,16,6,Femme,Type 2 +289,8.75,11,36,Femme,Type 2 +290,15,14,22,Homme,Type 2 +291,13.95,18,14,Femme,Type 1 +292,11.25,12,30,Femme,Type 1 +293,10.5,12,29,Femme,Type 2 +294,8.5,9,38,Homme,Type 3 +295,8.63,14,4,Femme,Type 1 +296,22.5,15,12,Homme,Type 1 +297,13.12,12,33,Femme,Type 2 +298,12.5,12,14,Femme,Type 2 +299,9.75,11,37,Homme,Type 3 +300,4.5,14,14,Homme,Type 2 +301,12.5,12,11,Homme,Type 3 +302,18,16,38,Homme,Type 1 +303,3.55,13,1,Femme,Type 2 +304,12.22,12,19,Homme,Type 3 +305,5.5,16,29,Homme,Type 1 +306,8.89,16,22,Femme,Type 1 +307,3.35,16,9,Homme,Type 1 +308,13.98,14,14,Homme,Type 3 +309,7.5,14,2,Homme,Type 2 +310,5.62,14,32,Femme,Type 2 +311,11.32,12,13,Femme,Type 2 +312,3.84,11,25,Femme,Type 2 +313,6.88,14,10,Femme,Type 2 +314,18.16,17,14,Homme,Type 1 +315,6,13,7,Homme,Type 3 +316,22.5,16,17,Homme,Type 1 +317,6.67,12,1,Homme,Type 3 +318,3.64,12,42,Femme,Type 1 +319,4.5,12,3,Femme,Type 3 +320,5,14,0,Homme,Type 2 +321,8.75,13,18,Homme,Type 3 +322,11.11,13,13,Homme,Type 2 +323,5,12,4,Homme,Type 1 +324,4,12,4,Homme,Type 3 +325,10.62,16,6,Femme,Type 1 +326,10,14,24,Femme,Type 2 +327,4.35,11,20,Femme,Type 2 +328,5.3,12,14,Homme,Type 1 +329,24.98,17,31,Homme,Type 1 +330,3.4,8,29,Femme,Type 2 +331,12.5,12,9,Homme,Type 3 +332,9.5,17,14,Femme,Type 1 +333,7.38,14,15,Femme,Type 1 +334,7.5,12,10,Femme,Type 2 +335,3.75,12,9,Homme,Type 3 +336,24.98,16,18,Homme,Type 1 +337,6.85,12,8,Homme,Type 2 +338,3.51,10,37,Femme,Type 2 +339,7.5,12,17,Homme,Type 1 +340,6.88,8,22,Femme,Type 3 +341,8,12,19,Femme,Type 3 +342,5.75,12,21,Femme,Type 1 +343,5.77,16,3,Homme,Type 2 +344,5,16,4,Femme,Type 2 +345,5.25,16,2,Femme,Type 2 +346,26.29,17,32,Homme,Type 1 +347,3.5,12,25,Femme,Type 2 +348,15.03,12,24,Femme,Type 2 +349,22.2,12,26,Homme,Type 3 +350,4.85,9,16,Femme,Type 3 +351,18.16,18,7,Homme,Type 1 +352,3.95,12,9,Femme,Type 2 +353,6.73,12,2,Homme,Type 3 +354,10,16,7,Homme,Type 1 +355,4,12,46,Femme,Type 3 +356,14.67,14,16,Homme,Type 2 +357,10,10,20,Homme,Type 1 +358,17.5,16,13,Homme,Type 1 +359,5,12,6,Homme,Type 3 +360,6.25,12,6,Femme,Type 3 +361,11.25,12,28,Femme,Type 1 +362,5.71,12,16,Femme,Type 3 +363,5,12,12,Homme,Type 3 +364,9.5,11,29,Homme,Type 3 +365,14,11,13,Homme,Type 3 +366,11.71,16,42,Femme,Type 2 +367,3.35,11,3,Homme,Type 3 +368,18,18,15,Homme,Type 1 +369,10,12,22,Homme,Type 3 +370,5.5,11,24,Femme,Type 2 +371,16.65,14,21,Homme,Type 1 +372,6.75,10,13,Homme,Type 3 +373,5.87,17,6,Femme,Type 2 +374,6,12,8,Homme,Type 3 +375,8.56,14,14,Femme,Type 1 +376,5.65,14,2,Homme,Type 3 +377,5,17,1,Femme,Type 3 +378,10,13,34,Homme,Type 1 +379,8.75,10,19,Homme,Type 2 +380,8,7,44,Homme,Type 3 +381,7.5,12,20,Femme,Type 2 +382,5,14,17,Femme,Type 2 +383,6.15,16,16,Femme,Type 1 +384,9,10,27,Homme,Type 3 +385,11.02,14,12,Homme,Type 2 +386,9.42,12,32,Homme,Type 2 +387,7,10,9,Homme,Type 3 +388,5,12,14,Femme,Type 2 +389,4.15,11,4,Homme,Type 2 +390,7.5,12,17,Homme,Type 3 +391,8.75,13,10,Femme,Type 2 +392,5.5,12,10,Homme,Type 2 +393,20,16,28,Femme,Type 1 +394,5.5,12,33,Femme,Type 2 +395,8.89,8,29,Femme,Type 2 +396,8,12,9,Femme,Type 2 +397,6.4,12,6,Femme,Type 2 +398,6.28,12,38,Femme,Type 3 +399,15.95,17,13,Femme,Type 1 +400,10,14,22,Homme,Type 1 +401,5.65,16,6,Femme,Type 2 +402,2.01,13,0,Homme,Type 2 +403,11,14,14,Homme,Type 3 +404,6.5,12,28,Homme,Type 3 +405,10,12,35,Homme,Type 3 +406,19.47,12,9,Homme,Type 3 +407,7,12,26,Femme,Type 2 +408,11.67,12,43,Femme,Type 2 +409,22.2,18,8,Homme,Type 1 +410,15,16,12,Homme,Type 3 +411,5.95,13,9,Homme,Type 2 +412,12,12,11,Femme,Type 1 +413,13.2,16,10,Homme,Type 1 +414,20,18,19,Femme,Type 1 +415,6,7,15,Femme,Type 3 +416,4.25,12,20,Femme,Type 2 +417,11.35,12,17,Homme,Type 3 +418,22,14,15,Homme,Type 1 +419,5.5,11,18,Homme,Type 3 +420,4.5,11,2,Homme,Type 2 +421,4.5,16,21,Homme,Type 2 +422,5.4,16,10,Femme,Type 1 +423,5.25,12,2,Homme,Type 3 +424,4.62,6,33,Femme,Type 3 +425,7.5,16,22,Femme,Type 1 +426,11.5,12,19,Homme,Type 3 +427,13,12,19,Homme,Type 3 +428,10.25,14,26,Femme,Type 1 +429,16.14,14,16,Homme,Type 1 +430,9.33,12,15,Femme,Type 2 +431,5.5,12,21,Femme,Type 2 +432,8.5,17,3,Homme,Type 2 +433,4.75,12,8,Homme,Type 3 +434,5.75,6,45,Homme,Type 3 +435,3.43,12,2,Homme,Type 2 +436,4.45,10,27,Homme,Type 3 +437,5,12,26,Femme,Type 2 +438,9,12,10,Homme,Type 2 +439,13.28,16,11,Homme,Type 3 +440,7.88,16,17,Homme,Type 2 +441,8,13,15,Femme,Type 2 +442,4,12,7,Homme,Type 2 +443,13.07,13,9,Homme,Type 3 +444,5.2,18,13,Femme,Type 2 +445,8,14,15,Femme,Type 2 +446,8.75,12,9,Homme,Type 3 +447,3.5,9,47,Homme,Type 2 +448,5.25,12,45,Femme,Type 2 +449,3.65,11,8,Femme,Type 2 +450,6.25,12,1,Homme,Type 3 +451,7.96,14,12,Femme,Type 2 +452,7.5,11,3,Homme,Type 2 +453,4.8,12,16,Femme,Type 3 +454,16.26,12,14,Homme,Type 2 +455,6.25,18,27,Homme,Type 1 +456,15,18,11,Femme,Type 1 +457,5.71,18,7,Homme,Type 1 +458,13.1,10,38,Femme,Type 2 +459,5.75,12,15,Femme,Type 2 +460,10.5,12,4,Homme,Type 3 +461,22.5,18,14,Homme,Type 1 +462,16,12,35,Homme,Type 3 +463,17.25,18,5,Homme,Type 1 +464,9.37,17,7,Homme,Type 1 +465,3.5,14,6,Femme,Type 2 +466,3.35,12,7,Femme,Type 2 +467,19.88,12,13,Homme,Type 1 +468,10.78,11,28,Homme,Type 3 +469,5.5,12,20,Homme,Type 2 +470,4,12,8,Homme,Type 2 +471,12.5,15,10,Homme,Type 1 +472,5.15,13,1,Homme,Type 2 +473,5.5,12,12,Homme,Type 3 +474,4,13,0,Homme,Type 3 +475,4.17,12,27,Femme,Type 2 +476,4,16,20,Femme,Type 2 +477,8.5,12,2,Homme,Type 2 +478,12.05,16,6,Femme,Type 1 +479,7,3,55,Homme,Type 3 +480,4.85,12,14,Femme,Type 2 +481,10.32,13,28,Femme,Type 2 +482,1,12,24,Homme,Type 1 +483,9.5,9,46,Femme,Type 2 +484,7.5,12,38,Homme,Type 3 +485,24.98,16,5,Femme,Type 1 +486,6.4,12,45,Femme,Type 2 +487,44.5,14,1,Femme,Type 1 +488,11.79,16,6,Femme,Type 1 +489,11,16,13,Homme,Type 3 +490,3.5,11,33,Femme,Type 2 +491,5.21,18,10,Homme,Type 2 +492,10.61,15,33,Femme,Type 1 +493,6.75,12,22,Homme,Type 2 +494,8.89,12,18,Homme,Type 3 +495,6,16,8,Homme,Type 1 +496,5.85,18,12,Homme,Type 1 +497,11.25,17,10,Femme,Type 1 +498,3.35,12,10,Femme,Type 3 +499,8.2,14,17,Homme,Type 3 +500,3,12,28,Femme,Type 2 +501,9.24,16,5,Homme,Type 1 +502,9.6,12,14,Femme,Type 2 +503,19.98,12,23,Homme,Type 3 +504,6.85,14,34,Homme,Type 2 +505,3.56,12,12,Femme,Type 2 +506,15,16,26,Homme,Type 1 +507,13.16,12,38,Femme,Type 1 +508,3,6,43,Femme,Type 3 +509,9,13,8,Homme,Type 3 +510,8.5,12,8,Homme,Type 3 +511,19,18,13,Homme,Type 1 +512,15,16,10,Homme,Type 1 +513,1.75,12,5,Femme,Type 2 +514,12.16,12,32,Femme,Type 2 +515,9,12,16,Homme,Type 2 +516,5.5,12,20,Homme,Type 2 +517,8.93,12,18,Femme,Type 3 +518,4.35,12,3,Femme,Type 1 +519,6.25,14,2,Homme,Type 1 +520,11.5,16,16,Homme,Type 2 +521,3.45,13,1,Femme,Type 2 +522,10,14,22,Homme,Type 1 +523,5,14,0,Homme,Type 1 +524,7.67,15,11,Femme,Type 1 +525,8.4,13,17,Homme,Type 3 +526,11.25,13,14,Homme,Type 3 +527,6.25,14,12,Femme,Type 1 +528,13.26,12,16,Homme,Type 3 +529,11.25,17,32,Femme,Type 2 +530,6.75,10,41,Homme,Type 3 +531,7.7,13,8,Femme,Type 2 +532,5.26,8,38,Femme,Type 2 +533,13.71,12,43,Homme,Type 2 +534,8,12,43,Femme,Type 2