mirror of
https://github.com/ArthurDanjou/ml_exercises.git
synced 2026-01-14 04:04:28 +01:00
minor updates to dependencies and link to mybinder
This commit is contained in:
18
README.md
18
README.md
@@ -1,6 +1,6 @@
|
||||
# Machine Learning Exercises
|
||||
|
||||
This repository contains the Python programming exercises accompanying the theory from my [machine learning book](https://franziskahorn.de/mlbook/). They are part of the curriculum of the [ML for Data Scientists Workshop](https://franziskahorn.de/mlws_scientist.html).
|
||||
This repository contains the Python programming exercises accompanying the theory from my [machine learning book](https://franziskahorn.de/mlbook/). They are part of the curriculum of the [ML for Data Scientists](https://franziskahorn.de/mlws_scientist.html) and [ML in Practice](https://franziskahorn.de/mlws_practice.html) Workshops.
|
||||
|
||||
If you have any questions, please send me an [email](mailto:hey@franziskahorn.de).
|
||||
|
||||
@@ -8,13 +8,23 @@ Have fun!
|
||||
|
||||
### Using Python
|
||||
|
||||
The programming exercises are written in Python. If you're unfamiliar with Python, you should work through [this tutorial](https://github.com/cod3licious/python_tutorial).
|
||||
The programming exercises are written in Python. If you're unfamiliar with Python, you should work through [this tutorial](https://github.com/cod3licious/python_tutorial) first.
|
||||
|
||||
##### Using Python on your own computer
|
||||
#### Working on your own computer
|
||||
The [Python tutorial](https://github.com/cod3licious/python_tutorial) includes some notes on how to install Python and Jupyter Notebook on your own computer. <br>
|
||||
Please make sure you're using Python 3 and all libraries listed in the [`requirements.txt`](/requirements.txt) file are installed and up to date. You can verify this with the [`test_installation.ipynb`](/test_installation.ipynb) notebook.
|
||||
|
||||
#### Working in the cloud
|
||||
|
||||
##### Using Google Colab
|
||||
|
||||
If you have a Google account, you can also run the code in the cloud using Google Colab:
|
||||
[](https://colab.research.google.com/github/cod3licious/ml_exercises) <br>
|
||||
While Google Colab already includes most packages that we need, should you require an additional library (e.g., `skorch` for training PyTorch neural networks in notebook 5), you can install a package by executing `!pip install package` in a notebook cell. With Colab, it is also possible to run code on a GPU, but this has to be manually selected.
|
||||
While Google Colab already includes most packages that we need, should you require an additional library (e.g., `skorch` for training PyTorch neural networks in notebook 6), you can install a package by executing `!pip install package` in a notebook cell. With Colab, it is also possible to run code on a GPU, but this has to be manually selected.
|
||||
|
||||
|
||||
##### Using MyBinder
|
||||
|
||||
If you don't have a Google account, you can also use MyBinder, which does not require you to log in:
|
||||
[](https://mybinder.org/v2/gh/cod3licious/ml_exercises/main) <br>
|
||||
However, this will take a while to load and might be very slow or even crash due to insufficient RAM for some of the exercises.
|
||||
|
||||
@@ -369,7 +369,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.2"
|
||||
"version": "3.11.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
@@ -199,7 +199,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.2"
|
||||
"version": "3.11.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
@@ -521,7 +521,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.2"
|
||||
"version": "3.11.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
@@ -898,7 +898,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.2"
|
||||
"version": "3.11.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
@@ -490,7 +490,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.2"
|
||||
"version": "3.11.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
@@ -202,7 +202,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.2"
|
||||
"version": "3.11.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
@@ -681,7 +681,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.2"
|
||||
"version": "3.11.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
@@ -422,7 +422,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.2"
|
||||
"version": "3.11.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
@@ -349,7 +349,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.2"
|
||||
"version": "3.11.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
3987
poetry.lock
generated
Normal file
3987
poetry.lock
generated
Normal file
File diff suppressed because it is too large
Load Diff
25
pyproject.toml
Normal file
25
pyproject.toml
Normal file
@@ -0,0 +1,25 @@
|
||||
[build-system]
|
||||
requires = ["poetry-core"]
|
||||
build-backend = "poetry.core.masonry.api"
|
||||
|
||||
[tool.poetry]
|
||||
package-mode = false
|
||||
|
||||
[tool.poetry.dependencies]
|
||||
python = "^3.8.1,<3.13"
|
||||
fastapi = {version = "^0.109.2", extras = ["all"]}
|
||||
ipython = ">=8.0.0"
|
||||
joblib = "^1.2.0"
|
||||
matplotlib = "^3.7.2"
|
||||
notebook = "^6.5.0"
|
||||
numpy = "^1.20.3"
|
||||
pandas = ">=1.3.5,<3.0.0"
|
||||
pillow = ">=9.1.0"
|
||||
plotly = ">=5.7.0"
|
||||
requests = ">=2.27.1"
|
||||
scipy = "^1.7.3"
|
||||
scikit-learn = "^1.2.0"
|
||||
skorch = "^0.15.0"
|
||||
torch = "^2.2.1"
|
||||
torchvision = "^0.17.1"
|
||||
xlrd = "^2.0.1"
|
||||
@@ -1,10 +1,11 @@
|
||||
ipython>=8.2.0
|
||||
notebook>=6.4.10
|
||||
numpy>=1.22.3
|
||||
matplotlib>=3.5.1
|
||||
pandas>=1.4.2
|
||||
scipy>=1.8.0
|
||||
scikit-learn>=1.2.0
|
||||
matplotlib>=3.5.1
|
||||
joblib>=1.2.0
|
||||
pillow>=9.1.0
|
||||
plotly>=5.7.0
|
||||
xlrd>=2.0.1
|
||||
|
||||
@@ -17,14 +17,16 @@
|
||||
"# they should not be too much behind the ones in the comments...\n",
|
||||
"import numpy\n",
|
||||
"print(\"numpy\", numpy.__version__) # >= 1.22.3\n",
|
||||
"import matplotlib\n",
|
||||
"print(\"matplotlib\", matplotlib.__version__) # >= 3.5.1\n",
|
||||
"import pandas\n",
|
||||
"print(\"pandas\", pandas.__version__) # >= 1.4.2\n",
|
||||
"import scipy\n",
|
||||
"print(\"scipy\", scipy.__version__) # >= 1.8.0\n",
|
||||
"import sklearn\n",
|
||||
"print(\"sklearn\", sklearn.__version__) # >= 1.2.0\n",
|
||||
"import matplotlib\n",
|
||||
"print(\"matplotlib\", matplotlib.__version__) # >= 3.5.1\n",
|
||||
"import joblib\n",
|
||||
"print(\"joblib\", joblib.__version__) # >= 1.2.0\n",
|
||||
"import PIL\n",
|
||||
"print(\"pillow\", PIL.__version__) # >= 9.1.0\n",
|
||||
"import plotly\n",
|
||||
@@ -76,7 +78,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.2"
|
||||
"version": "3.11.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
Reference in New Issue
Block a user