Fix article

This commit is contained in:
2024-11-26 14:17:24 +01:00
parent f0cf3bbe07
commit c19ab67874

View File

@@ -68,9 +68,15 @@ Once the model type is defined, the next step is to delve into the full workflow
A machine learning project generally follows these steps:
1. **Data Preparation**\* Splitting data into training and testing sets.* Preprocessing: scaling, handling missing values, etc.
2. **Model Training**\* Fitting the model on training data: `model.fit(X, y)`.* Optimising parameters and hyperparameters.
3. **Prediction and Evaluation**\* Making predictions on unseen data: `model.predict(X)`.* Comparing predictions ($$\hat{y}$$) with actual values ($$y$$).
1. **Data Preparation**
- Splitting data into training and testing sets.
- Preprocessing: scaling, handling missing values, etc.
2. **Model Training**
- Fitting the model on training data: `model.fit(X, y)`.
- Optimising parameters and hyperparameters.
3. **Prediction and Evaluation**
- Making predictions on unseen data: `model.predict(X)`.
- Comparing predictions ($$\hat{y}$$) with actual values ($$y$$).
![Modelization in Prog.png](/portfolio/ML/model.png)