feat: mettre à jour les projets avec des modifications de balisage et ajouter de nouveaux fichiers PDF

This commit is contained in:
2025-12-24 22:46:33 +01:00
parent 82d2ed8dba
commit 719ee024d6
16 changed files with 49 additions and 24 deletions

View File

@@ -3,7 +3,7 @@ export function useProjectColors() {
'Active': 'blue',
'Completed': 'green',
'Archived': 'neutral',
'In Progress': 'amber'
'In progress': 'amber'
}
const typeColors: Record<string, string> = {

View File

@@ -11,7 +11,6 @@ tags:
- Nuxt
- NuxtHub
- Cloudflare Workers
- Wrangler
- TypeScript
icon: i-ph-globe-hemisphere-west-duotone
---

View File

@@ -11,7 +11,6 @@ tags:
- Python
- R
- Data Science
- Machine Learning
- Mathematics
icon: i-ph-book-duotone
---

View File

@@ -9,7 +9,6 @@ status: Completed
tags:
- R
- Statistics
- Data Analysis
- GLM
- Mathematics
icon: i-ph-bicycle-duotone
@@ -53,5 +52,5 @@ The analysis identified critical factors influencing bike-sharing demand:
## 📄 Detailed Report
<iframe src="/projects/bikes-glm/Report.pdf" width="100%" height="1000px">
<iframe src="/projects/bikes-glm.pdf" width="100%" height="1000px">
</iframe>

View File

@@ -9,7 +9,6 @@ status: Completed
tags:
- Python
- Machine Learning
- Data Science
- Classification
- Healthcare
icon: i-ph-heart-half-duotone
@@ -43,5 +42,5 @@ This project illustrates a concrete application of data science techniques to a
You can find the code here: [Breast Cancer Detection](https://go.arthurdanjou.fr/breast-cancer-detection-code)
<iframe src="/projects/breast-cancer/report.pdf" width="100%" height="1000px">
<iframe src="/projects/breast-cancer.pdf" width="100%" height="1000px">
</iframe>

View File

@@ -0,0 +1,29 @@
---
slug: data-visualisation
title: Data Visualisation Project
type: Academic Project
description: An interactive data visualization project built with R, R Shiny, and ggplot2 for creating dynamic, explorable visualizations.
publishedAt: 2026-01-05
readingTime: 1
status: In progress
tags:
- R
- R Shiny
- Data Visualization
- ggplot2
icon: i-ph-chart-bar-duotone
---
# Data Visualisation Project
This project involves creating an interactive data visualization application using R and R Shiny. The goal is to develop dynamic and explorable visualizations that allow users to interact with the data in meaningful ways.
## 🛠️ Technologies & Tools
- [R](https://www.r-project.org): A statistical computing environment, perfect for data analysis and visualization.
- [R Shiny](https://shiny.rstudio.com): A web application framework for R that enables the creation of interactive web applications directly from R.
- [ggplot2](https://ggplot2.tidyverse.org): A powerful R package for creating static and dynamic visualizations using the Grammar of Graphics.
- [dplyr](https://dplyr.tidyverse.org): An R package for data manipulation, providing a consistent set of verbs to help you solve common data manipulation challenges.
- [tidyr](https://tidyr.tidyverse.org): An R package for tidying data, making it easier to work with and visualize.
The project is currently in progress, and more details will be added as development continues.

View File

@@ -4,23 +4,16 @@ title: Dropout Reduces Underfitting
type: Research Project
description: TensorFlow/Keras implementation and reproduction of "Dropout Reduces Underfitting" (Liu et al., 2023). A comparative study of Early and Late Dropout strategies to optimize model convergence.
publishedAt: 2024-12-10
readingTime: 4
readingTime: 6
status: Completed
tags:
- Python
- TensorFlow
- Machine Learning
- Deep Learning
- Research
icon: i-ph-share-network-duotone
---
📉 [Dropout Reduces Underfitting](https://github.com/arthurdanjou/dropoutreducesunderfitting): Reproduction & Analysis
![TensorFlow](https://img.shields.io/badge/TensorFlow-2.x-orange.svg)
![Python](https://img.shields.io/badge/Python-3.8%2B-blue.svg)
![License](https://img.shields.io/badge/License-MIT-green.svg)
> **Study and reproduction of the paper:** Liu, Z., et al. (2023). *Dropout Reduces Underfitting*. arXiv:2303.01500.
The paper is available at: [https://arxiv.org/abs/2303.01500](https://arxiv.org/abs/2303.01500)
@@ -79,7 +72,8 @@ pip install tensorflow numpy matplotlib seaborn scikit-learn
## 📊 Usage
The main notebook pipeline.ipynb contains all necessary code. Here is how to run a typical experiment via the pipeline API.
1. Initialization
### 1. Initialization
Choose your dataset (cifar10, fashion_mnist, mnist) and architecture (cnn, dense).
```python
@@ -89,7 +83,7 @@ from pipeline import ExperimentPipeline
exp = ExperimentPipeline(dataset_name="fashion_mnist", model_type="cnn")
```
2. Learning Curves Comparison
### 2. Learning Curves Comparison
Compare training dynamics (Loss & Accuracy) of the three strategies.
@@ -102,7 +96,7 @@ exp.compare_learning_curves(
)
```
3. Ablation Studies
### 3. Ablation Studies
Study the impact of the "Early" phase duration or Dropout intensity.
@@ -124,7 +118,7 @@ exp.compare_drop_rates(
)
```
4. Data Regimes (Data Scarcity)
### 4. Data Regimes (Data Scarcity)
Verify the paper's hypothesis that Early Dropout shines on large datasets (or limited models) while Standard Dropout protects small datasets.
@@ -155,3 +149,8 @@ According to the paper, you should observe:
M.Sc. Statistical and Financial Engineering (ISF) - Data Science Track at Université Paris-Dauphine PSL
Based on the work of Liu, Z., et al. (2023). Dropout Reduces Underfitting.
## 📄 Detailed Report
<iframe src="/projects/dropout-reduces-underfitting.pdf" width="100%" height="1000px">
</iframe>

View File

@@ -9,9 +9,9 @@ status: Completed
tags:
- Python
- Machine Learning
- Classification
- Data Science
- Regression
- Finance
- Data Science
icon: i-ph-money-wavy-duotone
---
@@ -50,5 +50,5 @@ The study employs various machine learning approaches:
## 📄 Detailed Report
<iframe src="/projects/loan-ml/Report.pdf" width="100%" height="1000px">
<iframe src="/projects/loan-ml.pdf" width="100%" height="1000px">
</iframe>

View File

@@ -12,6 +12,7 @@ tags:
- Statistics
- Monte Carlo
- Numerical Methods
- Estimation
icon: i-ph-dice-five-duotone
---
@@ -27,5 +28,5 @@ Methods and algorithms implemented:
You can find the code here: [Monte Carlo Project Code](https://go.arthurdanjou.fr/monte-carlo-code)
<iframe src="/projects/monte-carlo-project/Report.pdf" width="100%" height="1000px">
<iframe src="/projects/monte-carlo.pdf" width="100%" height="1000px">
</iframe>

View File

@@ -19,5 +19,5 @@ This is the French version of the report for the Schelling Segregation Model pro
You can find the code here: [Schelling Segregation Model Code](https://go.arthurdanjou.fr/schelling-code)
<iframe src="/projects/schelling/Projet.pdf" width="100%" height="1000px">
<iframe src="/projects/schelling.pdf" width="100%" height="1000px">
</iframe>

Binary file not shown.

Binary file not shown.

Binary file not shown.

BIN
public/projects/ml-loan.pdf Normal file

Binary file not shown.

Binary file not shown.

Binary file not shown.