feat: mettre à jour les projets avec des modifications de balisage et ajouter de nouveaux fichiers PDF

This commit is contained in:
2025-12-24 22:46:33 +01:00
parent 82d2ed8dba
commit 719ee024d6
16 changed files with 49 additions and 24 deletions

View File

@@ -3,7 +3,7 @@ export function useProjectColors() {
'Active': 'blue', 'Active': 'blue',
'Completed': 'green', 'Completed': 'green',
'Archived': 'neutral', 'Archived': 'neutral',
'In Progress': 'amber' 'In progress': 'amber'
} }
const typeColors: Record<string, string> = { const typeColors: Record<string, string> = {

View File

@@ -11,7 +11,6 @@ tags:
- Nuxt - Nuxt
- NuxtHub - NuxtHub
- Cloudflare Workers - Cloudflare Workers
- Wrangler
- TypeScript - TypeScript
icon: i-ph-globe-hemisphere-west-duotone icon: i-ph-globe-hemisphere-west-duotone
--- ---

View File

@@ -11,7 +11,6 @@ tags:
- Python - Python
- R - R
- Data Science - Data Science
- Machine Learning
- Mathematics - Mathematics
icon: i-ph-book-duotone icon: i-ph-book-duotone
--- ---

View File

@@ -9,7 +9,6 @@ status: Completed
tags: tags:
- R - R
- Statistics - Statistics
- Data Analysis
- GLM - GLM
- Mathematics - Mathematics
icon: i-ph-bicycle-duotone icon: i-ph-bicycle-duotone
@@ -53,5 +52,5 @@ The analysis identified critical factors influencing bike-sharing demand:
## 📄 Detailed Report ## 📄 Detailed Report
<iframe src="/projects/bikes-glm/Report.pdf" width="100%" height="1000px"> <iframe src="/projects/bikes-glm.pdf" width="100%" height="1000px">
</iframe> </iframe>

View File

@@ -9,7 +9,6 @@ status: Completed
tags: tags:
- Python - Python
- Machine Learning - Machine Learning
- Data Science
- Classification - Classification
- Healthcare - Healthcare
icon: i-ph-heart-half-duotone icon: i-ph-heart-half-duotone
@@ -43,5 +42,5 @@ This project illustrates a concrete application of data science techniques to a
You can find the code here: [Breast Cancer Detection](https://go.arthurdanjou.fr/breast-cancer-detection-code) You can find the code here: [Breast Cancer Detection](https://go.arthurdanjou.fr/breast-cancer-detection-code)
<iframe src="/projects/breast-cancer/report.pdf" width="100%" height="1000px"> <iframe src="/projects/breast-cancer.pdf" width="100%" height="1000px">
</iframe> </iframe>

View File

@@ -0,0 +1,29 @@
---
slug: data-visualisation
title: Data Visualisation Project
type: Academic Project
description: An interactive data visualization project built with R, R Shiny, and ggplot2 for creating dynamic, explorable visualizations.
publishedAt: 2026-01-05
readingTime: 1
status: In progress
tags:
- R
- R Shiny
- Data Visualization
- ggplot2
icon: i-ph-chart-bar-duotone
---
# Data Visualisation Project
This project involves creating an interactive data visualization application using R and R Shiny. The goal is to develop dynamic and explorable visualizations that allow users to interact with the data in meaningful ways.
## 🛠️ Technologies & Tools
- [R](https://www.r-project.org): A statistical computing environment, perfect for data analysis and visualization.
- [R Shiny](https://shiny.rstudio.com): A web application framework for R that enables the creation of interactive web applications directly from R.
- [ggplot2](https://ggplot2.tidyverse.org): A powerful R package for creating static and dynamic visualizations using the Grammar of Graphics.
- [dplyr](https://dplyr.tidyverse.org): An R package for data manipulation, providing a consistent set of verbs to help you solve common data manipulation challenges.
- [tidyr](https://tidyr.tidyverse.org): An R package for tidying data, making it easier to work with and visualize.
The project is currently in progress, and more details will be added as development continues.

View File

@@ -4,23 +4,16 @@ title: Dropout Reduces Underfitting
type: Research Project type: Research Project
description: TensorFlow/Keras implementation and reproduction of "Dropout Reduces Underfitting" (Liu et al., 2023). A comparative study of Early and Late Dropout strategies to optimize model convergence. description: TensorFlow/Keras implementation and reproduction of "Dropout Reduces Underfitting" (Liu et al., 2023). A comparative study of Early and Late Dropout strategies to optimize model convergence.
publishedAt: 2024-12-10 publishedAt: 2024-12-10
readingTime: 4 readingTime: 6
status: Completed status: Completed
tags: tags:
- Python - Python
- TensorFlow - TensorFlow
- Machine Learning
- Deep Learning - Deep Learning
- Research - Research
icon: i-ph-share-network-duotone icon: i-ph-share-network-duotone
--- ---
📉 [Dropout Reduces Underfitting](https://github.com/arthurdanjou/dropoutreducesunderfitting): Reproduction & Analysis
![TensorFlow](https://img.shields.io/badge/TensorFlow-2.x-orange.svg)
![Python](https://img.shields.io/badge/Python-3.8%2B-blue.svg)
![License](https://img.shields.io/badge/License-MIT-green.svg)
> **Study and reproduction of the paper:** Liu, Z., et al. (2023). *Dropout Reduces Underfitting*. arXiv:2303.01500. > **Study and reproduction of the paper:** Liu, Z., et al. (2023). *Dropout Reduces Underfitting*. arXiv:2303.01500.
The paper is available at: [https://arxiv.org/abs/2303.01500](https://arxiv.org/abs/2303.01500) The paper is available at: [https://arxiv.org/abs/2303.01500](https://arxiv.org/abs/2303.01500)
@@ -79,7 +72,8 @@ pip install tensorflow numpy matplotlib seaborn scikit-learn
## 📊 Usage ## 📊 Usage
The main notebook pipeline.ipynb contains all necessary code. Here is how to run a typical experiment via the pipeline API. The main notebook pipeline.ipynb contains all necessary code. Here is how to run a typical experiment via the pipeline API.
1. Initialization
### 1. Initialization
Choose your dataset (cifar10, fashion_mnist, mnist) and architecture (cnn, dense). Choose your dataset (cifar10, fashion_mnist, mnist) and architecture (cnn, dense).
```python ```python
@@ -89,7 +83,7 @@ from pipeline import ExperimentPipeline
exp = ExperimentPipeline(dataset_name="fashion_mnist", model_type="cnn") exp = ExperimentPipeline(dataset_name="fashion_mnist", model_type="cnn")
``` ```
2. Learning Curves Comparison ### 2. Learning Curves Comparison
Compare training dynamics (Loss & Accuracy) of the three strategies. Compare training dynamics (Loss & Accuracy) of the three strategies.
@@ -102,7 +96,7 @@ exp.compare_learning_curves(
) )
``` ```
3. Ablation Studies ### 3. Ablation Studies
Study the impact of the "Early" phase duration or Dropout intensity. Study the impact of the "Early" phase duration or Dropout intensity.
@@ -124,7 +118,7 @@ exp.compare_drop_rates(
) )
``` ```
4. Data Regimes (Data Scarcity) ### 4. Data Regimes (Data Scarcity)
Verify the paper's hypothesis that Early Dropout shines on large datasets (or limited models) while Standard Dropout protects small datasets. Verify the paper's hypothesis that Early Dropout shines on large datasets (or limited models) while Standard Dropout protects small datasets.
@@ -155,3 +149,8 @@ According to the paper, you should observe:
M.Sc. Statistical and Financial Engineering (ISF) - Data Science Track at Université Paris-Dauphine PSL M.Sc. Statistical and Financial Engineering (ISF) - Data Science Track at Université Paris-Dauphine PSL
Based on the work of Liu, Z., et al. (2023). Dropout Reduces Underfitting. Based on the work of Liu, Z., et al. (2023). Dropout Reduces Underfitting.
## 📄 Detailed Report
<iframe src="/projects/dropout-reduces-underfitting.pdf" width="100%" height="1000px">
</iframe>

View File

@@ -9,9 +9,9 @@ status: Completed
tags: tags:
- Python - Python
- Machine Learning - Machine Learning
- Classification - Regression
- Data Science
- Finance - Finance
- Data Science
icon: i-ph-money-wavy-duotone icon: i-ph-money-wavy-duotone
--- ---
@@ -50,5 +50,5 @@ The study employs various machine learning approaches:
## 📄 Detailed Report ## 📄 Detailed Report
<iframe src="/projects/loan-ml/Report.pdf" width="100%" height="1000px"> <iframe src="/projects/loan-ml.pdf" width="100%" height="1000px">
</iframe> </iframe>

View File

@@ -12,6 +12,7 @@ tags:
- Statistics - Statistics
- Monte Carlo - Monte Carlo
- Numerical Methods - Numerical Methods
- Estimation
icon: i-ph-dice-five-duotone icon: i-ph-dice-five-duotone
--- ---
@@ -27,5 +28,5 @@ Methods and algorithms implemented:
You can find the code here: [Monte Carlo Project Code](https://go.arthurdanjou.fr/monte-carlo-code) You can find the code here: [Monte Carlo Project Code](https://go.arthurdanjou.fr/monte-carlo-code)
<iframe src="/projects/monte-carlo-project/Report.pdf" width="100%" height="1000px"> <iframe src="/projects/monte-carlo.pdf" width="100%" height="1000px">
</iframe> </iframe>

View File

@@ -19,5 +19,5 @@ This is the French version of the report for the Schelling Segregation Model pro
You can find the code here: [Schelling Segregation Model Code](https://go.arthurdanjou.fr/schelling-code) You can find the code here: [Schelling Segregation Model Code](https://go.arthurdanjou.fr/schelling-code)
<iframe src="/projects/schelling/Projet.pdf" width="100%" height="1000px"> <iframe src="/projects/schelling.pdf" width="100%" height="1000px">
</iframe> </iframe>

Binary file not shown.

Binary file not shown.

Binary file not shown.

BIN
public/projects/ml-loan.pdf Normal file

Binary file not shown.

Binary file not shown.

Binary file not shown.