mirror of
https://github.com/ArthurDanjou/artsite.git
synced 2026-01-14 15:54:13 +01:00
feat: mettre à jour les projets avec des modifications de balisage et ajouter de nouveaux fichiers PDF
This commit is contained in:
@@ -3,7 +3,7 @@ export function useProjectColors() {
|
|||||||
'Active': 'blue',
|
'Active': 'blue',
|
||||||
'Completed': 'green',
|
'Completed': 'green',
|
||||||
'Archived': 'neutral',
|
'Archived': 'neutral',
|
||||||
'In Progress': 'amber'
|
'In progress': 'amber'
|
||||||
}
|
}
|
||||||
|
|
||||||
const typeColors: Record<string, string> = {
|
const typeColors: Record<string, string> = {
|
||||||
|
|||||||
@@ -11,7 +11,6 @@ tags:
|
|||||||
- Nuxt
|
- Nuxt
|
||||||
- NuxtHub
|
- NuxtHub
|
||||||
- Cloudflare Workers
|
- Cloudflare Workers
|
||||||
- Wrangler
|
|
||||||
- TypeScript
|
- TypeScript
|
||||||
icon: i-ph-globe-hemisphere-west-duotone
|
icon: i-ph-globe-hemisphere-west-duotone
|
||||||
---
|
---
|
||||||
|
|||||||
@@ -11,7 +11,6 @@ tags:
|
|||||||
- Python
|
- Python
|
||||||
- R
|
- R
|
||||||
- Data Science
|
- Data Science
|
||||||
- Machine Learning
|
|
||||||
- Mathematics
|
- Mathematics
|
||||||
icon: i-ph-book-duotone
|
icon: i-ph-book-duotone
|
||||||
---
|
---
|
||||||
|
|||||||
@@ -9,7 +9,6 @@ status: Completed
|
|||||||
tags:
|
tags:
|
||||||
- R
|
- R
|
||||||
- Statistics
|
- Statistics
|
||||||
- Data Analysis
|
|
||||||
- GLM
|
- GLM
|
||||||
- Mathematics
|
- Mathematics
|
||||||
icon: i-ph-bicycle-duotone
|
icon: i-ph-bicycle-duotone
|
||||||
@@ -53,5 +52,5 @@ The analysis identified critical factors influencing bike-sharing demand:
|
|||||||
|
|
||||||
## 📄 Detailed Report
|
## 📄 Detailed Report
|
||||||
|
|
||||||
<iframe src="/projects/bikes-glm/Report.pdf" width="100%" height="1000px">
|
<iframe src="/projects/bikes-glm.pdf" width="100%" height="1000px">
|
||||||
</iframe>
|
</iframe>
|
||||||
|
|||||||
@@ -9,7 +9,6 @@ status: Completed
|
|||||||
tags:
|
tags:
|
||||||
- Python
|
- Python
|
||||||
- Machine Learning
|
- Machine Learning
|
||||||
- Data Science
|
|
||||||
- Classification
|
- Classification
|
||||||
- Healthcare
|
- Healthcare
|
||||||
icon: i-ph-heart-half-duotone
|
icon: i-ph-heart-half-duotone
|
||||||
@@ -43,5 +42,5 @@ This project illustrates a concrete application of data science techniques to a
|
|||||||
|
|
||||||
You can find the code here: [Breast Cancer Detection](https://go.arthurdanjou.fr/breast-cancer-detection-code)
|
You can find the code here: [Breast Cancer Detection](https://go.arthurdanjou.fr/breast-cancer-detection-code)
|
||||||
|
|
||||||
<iframe src="/projects/breast-cancer/report.pdf" width="100%" height="1000px">
|
<iframe src="/projects/breast-cancer.pdf" width="100%" height="1000px">
|
||||||
</iframe>
|
</iframe>
|
||||||
|
|||||||
29
content/projects/data-visualisation.md
Normal file
29
content/projects/data-visualisation.md
Normal file
@@ -0,0 +1,29 @@
|
|||||||
|
---
|
||||||
|
slug: data-visualisation
|
||||||
|
title: Data Visualisation Project
|
||||||
|
type: Academic Project
|
||||||
|
description: An interactive data visualization project built with R, R Shiny, and ggplot2 for creating dynamic, explorable visualizations.
|
||||||
|
publishedAt: 2026-01-05
|
||||||
|
readingTime: 1
|
||||||
|
status: In progress
|
||||||
|
tags:
|
||||||
|
- R
|
||||||
|
- R Shiny
|
||||||
|
- Data Visualization
|
||||||
|
- ggplot2
|
||||||
|
icon: i-ph-chart-bar-duotone
|
||||||
|
---
|
||||||
|
|
||||||
|
# Data Visualisation Project
|
||||||
|
|
||||||
|
This project involves creating an interactive data visualization application using R and R Shiny. The goal is to develop dynamic and explorable visualizations that allow users to interact with the data in meaningful ways.
|
||||||
|
|
||||||
|
## 🛠️ Technologies & Tools
|
||||||
|
|
||||||
|
- [R](https://www.r-project.org): A statistical computing environment, perfect for data analysis and visualization.
|
||||||
|
- [R Shiny](https://shiny.rstudio.com): A web application framework for R that enables the creation of interactive web applications directly from R.
|
||||||
|
- [ggplot2](https://ggplot2.tidyverse.org): A powerful R package for creating static and dynamic visualizations using the Grammar of Graphics.
|
||||||
|
- [dplyr](https://dplyr.tidyverse.org): An R package for data manipulation, providing a consistent set of verbs to help you solve common data manipulation challenges.
|
||||||
|
- [tidyr](https://tidyr.tidyverse.org): An R package for tidying data, making it easier to work with and visualize.
|
||||||
|
|
||||||
|
The project is currently in progress, and more details will be added as development continues.
|
||||||
@@ -4,23 +4,16 @@ title: Dropout Reduces Underfitting
|
|||||||
type: Research Project
|
type: Research Project
|
||||||
description: TensorFlow/Keras implementation and reproduction of "Dropout Reduces Underfitting" (Liu et al., 2023). A comparative study of Early and Late Dropout strategies to optimize model convergence.
|
description: TensorFlow/Keras implementation and reproduction of "Dropout Reduces Underfitting" (Liu et al., 2023). A comparative study of Early and Late Dropout strategies to optimize model convergence.
|
||||||
publishedAt: 2024-12-10
|
publishedAt: 2024-12-10
|
||||||
readingTime: 4
|
readingTime: 6
|
||||||
status: Completed
|
status: Completed
|
||||||
tags:
|
tags:
|
||||||
- Python
|
- Python
|
||||||
- TensorFlow
|
- TensorFlow
|
||||||
- Machine Learning
|
|
||||||
- Deep Learning
|
- Deep Learning
|
||||||
- Research
|
- Research
|
||||||
icon: i-ph-share-network-duotone
|
icon: i-ph-share-network-duotone
|
||||||
---
|
---
|
||||||
|
|
||||||
📉 [Dropout Reduces Underfitting](https://github.com/arthurdanjou/dropoutreducesunderfitting): Reproduction & Analysis
|
|
||||||
|
|
||||||

|
|
||||||

|
|
||||||

|
|
||||||
|
|
||||||
> **Study and reproduction of the paper:** Liu, Z., et al. (2023). *Dropout Reduces Underfitting*. arXiv:2303.01500.
|
> **Study and reproduction of the paper:** Liu, Z., et al. (2023). *Dropout Reduces Underfitting*. arXiv:2303.01500.
|
||||||
|
|
||||||
The paper is available at: [https://arxiv.org/abs/2303.01500](https://arxiv.org/abs/2303.01500)
|
The paper is available at: [https://arxiv.org/abs/2303.01500](https://arxiv.org/abs/2303.01500)
|
||||||
@@ -79,7 +72,8 @@ pip install tensorflow numpy matplotlib seaborn scikit-learn
|
|||||||
## 📊 Usage
|
## 📊 Usage
|
||||||
|
|
||||||
The main notebook pipeline.ipynb contains all necessary code. Here is how to run a typical experiment via the pipeline API.
|
The main notebook pipeline.ipynb contains all necessary code. Here is how to run a typical experiment via the pipeline API.
|
||||||
1. Initialization
|
|
||||||
|
### 1. Initialization
|
||||||
|
|
||||||
Choose your dataset (cifar10, fashion_mnist, mnist) and architecture (cnn, dense).
|
Choose your dataset (cifar10, fashion_mnist, mnist) and architecture (cnn, dense).
|
||||||
```python
|
```python
|
||||||
@@ -89,7 +83,7 @@ from pipeline import ExperimentPipeline
|
|||||||
exp = ExperimentPipeline(dataset_name="fashion_mnist", model_type="cnn")
|
exp = ExperimentPipeline(dataset_name="fashion_mnist", model_type="cnn")
|
||||||
```
|
```
|
||||||
|
|
||||||
2. Learning Curves Comparison
|
### 2. Learning Curves Comparison
|
||||||
|
|
||||||
Compare training dynamics (Loss & Accuracy) of the three strategies.
|
Compare training dynamics (Loss & Accuracy) of the three strategies.
|
||||||
|
|
||||||
@@ -102,7 +96,7 @@ exp.compare_learning_curves(
|
|||||||
)
|
)
|
||||||
```
|
```
|
||||||
|
|
||||||
3. Ablation Studies
|
### 3. Ablation Studies
|
||||||
|
|
||||||
Study the impact of the "Early" phase duration or Dropout intensity.
|
Study the impact of the "Early" phase duration or Dropout intensity.
|
||||||
|
|
||||||
@@ -124,7 +118,7 @@ exp.compare_drop_rates(
|
|||||||
)
|
)
|
||||||
```
|
```
|
||||||
|
|
||||||
4. Data Regimes (Data Scarcity)
|
### 4. Data Regimes (Data Scarcity)
|
||||||
|
|
||||||
Verify the paper's hypothesis that Early Dropout shines on large datasets (or limited models) while Standard Dropout protects small datasets.
|
Verify the paper's hypothesis that Early Dropout shines on large datasets (or limited models) while Standard Dropout protects small datasets.
|
||||||
|
|
||||||
@@ -155,3 +149,8 @@ According to the paper, you should observe:
|
|||||||
M.Sc. Statistical and Financial Engineering (ISF) - Data Science Track at Université Paris-Dauphine PSL
|
M.Sc. Statistical and Financial Engineering (ISF) - Data Science Track at Université Paris-Dauphine PSL
|
||||||
|
|
||||||
Based on the work of Liu, Z., et al. (2023). Dropout Reduces Underfitting.
|
Based on the work of Liu, Z., et al. (2023). Dropout Reduces Underfitting.
|
||||||
|
|
||||||
|
## 📄 Detailed Report
|
||||||
|
|
||||||
|
<iframe src="/projects/dropout-reduces-underfitting.pdf" width="100%" height="1000px">
|
||||||
|
</iframe>
|
||||||
@@ -9,9 +9,9 @@ status: Completed
|
|||||||
tags:
|
tags:
|
||||||
- Python
|
- Python
|
||||||
- Machine Learning
|
- Machine Learning
|
||||||
- Classification
|
- Regression
|
||||||
- Data Science
|
|
||||||
- Finance
|
- Finance
|
||||||
|
- Data Science
|
||||||
icon: i-ph-money-wavy-duotone
|
icon: i-ph-money-wavy-duotone
|
||||||
---
|
---
|
||||||
|
|
||||||
@@ -50,5 +50,5 @@ The study employs various machine learning approaches:
|
|||||||
|
|
||||||
## 📄 Detailed Report
|
## 📄 Detailed Report
|
||||||
|
|
||||||
<iframe src="/projects/loan-ml/Report.pdf" width="100%" height="1000px">
|
<iframe src="/projects/loan-ml.pdf" width="100%" height="1000px">
|
||||||
</iframe>
|
</iframe>
|
||||||
@@ -12,6 +12,7 @@ tags:
|
|||||||
- Statistics
|
- Statistics
|
||||||
- Monte Carlo
|
- Monte Carlo
|
||||||
- Numerical Methods
|
- Numerical Methods
|
||||||
|
- Estimation
|
||||||
icon: i-ph-dice-five-duotone
|
icon: i-ph-dice-five-duotone
|
||||||
---
|
---
|
||||||
|
|
||||||
@@ -27,5 +28,5 @@ Methods and algorithms implemented:
|
|||||||
|
|
||||||
You can find the code here: [Monte Carlo Project Code](https://go.arthurdanjou.fr/monte-carlo-code)
|
You can find the code here: [Monte Carlo Project Code](https://go.arthurdanjou.fr/monte-carlo-code)
|
||||||
|
|
||||||
<iframe src="/projects/monte-carlo-project/Report.pdf" width="100%" height="1000px">
|
<iframe src="/projects/monte-carlo.pdf" width="100%" height="1000px">
|
||||||
</iframe>
|
</iframe>
|
||||||
|
|||||||
@@ -19,5 +19,5 @@ This is the French version of the report for the Schelling Segregation Model pro
|
|||||||
|
|
||||||
You can find the code here: [Schelling Segregation Model Code](https://go.arthurdanjou.fr/schelling-code)
|
You can find the code here: [Schelling Segregation Model Code](https://go.arthurdanjou.fr/schelling-code)
|
||||||
|
|
||||||
<iframe src="/projects/schelling/Projet.pdf" width="100%" height="1000px">
|
<iframe src="/projects/schelling.pdf" width="100%" height="1000px">
|
||||||
</iframe>
|
</iframe>
|
||||||
|
|||||||
BIN
public/projects/bikes-glm.pdf
Normal file
BIN
public/projects/bikes-glm.pdf
Normal file
Binary file not shown.
BIN
public/projects/breast-cancer.pdf
Normal file
BIN
public/projects/breast-cancer.pdf
Normal file
Binary file not shown.
BIN
public/projects/dropout-reduces-underfitting.pdf
Normal file
BIN
public/projects/dropout-reduces-underfitting.pdf
Normal file
Binary file not shown.
BIN
public/projects/ml-loan.pdf
Normal file
BIN
public/projects/ml-loan.pdf
Normal file
Binary file not shown.
BIN
public/projects/monte-carlo.pdf
Normal file
BIN
public/projects/monte-carlo.pdf
Normal file
Binary file not shown.
BIN
public/projects/schelling.pdf
Normal file
BIN
public/projects/schelling.pdf
Normal file
Binary file not shown.
Reference in New Issue
Block a user