Files
ArtStudies/CLAUDE.md

68 lines
2.4 KiB
Markdown

# CLAUDE.md
This file provides guidance to Claude Code (claude.ai/code) when working with code in this repository.
## Quick Commands
### Python Projects
- **Install dependencies**: `uv sync` (root) or `uv sync` in a subdirectory with its own `pyproject.toml`
- **Run linter**: `ruff check .` (includes all files via `extend-include`)
- **Auto-fix**: `ruff check . --fix`
- **Format imports**: `ruff format .`
### R Projects
- **Load project**: RStudio/.Rprofile uses `renv` for isolation
- **Check style**: `lintr::lint("script.R")`
- **Format code**: `styler::style_file("script.R")`
### SQL (M2/SQL)
```bash
docker compose -f M2/SQL/docker-compose.yml up -d
make tp1 # Execute TP1.sql
make tp2 # Execute TP2.sql
make tp3 # Execute TP3.sql
make project # Execute DANJOU_Arthur.sql
```
## Project Structure
```
L3/ # Bachelor's degree (3rd year)
M1/ # Master's degree (1st year)
M2/ # Master's degree (2nd year)
└── <Course>/ # e.g., "Deep Learning", "Data Visualisation"
├── TP{n}/ # Practical work (numbered)
├── Project/ # Final project
└── data/ # Course-specific data
```
## Python Conventions
- **Package manager**: `uv` (workspace configured at root)
- **Linting**: Ruff with strict rules (`select = ["ALL"]`)
- **Import ordering**: Custom sections in `pyproject.toml`:
- `data-science`: numpy, pandas, scipy, matplotlib, seaborn, plotly
- `ml`: tensorflow, keras, torch, sklearn, xgboost, catboost, shap
- **Reproducibility**: Use `np.random.seed(42)` for random seeds
- **Notebooks**: Jupyter with descriptive markdown cells
## R Conventions
- **Package management**: `renv` (autoloading via `.Rprofile`)
- **Linting**: `lintr` configured in `.lintr`
- **Documents**: RMarkdown (`.Rmd`) for reproducible reports
- **Visualization**: ggplot2, plotly, FactoMineR
## Key Technologies
- **Data Science**: numpy, pandas, scipy, matplotlib, seaborn, plotly, geopandas
- **Machine Learning**: scikit-learn, xgboost, catboost, tensorflow, keras, shap
- **LLM/RAG**: langchain, sentence-transformers, faiss-cpu
- **R**: tidyverse, ggplot2, FactoMineR, caret, glmnet, RShiny
## Notes
- Some subprojects (e.g., `M2/Reinforcement Learning/project/`) have isolated `pyproject.toml` files
- Large datasets are not versioned—download via notebook code when needed
- Course materials and documentation are primarily in French