Files
ArtStudies/M2/Statistiques Non Paramétrique/TP4.Rmd
2026-02-02 15:08:39 +01:00

228 lines
4.0 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
# Simulation des données
## 1.
```{r}
MvB = function(n, p) {
X = rnorm(n * p) / sqrt(p - 1)
X = matrix(X, ncol = p)
MvB = matrix(0, ncol = p, nrow = n)
for (i in 1:n) {
MvB[i, ] = cumsum(X[i, ])
}
MvB
}
n = 500
p = 300
X = MvB(n, p)
t = seq(0, 1, length.out = p)
```
```{r}
plot(
c(0, 1),
range(X),
type = 'n',
xlab = 't',
ylab = expression(X[i](t)),
main = 'n mouvements browniens sur [0,1]'
)
for (i in 1:n) {
points(t, X[i, ], type = 'l', col = i)
}
```
## 2.
```{r}
sigma = 0.1
epsilon = rnorm(n, 0, sigma)
betas = function(t) {
sin(10 * t)
}
Y = X %*% betas(t) / p + epsilon
```
## 3.
```{r}
mmax = 100
Dmax = 2*mmax+1
phiX = matrix(NA,n,Dmax) # matrice contenant <X_i,phi_k>
phi = matrix(1,Dmax,p) # matrice contenant phi_k(t_l)
phiX[,1] = rowMeans(X)
for (j in 1:mmax){
phiX[,2*j] = (sqrt(2)/p)*X%*%cos(2*pi*j*t)
phiX[,2*j+1] = (sqrt(2)/p)*X%*%sin(2*pi*j*t)
phi[2*j,] = sqrt(2)*cos(2*pi*j*t)
phi[2*j+1,] = sqrt(2)*sin(2*pi*j*t)
}
```
```{r}
G = crossprod(phiX) / n
hatb = crossprod(phiX, Y) / n
m1 = 1
hata1 = hatb[1] / G[1, 1]
hatbeta1 = rep(hata1, p)
m2 = 5
hata5 = solve(G[1:m2, 1:m2], hatb[1:m2])
hatbeta5 = hata5 %*% phi[1:m2, ]
m3 = 31
hata31 = solve(G[1:m3, 1:m3], hatb[1:m3])
hatbeta31 = hata31 %*% phi[1:m3, ]
```
```{r}
plot(t, betas(t), col = "darkgreen", type = 'l', lwd = 2, lty = 2)
abline(h = hata1, col = 'blue')
points(t, hatbeta5, type = 'l', col = "green")
points(t, hatbeta31, type = 'l', col = "red")
legend(
'bottomleft',
c(
paste(expression(beta), '*'),
expression(hat(beta)[1]),
expression(hat(beta)[5]),
expression(hat(beta)[31])
),
lty = c(2, rep(1, 3)),
lwd = c(2, rep(1, 3)),
col = c('darkgreen', 'blue', 'green', 'red')
)
```
## 4.
```{r}
kappa = 2.5
gamma = rep(0, Dmax)
for (m in 1:Dmax) {
hatam = solve(G[1:m, 1:m], hatb[1:m])
hatbetam = hatam %*% phi[1:m, ]
gamma[m] = mean((Y - tcrossprod(X, hatbetam) / p)^2)
}
```
```{r}
plot(gamma, col = 'blue', type = 'b', pch = 16, xlab = 'm', ylab = 'crit(m)')
points(gamma + kappa * sigma^2 * (1:Dmax) / n, col = 'green', type = 'l')
points(gamma * (1 + kappa * (1:Dmax) / n), col = 'orange', type = 'l')
legend(
'topright',
c(expression(gamma[n](hat(beta)[m])), 'crit1', 'crit2'),
lty = rep(1, 3),
col = c(
'blue',
'green',
'orange'
)
)
```
## 5.
```{r}
hatm1 = which.min(gamma + kappa * sigma^2 * (1:Dmax) / n)
hatm1
```
```{r}
hatm2 = which.min(gamma * (1 + kappa * (1:Dmax) / n))
hatm2
```
```{r}
hatahatm1 = solve(G[1:hatm1, 1:hatm1], hatb[1:hatm1])
hatbetahatm1 = hatahatm1 %*% phi[1:hatm1, ]
hatahatm2 = solve(G[1:hatm2, 1:hatm2], hatb[1:hatm2])
hatbetahatm2 = hatahatm2 %*% phi[1:hatm2, ]
```
```{r}
plot(t, betas(t), col = "darkgreen", type = 'l', lwd = 2, lty = 2)
points(t, hatbetahatm1, type = 'l', col = "green", lwd = 2)
points(t, hatbetahatm2, type = 'l', col = "orange")
legend(
'bottomleft',
c(
expression(beta),
expression(hat(beta)[hat(m)[1]]),
expression(hat(beta)[hat(m)[2]])
),
lty = c(
2,
1,
1
),
lwd = c(2, 2, 1),
col = c('darkgreen', 'green', 'orange')
)
```
# Application à lévaluation de la concentration en nitrate des eaux usées
```{r}
Xnc <- read.table("./data/X.dat")
Ync <- read.table("./data/Y.dat")
Ync <- Ync[, 1]
n <- length(Ync)
```
```{r}
palette(rainbow(14, start = 0, end = 4 / 6))
plot(c(0, 1), range(Xnc), type = 'n', xlab = 'wavelength', ylab = 'absorbance')
for (i in 1:n) {
points(
seq(0, 1, length.out = ncol(Xnc)),
Xnc[i, ],
type = 'l',
col = floor(Ync[i])
)
}
ry = range(Ync)
legend(
"topright",
paste(floor(ry[1]):floor(ry[2]), '<=Y<', floor(ry[1] + 1):floor(ry[2] + 1)),
col = 1:9,
lty = rep(1, 9)
)
Xbar <- colMeans(Xnc)
points(1:ncol(Xnc), Xbar, col = 2, type = 'l')
```
```{r}
X <- scale(Xnc, scale = F)
plot(
c(1, ncol(Xnc)),
range(X),
type = 'n',
xlab = 'wavelength',
ylab = '',
main = "Données centrées"
)
for (i in 1:n) {
points(1:ncol(Xnc), X[i, ], type = 'l', col = floor(Ync[i]))
}
```
```{r}
Y1 <- Ync - mean(Ync)
```