Delete useless comments

This commit is contained in:
2025-02-06 13:11:31 +01:00
parent b0646dfb96
commit f77bd7b184

View File

@@ -62,8 +62,8 @@
"cell_type": "code",
"metadata": {
"ExecuteTime": {
"end_time": "2025-02-05T09:35:48.092357Z",
"start_time": "2025-02-05T09:35:48.052472Z"
"end_time": "2025-02-06T12:09:35.663428Z",
"start_time": "2025-02-06T12:09:35.519995Z"
}
},
"source": "import numpy as np",
@@ -73,8 +73,8 @@
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-02-05T10:14:46.744770Z",
"start_time": "2025-02-05T10:14:46.738364Z"
"end_time": "2025-02-06T12:09:37.572928Z",
"start_time": "2025-02-06T12:09:37.564513Z"
}
},
"cell_type": "code",
@@ -117,7 +117,7 @@
]
}
],
"execution_count": 122
"execution_count": 2
},
{
"metadata": {},
@@ -167,8 +167,8 @@
"cell_type": "code",
"metadata": {
"ExecuteTime": {
"end_time": "2025-02-05T10:14:48.085649Z",
"start_time": "2025-02-05T10:14:48.082460Z"
"end_time": "2025-02-06T12:09:42.269248Z",
"start_time": "2025-02-06T12:09:38.868809Z"
}
},
"source": [
@@ -179,7 +179,7 @@
"y = iris.target"
],
"outputs": [],
"execution_count": 123
"execution_count": 3
},
{
"cell_type": "markdown",
@@ -192,8 +192,8 @@
"cell_type": "code",
"metadata": {
"ExecuteTime": {
"end_time": "2025-02-05T11:26:08.647762Z",
"start_time": "2025-02-05T11:26:08.645423Z"
"end_time": "2025-02-06T12:09:42.277413Z",
"start_time": "2025-02-06T12:09:42.274981Z"
}
},
"source": [
@@ -211,7 +211,7 @@
]
}
],
"execution_count": 161
"execution_count": 4
},
{
"cell_type": "markdown",
@@ -224,8 +224,8 @@
"cell_type": "code",
"metadata": {
"ExecuteTime": {
"end_time": "2025-02-05T11:26:09.360612Z",
"start_time": "2025-02-05T11:26:09.357969Z"
"end_time": "2025-02-06T12:09:42.553805Z",
"start_time": "2025-02-06T12:09:42.292116Z"
}
},
"source": [
@@ -234,7 +234,7 @@
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)"
],
"outputs": [],
"execution_count": 162
"execution_count": 5
},
{
"cell_type": "markdown",
@@ -249,8 +249,8 @@
"cell_type": "code",
"metadata": {
"ExecuteTime": {
"end_time": "2025-02-05T11:26:10.135924Z",
"start_time": "2025-02-05T11:26:10.133376Z"
"end_time": "2025-02-06T12:09:42.568515Z",
"start_time": "2025-02-06T12:09:42.564885Z"
}
},
"source": [
@@ -272,7 +272,7 @@
]
}
],
"execution_count": 163
"execution_count": 6
},
{
"cell_type": "markdown",
@@ -294,8 +294,8 @@
"cell_type": "code",
"metadata": {
"ExecuteTime": {
"end_time": "2025-02-05T11:26:10.847708Z",
"start_time": "2025-02-05T11:26:10.845674Z"
"end_time": "2025-02-06T12:09:42.583044Z",
"start_time": "2025-02-06T12:09:42.580874Z"
}
},
"source": [
@@ -303,7 +303,7 @@
" return np.linalg.norm(sample1 - sample2, axis=1) ** 2"
],
"outputs": [],
"execution_count": 164
"execution_count": 7
},
{
"cell_type": "markdown",
@@ -329,8 +329,8 @@
"cell_type": "code",
"metadata": {
"ExecuteTime": {
"end_time": "2025-02-05T11:26:11.319414Z",
"start_time": "2025-02-05T11:26:11.315241Z"
"end_time": "2025-02-06T12:09:42.607360Z",
"start_time": "2025-02-06T12:09:42.604540Z"
}
},
"source": [
@@ -365,14 +365,14 @@
]
}
],
"execution_count": 165
"execution_count": 8
},
{
"cell_type": "code",
"metadata": {
"ExecuteTime": {
"end_time": "2025-02-05T11:26:11.549555Z",
"start_time": "2025-02-05T11:26:11.546889Z"
"end_time": "2025-02-06T12:09:43.571841Z",
"start_time": "2025-02-06T12:09:43.569070Z"
}
},
"source": [
@@ -385,7 +385,7 @@
" return Counter(y_train[nearest_neighbors]).most_common(1)[0][0]"
],
"outputs": [],
"execution_count": 166
"execution_count": 9
},
{
"cell_type": "markdown",
@@ -415,8 +415,8 @@
"cell_type": "code",
"metadata": {
"ExecuteTime": {
"end_time": "2025-02-05T11:26:12.511511Z",
"start_time": "2025-02-05T11:26:12.508445Z"
"end_time": "2025-02-06T12:09:49.298170Z",
"start_time": "2025-02-06T12:09:49.292521Z"
}
},
"source": [
@@ -431,19 +431,19 @@
" [3, 4]])"
]
},
"execution_count": 167,
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"execution_count": 167
"execution_count": 10
},
{
"cell_type": "code",
"metadata": {
"ExecuteTime": {
"end_time": "2025-02-05T11:26:12.784146Z",
"start_time": "2025-02-05T11:26:12.780845Z"
"end_time": "2025-02-06T12:09:49.680539Z",
"start_time": "2025-02-06T12:09:49.676064Z"
}
},
"source": [
@@ -456,19 +456,19 @@
"np.int64(10)"
]
},
"execution_count": 168,
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"execution_count": 168
"execution_count": 11
},
{
"cell_type": "code",
"metadata": {
"ExecuteTime": {
"end_time": "2025-02-05T11:26:13.022841Z",
"start_time": "2025-02-05T11:26:13.020426Z"
"end_time": "2025-02-06T12:09:49.895044Z",
"start_time": "2025-02-06T12:09:49.889807Z"
}
},
"source": [
@@ -481,19 +481,19 @@
"array([3, 7])"
]
},
"execution_count": 169,
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"execution_count": 169
"execution_count": 12
},
{
"cell_type": "code",
"metadata": {
"ExecuteTime": {
"end_time": "2025-02-05T11:26:13.231874Z",
"start_time": "2025-02-05T11:26:13.229410Z"
"end_time": "2025-02-06T12:09:50.047326Z",
"start_time": "2025-02-06T12:09:50.045038Z"
}
},
"source": [
@@ -506,12 +506,12 @@
"array([4, 6])"
]
},
"execution_count": 170,
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"execution_count": 170
"execution_count": 13
},
{
"cell_type": "markdown",
@@ -525,8 +525,8 @@
"cell_type": "code",
"metadata": {
"ExecuteTime": {
"end_time": "2025-02-05T11:26:13.632871Z",
"start_time": "2025-02-05T11:26:13.629716Z"
"end_time": "2025-02-06T12:09:51.499493Z",
"start_time": "2025-02-06T12:09:51.496079Z"
}
},
"source": [
@@ -544,19 +544,19 @@
" [6, 7]]])"
]
},
"execution_count": 171,
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"execution_count": 171
"execution_count": 14
},
{
"cell_type": "code",
"metadata": {
"ExecuteTime": {
"end_time": "2025-02-05T11:26:13.817580Z",
"start_time": "2025-02-05T11:26:13.814914Z"
"end_time": "2025-02-06T12:09:51.964030Z",
"start_time": "2025-02-06T12:09:51.959665Z"
}
},
"source": "b.sum(axis=0), b.sum(axis=1), b.sum(axis=2), b.sum()",
@@ -573,12 +573,12 @@
" np.int64(28))"
]
},
"execution_count": 172,
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"execution_count": 172
"execution_count": 15
},
{
"cell_type": "markdown",
@@ -601,17 +601,16 @@
"cell_type": "code",
"metadata": {
"ExecuteTime": {
"end_time": "2025-02-05T11:26:14.342154Z",
"start_time": "2025-02-05T11:26:14.340114Z"
"end_time": "2025-02-06T12:09:54.092285Z",
"start_time": "2025-02-06T12:09:54.089316Z"
}
},
"source": [
"#Answer for Optional question 1\n",
"def euc_dis_mat(sample1, sample2):\n",
" return np.linalg.norm(sample1 - sample2, axis=1) ** 2"
],
"outputs": [],
"execution_count": 173
"execution_count": 16
},
{
"cell_type": "markdown",
@@ -636,20 +635,30 @@
"cell_type": "code",
"metadata": {
"ExecuteTime": {
"end_time": "2025-02-05T11:26:14.657801Z",
"start_time": "2025-02-05T11:26:14.655785Z"
"end_time": "2025-02-06T12:10:31.335918Z",
"start_time": "2025-02-06T12:10:31.332196Z"
}
},
"source": [
"# Answer for Optional question 2\n",
"def knn_class_2(X_train, y_train, x_new, K):\n",
" X_new = np.tile(x_new, (len(X_train), 1))\n",
" distances = euc_dis_mat(X_train, X_new)\n",
" k_neighbors = np.argsort(distances)[:K]\n",
" return Counter(y_train[k_neighbors]).most_common()[0][0]"
],
"outputs": [],
"execution_count": 174
"outputs": [
{
"data": {
"text/plain": [
"np.int64(1)"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"execution_count": 18
},
{
"cell_type": "markdown",