chore: clean up code structure and remove unused code blocks

This commit is contained in:
2026-02-04 18:15:16 +01:00
parent 53c0384cf9
commit 859f627b35
6 changed files with 2087 additions and 2930 deletions

View File

@@ -2,10 +2,19 @@
"cells": [
{
"cell_type": "code",
"execution_count": 120,
"execution_count": 1,
"id": "31c5786f",
"metadata": {},
"outputs": [],
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/arthurdanjou/Workspace/studies/.venv/lib/python3.13/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from .autonotebook import tqdm as notebook_tqdm\n"
]
}
],
"source": [
"import umap\n",
"\n",
@@ -16,7 +25,7 @@
},
{
"cell_type": "code",
"execution_count": 121,
"execution_count": 2,
"id": "5fb57b5d",
"metadata": {},
"outputs": [],
@@ -26,7 +35,7 @@
},
{
"cell_type": "code",
"execution_count": 122,
"execution_count": 3,
"id": "bc49092e",
"metadata": {},
"outputs": [
@@ -80,7 +89,7 @@
"type": "float"
}
],
"ref": "56954716-828e-4056-a5a4-8dbdc6447d2d",
"ref": "806f15d4-470f-490a-b5a6-78d68fdb491b",
"rows": [
[
"0",
@@ -824,7 +833,7 @@
"[552 rows x 8 columns]"
]
},
"execution_count": 122,
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
@@ -835,7 +844,7 @@
},
{
"cell_type": "code",
"execution_count": 123,
"execution_count": 4,
"id": "4364612a",
"metadata": {},
"outputs": [],
@@ -871,7 +880,7 @@
},
{
"cell_type": "code",
"execution_count": 124,
"execution_count": 5,
"id": "c1be071a",
"metadata": {},
"outputs": [
@@ -881,7 +890,7 @@
"text": [
"Computing t-SNE...\n",
"[t-SNE] Computing 91 nearest neighbors...\n",
"[t-SNE] Indexed 552 samples in 0.001s...\n",
"[t-SNE] Indexed 552 samples in 0.002s...\n",
"[t-SNE] Computed neighbors for 552 samples in 0.020s...\n",
"[t-SNE] Computed conditional probabilities for sample 552 / 552\n",
"[t-SNE] Mean sigma: 0.767389\n",
@@ -998,7 +1007,7 @@
},
{
"cell_type": "code",
"execution_count": 125,
"execution_count": 6,
"id": "5276c9b4",
"metadata": {},
"outputs": [
@@ -1123,15 +1132,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"id": "6abd7740",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 126,
"execution_count": 7,
"id": "3c52eb1a",
"metadata": {},
"outputs": [
@@ -1278,7 +1279,7 @@
},
{
"cell_type": "code",
"execution_count": 127,
"execution_count": 8,
"id": "60a8df77",
"metadata": {},
"outputs": [
@@ -1433,7 +1434,7 @@
},
{
"cell_type": "code",
"execution_count": 128,
"execution_count": 9,
"id": "2da3589a",
"metadata": {},
"outputs": [
@@ -1483,7 +1484,7 @@
],
"metadata": {
"kernelspec": {
"display_name": "studies",
"display_name": "Python 3",
"language": "python",
"name": "python3"
},

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,80 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"id": "7e37429a",
"metadata": {},
"outputs": [],
"source": [
"import ale_py\n",
"import gymnasium as gym\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "85ff0eb4",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"A.L.E: Arcade Learning Environment (version 0.11.2+ecc1138)\n",
"[Powered by Stella]\n"
]
},
{
"ename": "",
"evalue": "",
"output_type": "error",
"traceback": [
"\u001b[1;31mLe noyau sest bloqué lors de lexécution du code dans une cellule active ou une cellule précédente. \n",
"\u001b[1;31mVeuillez vérifier le code dans la ou les cellules pour identifier une cause possible de léchec. \n",
"\u001b[1;31mCliquez <a href='https://aka.ms/vscodeJupyterKernelCrash'>ici</a> pour plus dinformations. \n",
"\u001b[1;31mPour plus dinformations, consultez Jupyter <a href='command:jupyter.viewOutput'>log</a>."
]
}
],
"source": [
"gym.register_envs(ale_py)\n",
"\n",
"env = gym.make(\"ALE/Tennis-v5\", render_mode=\"human\")\n",
"obs, info = env.reset()\n",
"obs, reward, terminated, truncated, info = env.step(env.action_space.sample())\n",
"env.close()\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "89633751",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.9"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,11 @@
[project]
name = "project"
version = "0.1.0"
description = "Add your description here"
readme = "README.md"
requires-python = ">=3.13"
dependencies = [
"ale-py>=0.11.2",
"numpy>=2.2.5",
"pyclustertend>=1.4.9",
]

View File

@@ -113,3 +113,8 @@ section-order = ["future", "standard-library", "third-party", "data-science", "m
# On sépare les outils de manipulation de données des frameworks de ML lourds
"data-science" = ["numpy", "pandas", "scipy", "matplotlib", "seaborn", "plotly"]
"ml" = ["tensorflow", "keras", "torch", "sklearn", "xgboost", "catboost", "shap"]
[tool.uv.workspace]
members = [
"M2/Reinforcement Learning/project",
]

4774
uv.lock generated

File diff suppressed because it is too large Load Diff