mirror of
https://github.com/ArthurDanjou/ArtStudies.git
synced 2026-02-07 09:05:46 +01:00
chore: clean up code structure and remove unused code blocks
This commit is contained in:
@@ -2,10 +2,19 @@
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 120,
|
||||
"execution_count": 1,
|
||||
"id": "31c5786f",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"/Users/arthurdanjou/Workspace/studies/.venv/lib/python3.13/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
||||
" from .autonotebook import tqdm as notebook_tqdm\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"import umap\n",
|
||||
"\n",
|
||||
@@ -16,7 +25,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 121,
|
||||
"execution_count": 2,
|
||||
"id": "5fb57b5d",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@@ -26,7 +35,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 122,
|
||||
"execution_count": 3,
|
||||
"id": "bc49092e",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -80,7 +89,7 @@
|
||||
"type": "float"
|
||||
}
|
||||
],
|
||||
"ref": "56954716-828e-4056-a5a4-8dbdc6447d2d",
|
||||
"ref": "806f15d4-470f-490a-b5a6-78d68fdb491b",
|
||||
"rows": [
|
||||
[
|
||||
"0",
|
||||
@@ -824,7 +833,7 @@
|
||||
"[552 rows x 8 columns]"
|
||||
]
|
||||
},
|
||||
"execution_count": 122,
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
@@ -835,7 +844,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 123,
|
||||
"execution_count": 4,
|
||||
"id": "4364612a",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@@ -871,7 +880,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 124,
|
||||
"execution_count": 5,
|
||||
"id": "c1be071a",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -881,7 +890,7 @@
|
||||
"text": [
|
||||
"Computing t-SNE...\n",
|
||||
"[t-SNE] Computing 91 nearest neighbors...\n",
|
||||
"[t-SNE] Indexed 552 samples in 0.001s...\n",
|
||||
"[t-SNE] Indexed 552 samples in 0.002s...\n",
|
||||
"[t-SNE] Computed neighbors for 552 samples in 0.020s...\n",
|
||||
"[t-SNE] Computed conditional probabilities for sample 552 / 552\n",
|
||||
"[t-SNE] Mean sigma: 0.767389\n",
|
||||
@@ -998,7 +1007,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 125,
|
||||
"execution_count": 6,
|
||||
"id": "5276c9b4",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -1123,15 +1132,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "6abd7740",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 126,
|
||||
"execution_count": 7,
|
||||
"id": "3c52eb1a",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -1278,7 +1279,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 127,
|
||||
"execution_count": 8,
|
||||
"id": "60a8df77",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -1433,7 +1434,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 128,
|
||||
"execution_count": 9,
|
||||
"id": "2da3589a",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -1483,7 +1484,7 @@
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "studies",
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
|
||||
102
M2/Clustering In Practice/VAT.ipynb
Normal file
102
M2/Clustering In Practice/VAT.ipynb
Normal file
File diff suppressed because one or more lines are too long
80
M2/Reinforcement Learning/project/Project.ipynb
Normal file
80
M2/Reinforcement Learning/project/Project.ipynb
Normal file
@@ -0,0 +1,80 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "7e37429a",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import ale_py\n",
|
||||
"import gymnasium as gym\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "85ff0eb4",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"A.L.E: Arcade Learning Environment (version 0.11.2+ecc1138)\n",
|
||||
"[Powered by Stella]\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"ename": "",
|
||||
"evalue": "",
|
||||
"output_type": "error",
|
||||
"traceback": [
|
||||
"\u001b[1;31mLe noyau s’est bloqué lors de l’exécution du code dans une cellule active ou une cellule précédente. \n",
|
||||
"\u001b[1;31mVeuillez vérifier le code dans la ou les cellules pour identifier une cause possible de l’échec. \n",
|
||||
"\u001b[1;31mCliquez <a href='https://aka.ms/vscodeJupyterKernelCrash'>ici</a> pour plus d’informations. \n",
|
||||
"\u001b[1;31mPour plus d’informations, consultez Jupyter <a href='command:jupyter.viewOutput'>log</a>."
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"gym.register_envs(ale_py)\n",
|
||||
"\n",
|
||||
"env = gym.make(\"ALE/Tennis-v5\", render_mode=\"human\")\n",
|
||||
"obs, info = env.reset()\n",
|
||||
"obs, reward, terminated, truncated, info = env.step(env.action_space.sample())\n",
|
||||
"env.close()\n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "89633751",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.13.9"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
11
M2/Reinforcement Learning/project/pyproject.toml
Normal file
11
M2/Reinforcement Learning/project/pyproject.toml
Normal file
@@ -0,0 +1,11 @@
|
||||
[project]
|
||||
name = "project"
|
||||
version = "0.1.0"
|
||||
description = "Add your description here"
|
||||
readme = "README.md"
|
||||
requires-python = ">=3.13"
|
||||
dependencies = [
|
||||
"ale-py>=0.11.2",
|
||||
"numpy>=2.2.5",
|
||||
"pyclustertend>=1.4.9",
|
||||
]
|
||||
@@ -113,3 +113,8 @@ section-order = ["future", "standard-library", "third-party", "data-science", "m
|
||||
# On sépare les outils de manipulation de données des frameworks de ML lourds
|
||||
"data-science" = ["numpy", "pandas", "scipy", "matplotlib", "seaborn", "plotly"]
|
||||
"ml" = ["tensorflow", "keras", "torch", "sklearn", "xgboost", "catboost", "shap"]
|
||||
|
||||
[tool.uv.workspace]
|
||||
members = [
|
||||
"M2/Reinforcement Learning/project",
|
||||
]
|
||||
|
||||
Reference in New Issue
Block a user