Files
ml_exercises/exercises/causal_model.ipynb
2021-08-20 11:47:53 +02:00

251 lines
7.2 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"id": "ethical-chinese",
"metadata": {},
"source": [
"# Learning a causal model\n",
"\n",
"The following example is adapted from \"Elements of Causal Inference\" by Jonas Peters, Dominik Janzig, and Bernhard Schölkopf (2017).\n",
"See also Jonas Peters great [4-part lecture series on causality](https://www.youtube.com/watch?v=zvrcyqcN9Wo)."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "transsexual-moore",
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"from sklearn.linear_model import LinearRegression, LassoLars"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "canadian-problem",
"metadata": {},
"outputs": [],
"source": [
"def sample_data(seed=None, n=10000, data_drift=False, concept_drift=False):\n",
" # generate a sample from the distribution entailed by the causal graph\n",
" np.random.seed(seed)\n",
" # C, A, K\n",
" C = np.random.randn(n)\n",
" A = 0.8*np.random.randn(n)\n",
" K = A + 0.1*np.random.randn(n)\n",
" # X with and without data drift\n",
" if data_drift:\n",
" X = C - 2*A + 2.0*np.random.randn(n)\n",
" else:\n",
" X = C - 2*A + 0.2*np.random.randn(n)\n",
" # F \n",
" F = 3*X + 0.8*np.random.randn(n)\n",
" # D with and without concept drift\n",
" if concept_drift:\n",
" D = 2*X + 0.5*np.random.randn(n)\n",
" else:\n",
" D = -2*X + 0.5*np.random.randn(n)\n",
" # G, Y \n",
" G = D + 0.5*np.random.randn(n)\n",
" Y = 2*K - D + 0.2*np.random.randn(n)\n",
" # H with and without data drift\n",
" if data_drift:\n",
" H = 0.5*Y + 1.0*np.random.randn(n)\n",
" else:\n",
" H = 0.5*Y + 0.1*np.random.randn(n) \n",
" # put all in a nice dataframe\n",
" df = pd.DataFrame(np.vstack([C, A, K, X, F, D, G, Y, H]).T, columns=[\"C\", \"A\", \"K\", \"X\", \"F\", \"D\", \"G\", \"Y\", \"H\"])\n",
" return df\n",
"\n",
"def test_model(input_vars, df_train, df_test):\n",
" # fit model with given variables\n",
" lm = LinearRegression().fit(df_train[input_vars], df_train[[\"Y\"]])\n",
" # check model fit and coefficients\n",
" # true coefficients would be all values on the edges multiplied from the path from X to Y\n",
" print(f\"R^2 (train): {lm.score(df_train[input_vars], df_train[['Y']]):0.3f}; (test): {lm.score(df_test[input_vars], df_test[['Y']]):0.3f} => Y ~ {lm.intercept_[0]:0.3f} + \" + \" + \".join([f\"{lm.coef_[0, i]:0.3f} * {input_vars[i]}\" for i in range(len(input_vars))]))\n"
]
},
{
"cell_type": "markdown",
"id": "revised-millennium",
"metadata": {},
"source": [
"## Train & evaluate the model"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "southwest-printing",
"metadata": {},
"outputs": [],
"source": [
"# generate train and test data with different random seeds\n",
"df_train = sample_data(1)\n",
"df_test = sample_data(2)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "transparent-sacrifice",
"metadata": {},
"outputs": [],
"source": [
"# (1) missing relevant input feature K -> wrong coefficient for X\n",
"test_model([\"X\"], df_train, df_test)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "colonial-wagner",
"metadata": {},
"outputs": [],
"source": [
"# (2) all the right input features -> correct coefficients\n",
"test_model([\"X\", \"K\"], df_train, df_test)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "wireless-corner",
"metadata": {},
"outputs": [],
"source": [
"# (3) additional input feature D, which has a more direct influence on Y than X\n",
"test_model([\"X\", \"K\", \"D\"], df_train, df_test)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "supposed-yugoslavia",
"metadata": {},
"outputs": [],
"source": [
"# (4) additional input feature H, which is dependent on (i.e. highly correlated with) Y\n",
"test_model([\"X\", \"K\", \"H\"], df_train, df_test)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "welcome-appraisal",
"metadata": {
"lines_to_next_cell": 2
},
"outputs": [],
"source": [
"# (5) regularized model with all inputs -> chooses dependent variable H instead of causal influences\n",
"input_vars = [c for c in df_train.columns if c != \"Y\"]\n",
"lm = LassoLars(alpha=0.003).fit(df_train[input_vars], df_train[\"Y\"])\n",
"print(f\"R^2 (train): {lm.score(df_train[input_vars], df_train['Y']):0.3f}; (test): {lm.score(df_test[input_vars], df_test['Y']):0.3f} => Y ~ {lm.intercept_:0.3f} + \" + \" + \".join([f\"{lm.coef_[i]:0.3f} * {input_vars[i]}\" for i in range(len(input_vars))]))"
]
},
{
"cell_type": "markdown",
"id": "collectible-hands",
"metadata": {},
"source": [
"## Data & Concept Drifts"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "quiet-groove",
"metadata": {},
"outputs": [],
"source": [
"# generate test data with a data drift in X and H\n",
"df_test = sample_data(2, data_drift=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "greatest-cliff",
"metadata": {},
"outputs": [],
"source": [
"# model (2): true relationship between X and Y -> test performance equally good\n",
"test_model([\"X\", \"K\"], df_train, df_test)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "indoor-celebrity",
"metadata": {},
"outputs": [],
"source": [
"# model (4): variable dependent on but not causal of Y -> test performance a lot worse\n",
"test_model([\"X\", \"K\", \"H\"], df_train, df_test)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "endless-detective",
"metadata": {},
"outputs": [],
"source": [
"# generate test data with a concept drift in D, i.e., on the way from X to Y\n",
"df_test = sample_data(2, concept_drift=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "korean-penguin",
"metadata": {},
"outputs": [],
"source": [
"# model (2): causal relationship between X and Y changed -> test performance catastrophic\n",
"test_model([\"X\", \"K\"], df_train, df_test)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "blessed-passenger",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"jupytext": {
"cell_metadata_filter": "-all",
"encoding": "# -*- coding: utf-8 -*-",
"notebook_metadata_filter": "-all"
},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.5"
}
},
"nbformat": 4,
"nbformat_minor": 5
}