{ "cells": [ { "cell_type": "markdown", "id": "ethical-chinese", "metadata": {}, "source": [ "# Learning a causal model\n", "\n", "The following example is adapted from \"Elements of Causal Inference\" by Jonas Peters, Dominik Janzig, and Bernhard Schölkopf (2017).\n", "See also Jonas Peters great [4-part lecture series on causality](https://www.youtube.com/watch?v=zvrcyqcN9Wo)." ] }, { "cell_type": "code", "execution_count": null, "id": "transsexual-moore", "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "from sklearn.linear_model import LinearRegression, LassoLars" ] }, { "cell_type": "code", "execution_count": null, "id": "canadian-problem", "metadata": {}, "outputs": [], "source": [ "def sample_data(seed=None, n=10000, data_drift=False, concept_drift=False):\n", " # generate a sample from the distribution entailed by the causal graph\n", " np.random.seed(seed)\n", " # C, A, K\n", " C = np.random.randn(n)\n", " A = 0.8*np.random.randn(n)\n", " K = A + 0.1*np.random.randn(n)\n", " # X with and without data drift\n", " if data_drift:\n", " X = C - 2*A + 2.0*np.random.randn(n)\n", " else:\n", " X = C - 2*A + 0.2*np.random.randn(n)\n", " # F \n", " F = 3*X + 0.8*np.random.randn(n)\n", " # D with and without concept drift\n", " if concept_drift:\n", " D = 2*X + 0.5*np.random.randn(n)\n", " else:\n", " D = -2*X + 0.5*np.random.randn(n)\n", " # G, Y \n", " G = D + 0.5*np.random.randn(n)\n", " Y = 2*K - D + 0.2*np.random.randn(n)\n", " # H with and without data drift\n", " if data_drift:\n", " H = 0.5*Y + 1.0*np.random.randn(n)\n", " else:\n", " H = 0.5*Y + 0.1*np.random.randn(n) \n", " # put all in a nice dataframe\n", " df = pd.DataFrame(np.vstack([C, A, K, X, F, D, G, Y, H]).T, columns=[\"C\", \"A\", \"K\", \"X\", \"F\", \"D\", \"G\", \"Y\", \"H\"])\n", " return df\n", "\n", "def test_model(input_vars, df_train, df_test):\n", " # fit model with given variables\n", " lm = LinearRegression().fit(df_train[input_vars], df_train[[\"Y\"]])\n", " # check model fit and coefficients\n", " # true coefficients would be all values on the edges multiplied from the path from X to Y\n", " print(f\"R^2 (train): {lm.score(df_train[input_vars], df_train[['Y']]):0.3f}; (test): {lm.score(df_test[input_vars], df_test[['Y']]):0.3f} => Y ~ {lm.intercept_[0]:0.3f} + \" + \" + \".join([f\"{lm.coef_[0, i]:0.3f} * {input_vars[i]}\" for i in range(len(input_vars))]))\n" ] }, { "cell_type": "markdown", "id": "revised-millennium", "metadata": {}, "source": [ "## Train & evaluate the model" ] }, { "cell_type": "code", "execution_count": null, "id": "southwest-printing", "metadata": {}, "outputs": [], "source": [ "# generate train and test data with different random seeds\n", "df_train = sample_data(1)\n", "df_test = sample_data(2)" ] }, { "cell_type": "code", "execution_count": null, "id": "transparent-sacrifice", "metadata": {}, "outputs": [], "source": [ "# (1) missing relevant input feature K -> wrong coefficient for X\n", "test_model([\"X\"], df_train, df_test)" ] }, { "cell_type": "code", "execution_count": null, "id": "colonial-wagner", "metadata": {}, "outputs": [], "source": [ "# (2) all the right input features -> correct coefficients\n", "test_model([\"X\", \"K\"], df_train, df_test)" ] }, { "cell_type": "code", "execution_count": null, "id": "wireless-corner", "metadata": {}, "outputs": [], "source": [ "# (3) additional input feature D, which has a more direct influence on Y than X\n", "test_model([\"X\", \"K\", \"D\"], df_train, df_test)" ] }, { "cell_type": "code", "execution_count": null, "id": "supposed-yugoslavia", "metadata": {}, "outputs": [], "source": [ "# (4) additional input feature H, which is dependent on (i.e. highly correlated with) Y\n", "test_model([\"X\", \"K\", \"H\"], df_train, df_test)" ] }, { "cell_type": "code", "execution_count": null, "id": "welcome-appraisal", "metadata": { "lines_to_next_cell": 2 }, "outputs": [], "source": [ "# (5) regularized model with all inputs -> chooses dependent variable H instead of causal influences\n", "input_vars = [c for c in df_train.columns if c != \"Y\"]\n", "lm = LassoLars(alpha=0.003).fit(df_train[input_vars], df_train[\"Y\"])\n", "print(f\"R^2 (train): {lm.score(df_train[input_vars], df_train['Y']):0.3f}; (test): {lm.score(df_test[input_vars], df_test['Y']):0.3f} => Y ~ {lm.intercept_:0.3f} + \" + \" + \".join([f\"{lm.coef_[i]:0.3f} * {input_vars[i]}\" for i in range(len(input_vars))]))" ] }, { "cell_type": "markdown", "id": "collectible-hands", "metadata": {}, "source": [ "## Data & Concept Drifts" ] }, { "cell_type": "code", "execution_count": null, "id": "quiet-groove", "metadata": {}, "outputs": [], "source": [ "# generate test data with a data drift in X and H\n", "df_test = sample_data(2, data_drift=True)" ] }, { "cell_type": "code", "execution_count": null, "id": "greatest-cliff", "metadata": {}, "outputs": [], "source": [ "# model (2): true relationship between X and Y -> test performance equally good\n", "test_model([\"X\", \"K\"], df_train, df_test)" ] }, { "cell_type": "code", "execution_count": null, "id": "indoor-celebrity", "metadata": {}, "outputs": [], "source": [ "# model (4): variable dependent on but not causal of Y -> test performance a lot worse\n", "test_model([\"X\", \"K\", \"H\"], df_train, df_test)" ] }, { "cell_type": "code", "execution_count": null, "id": "endless-detective", "metadata": {}, "outputs": [], "source": [ "# generate test data with a concept drift in D, i.e., on the way from X to Y\n", "df_test = sample_data(2, concept_drift=True)" ] }, { "cell_type": "code", "execution_count": null, "id": "korean-penguin", "metadata": {}, "outputs": [], "source": [ "# model (2): causal relationship between X and Y changed -> test performance catastrophic\n", "test_model([\"X\", \"K\"], df_train, df_test)" ] }, { "cell_type": "code", "execution_count": null, "id": "blessed-passenger", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "jupytext": { "cell_metadata_filter": "-all", "encoding": "# -*- coding: utf-8 -*-", "notebook_metadata_filter": "-all" }, "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.2" } }, "nbformat": 4, "nbformat_minor": 5 }