

Your Machine Learning Project

Machine learning can help you in various ways by generating insights from large amounts of (possibly unstructured) data, improving decision making and planning processes by providing predictions about future events, or automating tedious tasks otherwise requiring human experts.

In this exercise, you should come up with a problem that you would want to see solved by ML, evaluate how well ML could actually solve this problem, and provide first steps towards the solution.

Preferably, this project idea should be related to your current job and may also be a project that you were already planning to work on soon (but no past/completed projects please).

For your project idea, please compile a short overview like this:

Project Overview

Motivation

Situation / Problem: Wrong process parameters lead to the production of a lot of scrap parts

Business KPI (i.e., what to optimize): Percentage of scrap parts produced

Goal / Success Criteria: Reduce percentage of scrap from 15% to 5% by producing with better settings

Solution Outline

Deliverables: *Software*: Model that predicts if settings might result in scrap (& ideally recommends better settings)
 Insights: Better understanding of root causes of scrap production

Workflow Integration: Interact with process operating terminal to receive inputs and display outputs

1 Data Point: One product that should be produced

product	height	width	depth	faulty	temp
0	5	84.987074	233.171667	202.256111	0 538.983121

Input: Process conditions / settings
→ *structured* or *unstructured* input data?

Output: Product will be okay (yes/no)

Type of ML Solution:

- Model that produces a specific output given the input (→ supervised learning)
 - Type of model (depends on desired output): *regression* *classification* *other*
 - Optional extras? *understand root causes* *find optimal inputs*
- Identify naturally occurring groups in the data (→ clustering)
- Identify unusual events in the data, e.g., for monitoring purposes (→ anomaly detection)
- Generate personalized recommendations or improve search suggestions (→ recommender systems)
- Find optimal sequences of actions, e.g., for complex robot movements (→ reinforcement learning)
- Other:

Challenges & Risks

ML solution feasible? *probably* *unclear* *use non-ML solution instead*

Data Availability (Quality & Quantity): ~10k data points, but many duplicates; additional complications:

- Unequal class distribution (comparatively little scrap)
- Data not stored in a central database, but needs to be collected from individual machines
- Matching a product's quality with the respective process conditions is difficult (no unique IDs)

→ **Next steps?** Ask XY for data for initial experiments & advocate for better data infrastructure

What else could go wrong (e.g., legal/ethical issues)?

- Operator might get frustrated if wrong recommendations disrupt his workflow and require many extra clicks
- **Reduced Risk Rollout?** Start with subtle warnings and suggestions and track how often they are ignored

Build or Buy? *build* *buy*

The following pages provide a more detailed description of the individual points for some additional inspiration.

Tackling a Machine Learning Project: 3 Main Steps

1. Identify a suitable problem

This is probably the hardest part. Get creative! (Usually, you would brainstorm together with ML and domain experts.)

Motivation

Situation / Problem

Which process or task could be automated? What situation could be improved with more insights / by better planning? I.e., where do you see a lot of inefficiencies around you that could be mitigated by a better use of data? For example, you could look for opportunities to decrease wasted resources / time / costs or increase revenue / customer satisfaction / etc.

Business KPI (i.e., what to optimize)

How can you quantify what you think could be improved?

Goal / Success Criteria

What could be considered an ambitious yet realistic target in terms of improving the process, i.e., when are you ‘done’?

Solution Outline

Deliverables

Does the solution consist of a piece of software that is to be deployed somewhere to continuously make predictions for new data points, or are you more interested in the insights gained from a one-off analysis?

Workflow Integration

Especially important for a software project: Where does the ML solution fit within the rest of the infrastructure, i.e., where do you get the input data from and where do you need to send the results to?

1 Data Point

What are the input features that the ML model receives for one sample and what kind of output should it return in response?

Type of ML Solution

Which category of ML algorithms produces the required output?

Challenges & Risks

Is a ML solution feasible?

What does a human expert think about this problem, i.e., if she was presented with the input, could she identify the correct output? This does not necessarily apply to unsupervised learning problems, but even then the intuition of an expert can give valuable hints!

Depending on the expert’s answer, proceed as follows:

- the expert tells you the problem is trivial to solve
→ ask the expert to come up with some rules / equations and automate this the traditional way (i.e., without ML)
- the expert can easily solve the problem, but can’t explain how she did it
→ this sounds like a perfect use case for ML!
- the expert can in principle solve the problem, but is sometimes unsure which output is the correct one
→ try to define your problem more clearly and come up with less ambiguous output options (i.e., labels)
- the expert can’t solve the problem with the given inputs, but thinks that it should in principle be possible
→ can you get additional or less noisy inputs?
- the expert thinks your idea is crazy
→ you can still try ML (the results might surprise you!), but your time might be better spent on a different problem

Bonus: Has a similar problem been solved with ML before?

If you need to devise a novel neural network architecture to solve the problem, for example, because you are dealing with super fancy input and/or output data types (think AlphaFold), this will probably require years of research. Your chances of success are much higher, if you can use some existing algorithm that has already been used to solve a similar problem.

Data Availability (Quality & Quantity)

Reread the section on Data: ‘Garbage in, garbage out’: How good do you think your data is?

How much data do you have (including rare events)? If the answer is “None”, start collecting *right now!*

Do you already see some problems with the data that you should take into account later, e.g., systematic biases?

⇒ *Next steps to get / improve data?*

Getting the necessary data is always the first step in creating a ML solution. Who would you talk to, to get this data? Who would you talk to, to set up / improve the data infrastructure and what should be the next steps to improve data quality and quantity?

What else could go wrong (e.g., legal issues / ethical concerns)?

Are there any concerns w.r.t. data privacy? What about accountability, i.e., do the decisions of the machine learning model need to be transparent, for example, if someone is denied credit because of an algorithmically generated credit score? Why might users get frustrated with the solution?

⇒ *Reduced Risk Rollout: How could the risks be mitigated?*

Your ML system (like humans) will make mistakes. This is especially true since your input data will probably change over time and users might even try to intentionally deceive the system (e.g., spammers come up with more sophisticated messages if their original ones are caught by the spam filter). What would be the worst case scenario and how much risk are you willing to take? Instead of going all in with ML from day 1, is there a way your system can be monitored in the beginning while still providing added value?

Build or Buy?

Does the solution require unique domain knowledge only available at your company, e.g., because you're analyzing data generated by your own specific processes/machines and/or will the solution be a key part of your business, e.g., a new feature that makes your products more attractive? Or is this a common (but complex) problem, for which a solution already exists (e.g., offered as a software as a service (SaaS) product), that you could buy off the shelf? For example, extracting the relevant information from scanned invoices to automate bookkeeping processes is a relatively complex task for which many good solutions already exist, so unless you are working in a company building bookkeeping software and plan to sell a better alternative to these existing solutions, it probably doesn't make sense to implement this yourself.

Here are some general points you might want to consider when deciding whether to buy a ML solution or build it yourself:

- How much effort would be required in terms of preprocessing your data before you could use the off-the-shelf ML solution?
- How difficult would it be to integrate the output from the off-the-shelf ML solution into your general workflow? Does it do exactly what you need or would additional post-processing steps be required?
- How reliable is the off-the-shelf ML solution? Are there any benchmarks available and/or can you test it with some common examples and edge cases yourself?
- How difficult would it be to implement the ML solution yourself? For example, what kind of open source libraries exist that solve such a task? Do you have the necessary ML talent or would you need to hire, e.g., freelancers?
- Can the off-the-shelf ML solution be deployed in-house or does it run on an external server and would this bring with it any data privacy issues?
- How high are the on-going licensing fees and what is included in terms of maintenance (e.g., how frequently are the models retrained)?

Unless the ML solution will be an integral part of your business, in the end it will probably come down to comparing costs for building, running, and maintaining the system yourself vs. costs for integrating the off-the-shelf solution into your existing workflow (incl. necessary data preprocessing) and on-going licensing fees.

2. Devise a working solution

You came up with a well defined input-output problem, you have collected a lot of high-quality data, a domain expert gave you the green light, and management is impressed by the low risk and immediate value your solution would provide. Now it's time to get your hands dirty!

Of course, in reality, arriving at a working solution is an iterative process where you need to try many different models, tune hyperparameters, etc., so without programming we don't get very far here (this is the topic of the case study and cheat sheet). But you can still think about the first steps that you would take to solve your problem.

From Raw Data to Good Data

What does your raw data look like? Do you need to perform any extra steps to arrive at meaningful numeric features?

What would be the entries of the d -dimensional input feature vector representing one data point?

(Of course, this might change later on, for example, if you discover that you need to do more feature engineering, i.e., construct some additional, more complex features to improve the performance.)

ML Solution

What specific ML models could be used to solve your problem? What would be a simple baseline and which more complex models could you try next?

ML KPI, i.e., evaluation metric

What would be a suitable metric to evaluate the ML solution? Are some errors more critical than others?

What level of performance would be reasonable to expect (e.g., what is the human level performance on this task)?

3. Get it ready for production

Let's assume the model you've chosen has a decent performance on the historical data you've collected.

Now it's time to get your solution into production (which requires solving a set of additional challenges, for which you might want to consult with a data engineer and look into MLOps strategies), and/or to present the insights you've derived to the project's stakeholders:

ML Software Project:

Deployment: Cloud or Edge? Typically, a model is either run 'in the cloud' (i.e., on a central server that can handle more complex computations efficiently) or 'on the edge' (i.e., on each individual machine where the data is produced, which can be necessary if the data needs to be processed in real time and/or a continuous internet connection can not be guaranteed, e.g., in self-driving cars).

Continuous Monitoring: Don't forget that the model needs to be continuously monitored, incl. the collection of new data and frequent retraining of models to counteract data and concept drifts.

Data Science Insights Project:

Make sure to consult with a domain expert, especially when interpreting the model and explaining its predictions, to ensure it captures some true causal influences and does not rely on spurious correlations.