mirror of
https://github.com/ArthurDanjou/ml_exercises.git
synced 2026-01-14 12:14:38 +01:00
add causal model notebook
This commit is contained in:
250
exercises/causal_model.ipynb
Normal file
250
exercises/causal_model.ipynb
Normal file
@@ -0,0 +1,250 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "ethical-chinese",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Learning a causal model\n",
|
||||
"\n",
|
||||
"The following example is adapted from \"Elements of Causal Inference\" by Jonas Peters, Dominik Janzig, and Bernhard Schölkopf (2017).\n",
|
||||
"See also Jonas Peters great [4-part lecture series on causality](https://www.youtube.com/watch?v=zvrcyqcN9Wo)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "transsexual-moore",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import numpy as np\n",
|
||||
"import pandas as pd\n",
|
||||
"import matplotlib.pyplot as plt\n",
|
||||
"from sklearn.linear_model import LinearRegression, LassoLars"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "canadian-problem",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def sample_data(seed=None, n=10000, data_drift=False, concept_drift=False):\n",
|
||||
" # generate a sample from the distribution entailed by the causal graph\n",
|
||||
" np.random.seed(seed)\n",
|
||||
" # C, A, K\n",
|
||||
" C = np.random.randn(n)\n",
|
||||
" A = 0.8*np.random.randn(n)\n",
|
||||
" K = A + 0.1*np.random.randn(n)\n",
|
||||
" # X with and without data drift\n",
|
||||
" if data_drift:\n",
|
||||
" X = C - 2*A + 2.0*np.random.randn(n)\n",
|
||||
" else:\n",
|
||||
" X = C - 2*A + 0.2*np.random.randn(n)\n",
|
||||
" # F \n",
|
||||
" F = 3*X + 0.8*np.random.randn(n)\n",
|
||||
" # D with and without concept drift\n",
|
||||
" if concept_drift:\n",
|
||||
" D = 2*X + 0.5*np.random.randn(n)\n",
|
||||
" else:\n",
|
||||
" D = -2*X + 0.5*np.random.randn(n)\n",
|
||||
" # G, Y \n",
|
||||
" G = D + 0.5*np.random.randn(n)\n",
|
||||
" Y = 2*K - D + 0.2*np.random.randn(n)\n",
|
||||
" # H with and without data drift\n",
|
||||
" if data_drift:\n",
|
||||
" H = 0.5*Y + 1.0*np.random.randn(n)\n",
|
||||
" else:\n",
|
||||
" H = 0.5*Y + 0.1*np.random.randn(n) \n",
|
||||
" # put all in a nice dataframe\n",
|
||||
" df = pd.DataFrame(np.vstack([C, A, K, X, F, D, G, Y, H]).T, columns=[\"C\", \"A\", \"K\", \"X\", \"F\", \"D\", \"G\", \"Y\", \"H\"])\n",
|
||||
" return df\n",
|
||||
"\n",
|
||||
"def test_model(input_vars, df_train, df_test):\n",
|
||||
" # fit model with given variables\n",
|
||||
" lm = LinearRegression().fit(df_train[input_vars], df_train[[\"Y\"]])\n",
|
||||
" # check model fit and coefficients\n",
|
||||
" # true coefficients would be all values on the edges multiplied from the path from X to Y\n",
|
||||
" print(f\"R^2 (train): {lm.score(df_train[input_vars], df_train[['Y']]):0.3f}; (test): {lm.score(df_test[input_vars], df_test[['Y']]):0.3f} => Y ~ {lm.intercept_[0]:0.3f} + \" + \" + \".join([f\"{lm.coef_[0, i]:0.3f} * {input_vars[i]}\" for i in range(len(input_vars))]))\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "revised-millennium",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Train & evaluate the model"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "southwest-printing",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# generate train and test data with different random seeds\n",
|
||||
"df_train = sample_data(1)\n",
|
||||
"df_test = sample_data(2)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "transparent-sacrifice",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# (1) missing relevant input feature K -> wrong coefficient for X\n",
|
||||
"test_model([\"X\"], df_train, df_test)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "colonial-wagner",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# (2) all the right input features -> correct coefficients\n",
|
||||
"test_model([\"X\", \"K\"], df_train, df_test)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "wireless-corner",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# (3) additional input feature D, which has a more direct influence on Y than X\n",
|
||||
"test_model([\"X\", \"K\", \"D\"], df_train, df_test)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "supposed-yugoslavia",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# (4) additional input feature H, which is dependent on (i.e. highly correlated with) Y\n",
|
||||
"test_model([\"X\", \"K\", \"H\"], df_train, df_test)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "welcome-appraisal",
|
||||
"metadata": {
|
||||
"lines_to_next_cell": 2
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# (5) regularized model with all inputs -> chooses dependent variable H instead of causal influences\n",
|
||||
"input_vars = [c for c in df_train.columns if c != \"Y\"]\n",
|
||||
"lm = LassoLars(alpha=0.003).fit(df_train[input_vars], df_train[\"Y\"])\n",
|
||||
"print(f\"R^2 (train): {lm.score(df_train[input_vars], df_train['Y']):0.3f}; (test): {lm.score(df_test[input_vars], df_test['Y']):0.3f} => Y ~ {lm.intercept_:0.3f} + \" + \" + \".join([f\"{lm.coef_[i]:0.3f} * {input_vars[i]}\" for i in range(len(input_vars))]))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "collectible-hands",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Data & Concept Drifts"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "quiet-groove",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# generate test data with a data drift in X and H\n",
|
||||
"df_test = sample_data(2, data_drift=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "greatest-cliff",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# model (2): true relationship between X and Y -> test performance equally good\n",
|
||||
"test_model([\"X\", \"K\"], df_train, df_test)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "indoor-celebrity",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# model (4): variable dependent on but not causal of Y -> test performance a lot worse\n",
|
||||
"test_model([\"X\", \"K\", \"H\"], df_train, df_test)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "endless-detective",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# generate test data with a concept drift in D, i.e., on the way from X to Y\n",
|
||||
"df_test = sample_data(2, concept_drift=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "korean-penguin",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# model (2): causal relationship between X and Y changed -> test performance catastrophic\n",
|
||||
"test_model([\"X\", \"K\"], df_train, df_test)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "blessed-passenger",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"jupytext": {
|
||||
"cell_metadata_filter": "-all",
|
||||
"encoding": "# -*- coding: utf-8 -*-",
|
||||
"notebook_metadata_filter": "-all"
|
||||
},
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.8.5"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
Reference in New Issue
Block a user