Upgrade notebooks to TensorFlow 1.0.0

This commit is contained in:
Aurélien Geron
2017-02-17 11:51:26 +01:00
parent 146fde1127
commit d8176ec2cb
43 changed files with 3615 additions and 7542 deletions

View File

@@ -2,28 +2,40 @@
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"**Chapter 12 Distributed TensorFlow**"
]
},
{
"cell_type": "markdown",
"metadata": {},
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"_This notebook contains all the sample code and solutions to the exercices in chapter 12._"
]
},
{
"cell_type": "markdown",
"metadata": {},
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"# Setup"
]
},
{
"cell_type": "markdown",
"metadata": {},
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"First, let's make sure this notebook works well in both python 2 and 3, import a few common modules, ensure MatplotLib plots figures inline and prepare a function to save the figures:"
]
@@ -32,7 +44,9 @@
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": true
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
@@ -69,7 +83,10 @@
},
{
"cell_type": "markdown",
"metadata": {},
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"# Local server"
]
@@ -78,7 +95,9 @@
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": true
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
@@ -89,7 +108,9 @@
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": true
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
@@ -101,7 +122,9 @@
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
@@ -111,7 +134,10 @@
},
{
"cell_type": "markdown",
"metadata": {},
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"# Cluster"
]
@@ -120,7 +146,9 @@
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": true
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
@@ -140,7 +168,9 @@
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
@@ -153,7 +183,10 @@
},
{
"cell_type": "markdown",
"metadata": {},
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"# Pinning operations across devices and servers"
]
@@ -162,7 +195,9 @@
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": true
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
@@ -182,7 +217,9 @@
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
@@ -195,7 +232,9 @@
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
@@ -223,16 +262,21 @@
},
{
"cell_type": "markdown",
"metadata": {},
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"# Readers"
]
},
{
"cell_type": "code",
"execution_count": 13,
"execution_count": 10,
"metadata": {
"collapsed": false
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
@@ -254,7 +298,7 @@
"key, value = reader.read(filename_queue)\n",
"\n",
"x1, x2, target = tf.decode_csv(value, record_defaults=[[-1.], [-1.], [-1]])\n",
"features = tf.pack([x1, x2])\n",
"features = tf.stack([x1, x2])\n",
"\n",
"instance_queue = tf.RandomShuffleQueue(\n",
" capacity=10, min_after_dequeue=2,\n",
@@ -283,9 +327,11 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 11,
"metadata": {
"collapsed": true
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
@@ -298,16 +344,21 @@
},
{
"cell_type": "markdown",
"metadata": {},
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"# Queue runners and coordinators"
]
},
{
"cell_type": "code",
"execution_count": 14,
"execution_count": 12,
"metadata": {
"collapsed": false
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
@@ -322,7 +373,7 @@
"key, value = reader.read(filename_queue)\n",
"\n",
"x1, x2, target = tf.decode_csv(value, record_defaults=[[-1.], [-1.], [-1]])\n",
"features = tf.pack([x1, x2])\n",
"features = tf.stack([x1, x2])\n",
"\n",
"instance_queue = tf.RandomShuffleQueue(\n",
" capacity=10, min_after_dequeue=2,\n",
@@ -350,9 +401,11 @@
},
{
"cell_type": "code",
"execution_count": 15,
"execution_count": 13,
"metadata": {
"collapsed": false
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
@@ -362,7 +415,7 @@
" reader = tf.TextLineReader(skip_header_lines=1)\n",
" key, value = reader.read(filename_queue)\n",
" x1, x2, target = tf.decode_csv(value, record_defaults=[[-1.], [-1.], [-1]])\n",
" features = tf.pack([x1, x2])\n",
" features = tf.stack([x1, x2])\n",
" enqueue_instance = instance_queue.enqueue([features, target])\n",
" return enqueue_instance\n",
"\n",
@@ -396,16 +449,21 @@
},
{
"cell_type": "markdown",
"metadata": {},
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"# Setting a timeout"
]
},
{
"cell_type": "code",
"execution_count": 16,
"execution_count": 14,
"metadata": {
"collapsed": false
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
@@ -437,7 +495,9 @@
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
"collapsed": true,
"deletable": true,
"editable": true
},
"source": [
"# Exercise solutions"
@@ -445,7 +505,10 @@
},
{
"cell_type": "markdown",
"metadata": {},
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"**Coming soon**"
]
@@ -454,7 +517,9 @@
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": []
@@ -476,7 +541,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.1"
"version": "3.5.2+"
},
"nav_menu": {},
"toc": {