mirror of
https://github.com/ArthurDanjou/handson-ml3.git
synced 2026-02-02 21:17:49 +01:00
Add TF models slim nets
This commit is contained in:
112
nets/cifarnet.py
Normal file
112
nets/cifarnet.py
Normal file
@@ -0,0 +1,112 @@
|
||||
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
"""Contains a variant of the CIFAR-10 model definition."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import tensorflow as tf
|
||||
|
||||
slim = tf.contrib.slim
|
||||
|
||||
trunc_normal = lambda stddev: tf.truncated_normal_initializer(stddev=stddev)
|
||||
|
||||
|
||||
def cifarnet(images, num_classes=10, is_training=False,
|
||||
dropout_keep_prob=0.5,
|
||||
prediction_fn=slim.softmax,
|
||||
scope='CifarNet'):
|
||||
"""Creates a variant of the CifarNet model.
|
||||
|
||||
Note that since the output is a set of 'logits', the values fall in the
|
||||
interval of (-infinity, infinity). Consequently, to convert the outputs to a
|
||||
probability distribution over the characters, one will need to convert them
|
||||
using the softmax function:
|
||||
|
||||
logits = cifarnet.cifarnet(images, is_training=False)
|
||||
probabilities = tf.nn.softmax(logits)
|
||||
predictions = tf.argmax(logits, 1)
|
||||
|
||||
Args:
|
||||
images: A batch of `Tensors` of size [batch_size, height, width, channels].
|
||||
num_classes: the number of classes in the dataset.
|
||||
is_training: specifies whether or not we're currently training the model.
|
||||
This variable will determine the behaviour of the dropout layer.
|
||||
dropout_keep_prob: the percentage of activation values that are retained.
|
||||
prediction_fn: a function to get predictions out of logits.
|
||||
scope: Optional variable_scope.
|
||||
|
||||
Returns:
|
||||
logits: the pre-softmax activations, a tensor of size
|
||||
[batch_size, `num_classes`]
|
||||
end_points: a dictionary from components of the network to the corresponding
|
||||
activation.
|
||||
"""
|
||||
end_points = {}
|
||||
|
||||
with tf.variable_scope(scope, 'CifarNet', [images, num_classes]):
|
||||
net = slim.conv2d(images, 64, [5, 5], scope='conv1')
|
||||
end_points['conv1'] = net
|
||||
net = slim.max_pool2d(net, [2, 2], 2, scope='pool1')
|
||||
end_points['pool1'] = net
|
||||
net = tf.nn.lrn(net, 4, bias=1.0, alpha=0.001/9.0, beta=0.75, name='norm1')
|
||||
net = slim.conv2d(net, 64, [5, 5], scope='conv2')
|
||||
end_points['conv2'] = net
|
||||
net = tf.nn.lrn(net, 4, bias=1.0, alpha=0.001/9.0, beta=0.75, name='norm2')
|
||||
net = slim.max_pool2d(net, [2, 2], 2, scope='pool2')
|
||||
end_points['pool2'] = net
|
||||
net = slim.flatten(net)
|
||||
end_points['Flatten'] = net
|
||||
net = slim.fully_connected(net, 384, scope='fc3')
|
||||
end_points['fc3'] = net
|
||||
net = slim.dropout(net, dropout_keep_prob, is_training=is_training,
|
||||
scope='dropout3')
|
||||
net = slim.fully_connected(net, 192, scope='fc4')
|
||||
end_points['fc4'] = net
|
||||
logits = slim.fully_connected(net, num_classes,
|
||||
biases_initializer=tf.zeros_initializer,
|
||||
weights_initializer=trunc_normal(1/192.0),
|
||||
weights_regularizer=None,
|
||||
activation_fn=None,
|
||||
scope='logits')
|
||||
|
||||
end_points['Logits'] = logits
|
||||
end_points['Predictions'] = prediction_fn(logits, scope='Predictions')
|
||||
|
||||
return logits, end_points
|
||||
cifarnet.default_image_size = 32
|
||||
|
||||
|
||||
def cifarnet_arg_scope(weight_decay=0.004):
|
||||
"""Defines the default cifarnet argument scope.
|
||||
|
||||
Args:
|
||||
weight_decay: The weight decay to use for regularizing the model.
|
||||
|
||||
Returns:
|
||||
An `arg_scope` to use for the inception v3 model.
|
||||
"""
|
||||
with slim.arg_scope(
|
||||
[slim.conv2d],
|
||||
weights_initializer=tf.truncated_normal_initializer(stddev=5e-2),
|
||||
activation_fn=tf.nn.relu):
|
||||
with slim.arg_scope(
|
||||
[slim.fully_connected],
|
||||
biases_initializer=tf.constant_initializer(0.1),
|
||||
weights_initializer=trunc_normal(0.04),
|
||||
weights_regularizer=slim.l2_regularizer(weight_decay),
|
||||
activation_fn=tf.nn.relu) as sc:
|
||||
return sc
|
||||
Reference in New Issue
Block a user