mirror of
https://github.com/ArthurDanjou/handson-ml3.git
synced 2026-02-02 04:57:51 +01:00
Add TF models slim nets
This commit is contained in:
125
nets/alexnet.py
Normal file
125
nets/alexnet.py
Normal file
@@ -0,0 +1,125 @@
|
||||
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
"""Contains a model definition for AlexNet.
|
||||
|
||||
This work was first described in:
|
||||
ImageNet Classification with Deep Convolutional Neural Networks
|
||||
Alex Krizhevsky, Ilya Sutskever and Geoffrey E. Hinton
|
||||
|
||||
and later refined in:
|
||||
One weird trick for parallelizing convolutional neural networks
|
||||
Alex Krizhevsky, 2014
|
||||
|
||||
Here we provide the implementation proposed in "One weird trick" and not
|
||||
"ImageNet Classification", as per the paper, the LRN layers have been removed.
|
||||
|
||||
Usage:
|
||||
with slim.arg_scope(alexnet.alexnet_v2_arg_scope()):
|
||||
outputs, end_points = alexnet.alexnet_v2(inputs)
|
||||
|
||||
@@alexnet_v2
|
||||
"""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import tensorflow as tf
|
||||
|
||||
slim = tf.contrib.slim
|
||||
trunc_normal = lambda stddev: tf.truncated_normal_initializer(0.0, stddev)
|
||||
|
||||
|
||||
def alexnet_v2_arg_scope(weight_decay=0.0005):
|
||||
with slim.arg_scope([slim.conv2d, slim.fully_connected],
|
||||
activation_fn=tf.nn.relu,
|
||||
biases_initializer=tf.constant_initializer(0.1),
|
||||
weights_regularizer=slim.l2_regularizer(weight_decay)):
|
||||
with slim.arg_scope([slim.conv2d], padding='SAME'):
|
||||
with slim.arg_scope([slim.max_pool2d], padding='VALID') as arg_sc:
|
||||
return arg_sc
|
||||
|
||||
|
||||
def alexnet_v2(inputs,
|
||||
num_classes=1000,
|
||||
is_training=True,
|
||||
dropout_keep_prob=0.5,
|
||||
spatial_squeeze=True,
|
||||
scope='alexnet_v2'):
|
||||
"""AlexNet version 2.
|
||||
|
||||
Described in: http://arxiv.org/pdf/1404.5997v2.pdf
|
||||
Parameters from:
|
||||
github.com/akrizhevsky/cuda-convnet2/blob/master/layers/
|
||||
layers-imagenet-1gpu.cfg
|
||||
|
||||
Note: All the fully_connected layers have been transformed to conv2d layers.
|
||||
To use in classification mode, resize input to 224x224. To use in fully
|
||||
convolutional mode, set spatial_squeeze to false.
|
||||
The LRN layers have been removed and change the initializers from
|
||||
random_normal_initializer to xavier_initializer.
|
||||
|
||||
Args:
|
||||
inputs: a tensor of size [batch_size, height, width, channels].
|
||||
num_classes: number of predicted classes.
|
||||
is_training: whether or not the model is being trained.
|
||||
dropout_keep_prob: the probability that activations are kept in the dropout
|
||||
layers during training.
|
||||
spatial_squeeze: whether or not should squeeze the spatial dimensions of the
|
||||
outputs. Useful to remove unnecessary dimensions for classification.
|
||||
scope: Optional scope for the variables.
|
||||
|
||||
Returns:
|
||||
the last op containing the log predictions and end_points dict.
|
||||
"""
|
||||
with tf.variable_scope(scope, 'alexnet_v2', [inputs]) as sc:
|
||||
end_points_collection = sc.name + '_end_points'
|
||||
# Collect outputs for conv2d, fully_connected and max_pool2d.
|
||||
with slim.arg_scope([slim.conv2d, slim.fully_connected, slim.max_pool2d],
|
||||
outputs_collections=[end_points_collection]):
|
||||
net = slim.conv2d(inputs, 64, [11, 11], 4, padding='VALID',
|
||||
scope='conv1')
|
||||
net = slim.max_pool2d(net, [3, 3], 2, scope='pool1')
|
||||
net = slim.conv2d(net, 192, [5, 5], scope='conv2')
|
||||
net = slim.max_pool2d(net, [3, 3], 2, scope='pool2')
|
||||
net = slim.conv2d(net, 384, [3, 3], scope='conv3')
|
||||
net = slim.conv2d(net, 384, [3, 3], scope='conv4')
|
||||
net = slim.conv2d(net, 256, [3, 3], scope='conv5')
|
||||
net = slim.max_pool2d(net, [3, 3], 2, scope='pool5')
|
||||
|
||||
# Use conv2d instead of fully_connected layers.
|
||||
with slim.arg_scope([slim.conv2d],
|
||||
weights_initializer=trunc_normal(0.005),
|
||||
biases_initializer=tf.constant_initializer(0.1)):
|
||||
net = slim.conv2d(net, 4096, [5, 5], padding='VALID',
|
||||
scope='fc6')
|
||||
net = slim.dropout(net, dropout_keep_prob, is_training=is_training,
|
||||
scope='dropout6')
|
||||
net = slim.conv2d(net, 4096, [1, 1], scope='fc7')
|
||||
net = slim.dropout(net, dropout_keep_prob, is_training=is_training,
|
||||
scope='dropout7')
|
||||
net = slim.conv2d(net, num_classes, [1, 1],
|
||||
activation_fn=None,
|
||||
normalizer_fn=None,
|
||||
biases_initializer=tf.zeros_initializer,
|
||||
scope='fc8')
|
||||
|
||||
# Convert end_points_collection into a end_point dict.
|
||||
end_points = dict(tf.get_collection(end_points_collection))
|
||||
if spatial_squeeze:
|
||||
net = tf.squeeze(net, [1, 2], name='fc8/squeezed')
|
||||
end_points[sc.name + '/fc8'] = net
|
||||
return net, end_points
|
||||
alexnet_v2.default_image_size = 224
|
||||
Reference in New Issue
Block a user