mirror of
https://github.com/ArthurDanjou/handson-ml3.git
synced 2026-01-14 12:14:36 +01:00
Update notebooks 1 to 8 to latest library versions (in particular Scikit-Learn 0.20)
This commit is contained in:
@@ -65,7 +65,7 @@
|
||||
"\n",
|
||||
"# Ignore useless warnings (see SciPy issue #5998)\n",
|
||||
"import warnings\n",
|
||||
"warnings.filterwarnings(action=\"ignore\", module=\"scipy\", message=\"^internal gelsd\")"
|
||||
"warnings.filterwarnings(action=\"ignore\", message=\"^internal gelsd\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -384,7 +384,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from sklearn.linear_model import SGDRegressor\n",
|
||||
"sgd_reg = SGDRegressor(max_iter=50, penalty=None, eta0=0.1, random_state=42)\n",
|
||||
"sgd_reg = SGDRegressor(max_iter=50, tol=-np.infty, penalty=None, eta0=0.1, random_state=42)\n",
|
||||
"sgd_reg.fit(X, y.ravel())"
|
||||
]
|
||||
},
|
||||
@@ -727,7 +727,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"sgd_reg = SGDRegressor(max_iter=5, penalty=\"l2\", random_state=42)\n",
|
||||
"sgd_reg = SGDRegressor(max_iter=50, tol=-np.infty, penalty=\"l2\", random_state=42)\n",
|
||||
"sgd_reg.fit(X, y.ravel())\n",
|
||||
"sgd_reg.predict([[1.5]])"
|
||||
]
|
||||
@@ -810,6 +810,7 @@
|
||||
"X_val_poly_scaled = poly_scaler.transform(X_val)\n",
|
||||
"\n",
|
||||
"sgd_reg = SGDRegressor(max_iter=1,\n",
|
||||
" tol=-np.infty,\n",
|
||||
" penalty=None,\n",
|
||||
" eta0=0.0005,\n",
|
||||
" warm_start=True,\n",
|
||||
@@ -854,7 +855,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from sklearn.base import clone\n",
|
||||
"sgd_reg = SGDRegressor(max_iter=1, warm_start=True, penalty=None,\n",
|
||||
"sgd_reg = SGDRegressor(max_iter=1, tol=-np.infty, warm_start=True, penalty=None,\n",
|
||||
" learning_rate=\"constant\", eta0=0.0005, random_state=42)\n",
|
||||
"\n",
|
||||
"minimum_val_error = float(\"inf\")\n",
|
||||
@@ -1043,7 +1044,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from sklearn.linear_model import LogisticRegression\n",
|
||||
"log_reg = LogisticRegression(random_state=42)\n",
|
||||
"log_reg = LogisticRegression(solver=\"liblinear\", random_state=42)\n",
|
||||
"log_reg.fit(X, y)"
|
||||
]
|
||||
},
|
||||
@@ -1123,7 +1124,7 @@
|
||||
"X = iris[\"data\"][:, (2, 3)] # petal length, petal width\n",
|
||||
"y = (iris[\"target\"] == 2).astype(np.int)\n",
|
||||
"\n",
|
||||
"log_reg = LogisticRegression(C=10**10, random_state=42)\n",
|
||||
"log_reg = LogisticRegression(solver=\"liblinear\", C=10**10, random_state=42)\n",
|
||||
"log_reg.fit(X, y)\n",
|
||||
"\n",
|
||||
"x0, x1 = np.meshgrid(\n",
|
||||
@@ -1742,7 +1743,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.4"
|
||||
"version": "3.6.6"
|
||||
},
|
||||
"nav_menu": {},
|
||||
"toc": {
|
||||
|
||||
Reference in New Issue
Block a user