diff --git a/13_loading_and_preprocessing_data.ipynb b/13_loading_and_preprocessing_data.ipynb index f5926a4..56b8aae 100644 --- a/13_loading_and_preprocessing_data.ipynb +++ b/13_loading_and_preprocessing_data.ipynb @@ -841,6 +841,13 @@ "y_pred = model.predict(new_set) # or you could just pass a NumPy array" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Warning**: the `mean_squared_error()` function no longer exists. You must now use an instance of the `MeanSquaredError` class instead." + ] + }, { "cell_type": "code", "execution_count": 30, @@ -857,7 +864,7 @@ "source": [ "# extra code – defines the optimizer and loss function for training\n", "optimizer = tf.keras.optimizers.SGD(learning_rate=0.01)\n", - "loss_fn = tf.keras.losses.mean_squared_error\n", + "loss_fn = tf.keras.losses.MeanSquaredError()\n", "\n", "n_epochs = 5\n", "for epoch in range(n_epochs):\n", @@ -898,7 +905,7 @@ " optimizer.apply_gradients(zip(gradients, model.trainable_variables))\n", "\n", "optimizer = tf.keras.optimizers.SGD(learning_rate=0.01)\n", - "loss_fn = tf.keras.losses.mean_squared_error\n", + "loss_fn = tf.keras.losses.MeanSquaredError()\n", "for epoch in range(n_epochs):\n", " print(\"\\rEpoch {}/{}\".format(epoch + 1, n_epochs), end=\"\")\n", " train_one_epoch(model, optimizer, loss_fn, train_set)" @@ -2719,10 +2726,10 @@ "tf.random.set_seed(42)\n", "np.random.seed(42)\n", "X_train_num = np.random.rand(10_000, 8)\n", - "X_train_cat = np.random.choice(ocean_prox, size=10_000)\n", + "X_train_cat = np.random.choice(ocean_prox, size=10_000).astype(object)\n", "y_train = np.random.rand(10_000, 1)\n", "X_valid_num = np.random.rand(2_000, 8)\n", - "X_valid_cat = np.random.choice(ocean_prox, size=2_000)\n", + "X_valid_cat = np.random.choice(ocean_prox, size=2_000).astype(object)\n", "y_valid = np.random.rand(2_000, 1)\n", "\n", "num_input = tf.keras.layers.Input(shape=[8], name=\"num\")\n", @@ -2768,37 +2775,6 @@ " validation_data=valid_set)" ] }, - { - "cell_type": "code", - "execution_count": 100, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1/5\n", - "313/313 [==============================] - 1s 1ms/step - loss: 0.0829 - val_loss: 0.0830\n", - "Epoch 2/5\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0829 - val_loss: 0.0830\n", - "Epoch 3/5\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0828 - val_loss: 0.0830\n", - "Epoch 4/5\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0828 - val_loss: 0.0829\n", - "Epoch 5/5\n", - "313/313 [==============================] - 0s 1ms/step - loss: 0.0828 - val_loss: 0.0829\n" - ] - } - ], - "source": [ - "# extra code – shows that the dataset can contain dictionaries\n", - "train_set = tf.data.Dataset.from_tensor_slices(\n", - " ({\"num\": X_train_num, \"cat\": X_train_cat}, y_train)).batch(32)\n", - "valid_set = tf.data.Dataset.from_tensor_slices(\n", - " ({\"num\": X_valid_num, \"cat\": X_valid_cat}, y_valid)).batch(32)\n", - "history = model.fit(train_set, epochs=5, validation_data=valid_set)" - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -2808,7 +2784,7 @@ }, { "cell_type": "code", - "execution_count": 101, + "execution_count": 100, "metadata": {}, "outputs": [ { @@ -2819,7 +2795,7 @@ " [6, 2, 1, 2]])>" ] }, - "execution_count": 101, + "execution_count": 100, "metadata": {}, "output_type": "execute_result" } @@ -2833,7 +2809,7 @@ }, { "cell_type": "code", - "execution_count": 102, + "execution_count": 101, "metadata": {}, "outputs": [ { @@ -2842,7 +2818,7 @@ "" ] }, - "execution_count": 102, + "execution_count": 101, "metadata": {}, "output_type": "execute_result" } @@ -2855,7 +2831,7 @@ }, { "cell_type": "code", - "execution_count": 103, + "execution_count": 102, "metadata": {}, "outputs": [ { @@ -2868,7 +2844,7 @@ " 1.0986123 ]], dtype=float32)>" ] }, - "execution_count": 103, + "execution_count": 102, "metadata": {}, "output_type": "execute_result" } @@ -2881,7 +2857,7 @@ }, { "cell_type": "code", - "execution_count": 104, + "execution_count": 103, "metadata": {}, "outputs": [ { @@ -2890,7 +2866,7 @@ "1.3862943611198906" ] }, - "execution_count": 104, + "execution_count": 103, "metadata": {}, "output_type": "execute_result" } @@ -2901,7 +2877,7 @@ }, { "cell_type": "code", - "execution_count": 105, + "execution_count": 104, "metadata": {}, "outputs": [ { @@ -2910,7 +2886,7 @@ "1.0986122886681098" ] }, - "execution_count": 105, + "execution_count": 104, "metadata": {}, "output_type": "execute_result" } @@ -2930,7 +2906,7 @@ }, { "cell_type": "code", - "execution_count": 106, + "execution_count": 105, "metadata": {}, "outputs": [ { @@ -2950,7 +2926,7 @@ " -0.1 , -0.18, -0.13, -0.04, 0.15]], dtype=float32)" ] }, - "execution_count": 106, + "execution_count": 105, "metadata": {}, "output_type": "execute_result" } @@ -2972,7 +2948,7 @@ }, { "cell_type": "code", - "execution_count": 107, + "execution_count": 106, "metadata": {}, "outputs": [], "source": [ @@ -2985,7 +2961,7 @@ }, { "cell_type": "code", - "execution_count": 108, + "execution_count": 107, "metadata": {}, "outputs": [ { @@ -3009,7 +2985,7 @@ }, { "cell_type": "code", - "execution_count": 109, + "execution_count": 108, "metadata": {}, "outputs": [ { @@ -3040,7 +3016,7 @@ }, { "cell_type": "code", - "execution_count": 110, + "execution_count": 109, "metadata": {}, "outputs": [], "source": [ @@ -3052,7 +3028,7 @@ }, { "cell_type": "code", - "execution_count": 111, + "execution_count": 110, "metadata": {}, "outputs": [], "source": [ @@ -3064,7 +3040,7 @@ }, { "cell_type": "code", - "execution_count": 112, + "execution_count": 111, "metadata": {}, "outputs": [], "source": [ @@ -3075,7 +3051,7 @@ }, { "cell_type": "code", - "execution_count": 113, + "execution_count": 112, "metadata": {}, "outputs": [ { @@ -3151,7 +3127,7 @@ }, { "cell_type": "code", - "execution_count": 114, + "execution_count": 113, "metadata": {}, "outputs": [], "source": [ @@ -3162,7 +3138,7 @@ }, { "cell_type": "code", - "execution_count": 115, + "execution_count": 114, "metadata": {}, "outputs": [ { @@ -3184,7 +3160,7 @@ }, { "cell_type": "code", - "execution_count": 116, + "execution_count": 115, "metadata": {}, "outputs": [], "source": [ @@ -3201,7 +3177,7 @@ }, { "cell_type": "code", - "execution_count": 117, + "execution_count": 116, "metadata": {}, "outputs": [ { @@ -3244,7 +3220,7 @@ }, { "cell_type": "code", - "execution_count": 118, + "execution_count": 117, "metadata": {}, "outputs": [], "source": [ @@ -3265,7 +3241,7 @@ }, { "cell_type": "code", - "execution_count": 119, + "execution_count": 118, "metadata": {}, "outputs": [], "source": [ @@ -3284,7 +3260,7 @@ }, { "cell_type": "code", - "execution_count": 120, + "execution_count": 119, "metadata": {}, "outputs": [], "source": [ @@ -3314,7 +3290,7 @@ }, { "cell_type": "code", - "execution_count": 121, + "execution_count": 120, "metadata": {}, "outputs": [], "source": [ @@ -3325,7 +3301,7 @@ }, { "cell_type": "code", - "execution_count": 122, + "execution_count": 121, "metadata": {}, "outputs": [ { @@ -3352,7 +3328,7 @@ }, { "cell_type": "code", - "execution_count": 123, + "execution_count": 122, "metadata": {}, "outputs": [], "source": [ @@ -3377,7 +3353,7 @@ }, { "cell_type": "code", - "execution_count": 124, + "execution_count": 123, "metadata": {}, "outputs": [ { @@ -3441,7 +3417,7 @@ "" ] }, - "execution_count": 124, + "execution_count": 123, "metadata": {}, "output_type": "execute_result" } @@ -3460,7 +3436,7 @@ }, { "cell_type": "code", - "execution_count": 125, + "execution_count": 124, "metadata": {}, "outputs": [ { @@ -3516,7 +3492,7 @@ }, { "cell_type": "code", - "execution_count": 126, + "execution_count": 125, "metadata": {}, "outputs": [ { @@ -3534,7 +3510,7 @@ "PosixPath('datasets/aclImdb')" ] }, - "execution_count": 126, + "execution_count": 125, "metadata": {}, "output_type": "execute_result" } @@ -3559,7 +3535,7 @@ }, { "cell_type": "code", - "execution_count": 127, + "execution_count": 126, "metadata": {}, "outputs": [], "source": [ @@ -3582,7 +3558,7 @@ }, { "cell_type": "code", - "execution_count": 128, + "execution_count": 127, "metadata": {}, "outputs": [ { @@ -3636,7 +3612,7 @@ }, { "cell_type": "code", - "execution_count": 129, + "execution_count": 128, "metadata": {}, "outputs": [ { @@ -3645,7 +3621,7 @@ "(12500, 12500, 12500, 12500)" ] }, - "execution_count": 129, + "execution_count": 128, "metadata": {}, "output_type": "execute_result" } @@ -3672,7 +3648,7 @@ }, { "cell_type": "code", - "execution_count": 130, + "execution_count": 129, "metadata": {}, "outputs": [], "source": [ @@ -3701,7 +3677,7 @@ }, { "cell_type": "code", - "execution_count": 131, + "execution_count": 130, "metadata": {}, "outputs": [], "source": [ @@ -3719,7 +3695,7 @@ }, { "cell_type": "code", - "execution_count": 132, + "execution_count": 131, "metadata": {}, "outputs": [ { @@ -3747,7 +3723,7 @@ }, { "cell_type": "code", - "execution_count": 133, + "execution_count": 132, "metadata": {}, "outputs": [ { @@ -3778,7 +3754,7 @@ }, { "cell_type": "code", - "execution_count": 134, + "execution_count": 133, "metadata": {}, "outputs": [], "source": [ @@ -3794,7 +3770,7 @@ }, { "cell_type": "code", - "execution_count": 135, + "execution_count": 134, "metadata": {}, "outputs": [ { @@ -3818,7 +3794,7 @@ }, { "cell_type": "code", - "execution_count": 136, + "execution_count": 135, "metadata": {}, "outputs": [ { @@ -3835,7 +3811,7 @@ }, { "cell_type": "code", - "execution_count": 137, + "execution_count": 136, "metadata": {}, "outputs": [], "source": [ @@ -3864,7 +3840,7 @@ }, { "cell_type": "code", - "execution_count": 138, + "execution_count": 137, "metadata": {}, "outputs": [], "source": [ @@ -3884,7 +3860,7 @@ }, { "cell_type": "code", - "execution_count": 139, + "execution_count": 138, "metadata": {}, "outputs": [ { @@ -3893,7 +3869,7 @@ "['[UNK]', 'the', 'and', 'a', 'of', 'to', 'is', 'in', 'it', 'i']" ] }, - "execution_count": 139, + "execution_count": 138, "metadata": {}, "output_type": "execute_result" } @@ -3918,7 +3894,7 @@ }, { "cell_type": "code", - "execution_count": 140, + "execution_count": 139, "metadata": {}, "outputs": [ { @@ -3943,7 +3919,7 @@ "" ] }, - "execution_count": 140, + "execution_count": 139, "metadata": {}, "output_type": "execute_result" } @@ -3984,7 +3960,7 @@ }, { "cell_type": "code", - "execution_count": 141, + "execution_count": 140, "metadata": {}, "outputs": [ { @@ -3995,7 +3971,7 @@ " [6. , 0. , 0. ]], dtype=float32)>" ] }, - "execution_count": 141, + "execution_count": 140, "metadata": {}, "output_type": "execute_result" } @@ -4021,7 +3997,7 @@ }, { "cell_type": "code", - "execution_count": 142, + "execution_count": 141, "metadata": {}, "outputs": [ { @@ -4030,7 +4006,7 @@ "" ] }, - "execution_count": 142, + "execution_count": 141, "metadata": {}, "output_type": "execute_result" } @@ -4048,7 +4024,7 @@ }, { "cell_type": "code", - "execution_count": 143, + "execution_count": 142, "metadata": {}, "outputs": [ { @@ -4057,7 +4033,7 @@ "" ] }, - "execution_count": 143, + "execution_count": 142, "metadata": {}, "output_type": "execute_result" } @@ -4075,7 +4051,7 @@ }, { "cell_type": "code", - "execution_count": 144, + "execution_count": 143, "metadata": {}, "outputs": [], "source": [ @@ -4107,7 +4083,7 @@ }, { "cell_type": "code", - "execution_count": 145, + "execution_count": 144, "metadata": {}, "outputs": [ { @@ -4132,7 +4108,7 @@ "" ] }, - "execution_count": 145, + "execution_count": 144, "metadata": {}, "output_type": "execute_result" } @@ -4160,7 +4136,7 @@ }, { "cell_type": "code", - "execution_count": 146, + "execution_count": 145, "metadata": {}, "outputs": [], "source": [ @@ -4172,7 +4148,7 @@ }, { "cell_type": "code", - "execution_count": 147, + "execution_count": 146, "metadata": {}, "outputs": [ { @@ -4214,7 +4190,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.6" + "version": "3.9.10" }, "nav_menu": { "height": "264px",