Add some section headers

This commit is contained in:
Aurélien Geron
2021-10-03 00:14:44 +13:00
parent 2bd68d6348
commit 6b821335c0
3 changed files with 239 additions and 26 deletions

View File

@@ -83,7 +83,14 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# Get the data"
"# Get the Data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Download the Data"
]
},
{
@@ -132,6 +139,13 @@
" return pd.read_csv(csv_path)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Take a Quick Look at the Data Structure"
]
},
{
"cell_type": "code",
"execution_count": 5,
@@ -182,6 +196,13 @@
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create a Test Set"
]
},
{
"cell_type": "code",
"execution_count": 10,
@@ -443,7 +464,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# Discover and visualize the data to gain insights"
"# Discover and Visualize the Data to Gain Insights"
]
},
{
@@ -455,6 +476,13 @@
"housing = strat_train_set.copy()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Visualizing Geographical Data"
]
},
{
"cell_type": "code",
"execution_count": 33,
@@ -540,6 +568,13 @@
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Looking for Correlations"
]
},
{
"cell_type": "code",
"execution_count": 38,
@@ -585,6 +620,13 @@
"save_fig(\"income_vs_house_value_scatterplot\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Experimenting with Attribute Combinations"
]
},
{
"cell_type": "code",
"execution_count": 42,
@@ -631,7 +673,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# Prepare the data for Machine Learning algorithms"
"# Prepare the Data for Machine Learning Algorithms"
]
},
{
@@ -644,6 +686,29 @@
"housing_labels = strat_train_set[\"median_house_value\"].copy()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data Cleaning"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In the book 3 options are listed:\n",
"\n",
"```python\n",
"housing.dropna(subset=[\"total_bedrooms\"]) # option 1\n",
"housing.drop(\"total_bedrooms\", axis=1) # option 2\n",
"median = housing[\"total_bedrooms\"].median() # option 3\n",
"housing[\"total_bedrooms\"].fillna(median, inplace=True)\n",
"```\n",
"\n",
"To demonstrate each of them, let's create a copy of the housing dataset, but keeping only the rows that contain at least one null. Then it will be easier to visualize exactly what each option does:"
]
},
{
"cell_type": "code",
"execution_count": 47,
@@ -815,6 +880,13 @@
"housing_tr.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Handling Text and Categorical Attributes"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -910,6 +982,13 @@
"cat_encoder.categories_"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Custom Transformers"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -985,6 +1064,13 @@
"housing_extra_attribs.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Transformation Pipelines"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -1154,7 +1240,14 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# Select and train a model "
"# Select and Train a Model"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Training and Evaluating on the Training Set"
]
},
{
@@ -1269,7 +1362,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# Fine-tune your model"
"## Better Evaluation Using Cross-Validation"
]
},
{
@@ -1382,6 +1475,20 @@
"svm_rmse"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Fine-Tune Your Model"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Grid Search"
]
},
{
"cell_type": "code",
"execution_count": 99,
@@ -1457,6 +1564,13 @@
"pd.DataFrame(grid_search.cv_results_)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Randomized Search"
]
},
{
"cell_type": "code",
"execution_count": 104,
@@ -1488,6 +1602,13 @@
" print(np.sqrt(-mean_score), params)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Analyze the Best Models and Their Errors"
]
},
{
"cell_type": "code",
"execution_count": 106,
@@ -1512,6 +1633,13 @@
"sorted(zip(feature_importances, attributes), reverse=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Evaluate Your System on the Test Set"
]
},
{
"cell_type": "code",
"execution_count": 108,