From 3db31444cdeda1e91697ffda155a3d77bd94a31b Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Aur=C3=A9lien=20Geron?= Date: Mon, 10 Jun 2019 10:48:00 +0800 Subject: [PATCH] SGD now defaults to lr=0.01 so use 1e-3 explicitely --- 11_training_deep_neural_networks.ipynb | 32 +++++++++++++++++--------- 1 file changed, 21 insertions(+), 11 deletions(-) diff --git a/11_training_deep_neural_networks.ipynb b/11_training_deep_neural_networks.ipynb index ea8f71d..a9f798f 100644 --- a/11_training_deep_neural_networks.ipynb +++ b/11_training_deep_neural_networks.ipynb @@ -511,7 +511,8 @@ "metadata": {}, "outputs": [], "source": [ - "model.compile(loss=\"sparse_categorical_crossentropy\", optimizer=\"sgd\",\n", + "model.compile(loss=\"sparse_categorical_crossentropy\",\n", + " optimizer=keras.optimizers.SGD(lr=1e-3),\n", " metrics=[\"accuracy\"])" ] }, @@ -582,7 +583,8 @@ "metadata": {}, "outputs": [], "source": [ - "model.compile(loss=\"sparse_categorical_crossentropy\", optimizer=\"sgd\",\n", + "model.compile(loss=\"sparse_categorical_crossentropy\",\n", + " optimizer=keras.optimizers.SGD(lr=1e-3),\n", " metrics=[\"accuracy\"])" ] }, @@ -661,7 +663,8 @@ "metadata": {}, "outputs": [], "source": [ - "model.compile(loss=\"sparse_categorical_crossentropy\", optimizer=\"sgd\",\n", + "model.compile(loss=\"sparse_categorical_crossentropy\",\n", + " optimizer=keras.optimizers.SGD(lr=1e-3),\n", " metrics=[\"accuracy\"])" ] }, @@ -707,7 +710,8 @@ "metadata": {}, "outputs": [], "source": [ - "model.compile(loss=\"sparse_categorical_crossentropy\", optimizer=\"sgd\",\n", + "model.compile(loss=\"sparse_categorical_crossentropy\",\n", + " optimizer=keras.optimizers.SGD(lr=1e-3),\n", " metrics=[\"accuracy\"])" ] }, @@ -866,8 +870,9 @@ "metadata": {}, "outputs": [], "source": [ - "model_A.compile(loss=\"sparse_categorical_crossentropy\", optimizer=\"sgd\",\n", - " metrics=[\"accuracy\"])" + "model_A.compile(loss=\"sparse_categorical_crossentropy\",\n", + " optimizer=keras.optimizers.SGD(lr=1e-3),\n", + " metrics=[\"accuracy\"])" ] }, { @@ -908,8 +913,9 @@ "metadata": {}, "outputs": [], "source": [ - "model_B.compile(loss=\"binary_crossentropy\", optimizer=\"sgd\",\n", - " metrics=[\"accuracy\"])" + "model_B.compile(loss=\"binary_crossentropy\",\n", + " optimizer=keras.optimizers.SGD(lr=1e-3),\n", + " metrics=[\"accuracy\"])" ] }, { @@ -961,7 +967,8 @@ "for layer in model_B_on_A.layers[:-1]:\n", " layer.trainable = False\n", "\n", - "model_B_on_A.compile(loss=\"binary_crossentropy\", optimizer=\"sgd\",\n", + "model_B_on_A.compile(loss=\"binary_crossentropy\",\n", + " optimizer=keras.optimizers.SGD(lr=1e-3),\n", " metrics=[\"accuracy\"])" ] }, @@ -977,7 +984,8 @@ "for layer in model_B_on_A.layers[:-1]:\n", " layer.trainable = True\n", "\n", - "model_B_on_A.compile(loss=\"binary_crossentropy\", optimizer=\"sgd\",\n", + "model_B_on_A.compile(loss=\"binary_crossentropy\",\n", + " optimizer=keras.optimizers.SGD(lr=1e-3),\n", " metrics=[\"accuracy\"])\n", "history = model_B_on_A.fit(X_train_B, y_train_B, epochs=16,\n", " validation_data=(X_valid_B, y_valid_B))" @@ -1638,7 +1646,9 @@ " keras.layers.Dense(100, activation=\"selu\", kernel_initializer=\"lecun_normal\"),\n", " keras.layers.Dense(10, activation=\"softmax\")\n", "])\n", - "model.compile(loss=\"sparse_categorical_crossentropy\", optimizer=\"sgd\", metrics=[\"accuracy\"])" + "model.compile(loss=\"sparse_categorical_crossentropy\",\n", + " optimizer=keras.optimizers.SGD(lr=1e-3),\n", + " metrics=[\"accuracy\"])" ] }, {