Use as_frame=False when calling fetch_openml()

This commit is contained in:
Aurélien Geron
2021-03-02 09:29:06 +13:00
parent 5663779ae8
commit 346dfe6d1e
4 changed files with 35 additions and 7 deletions

View File

@@ -969,6 +969,13 @@
"If the dataset does not fit in memory, the simplest option is to use the `memmap` class, just like we did for incremental PCA in the previous chapter. First let's load MNIST:"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Warning:** since Scikit-Learn 0.24, `fetch_openml()` returns a Pandas `DataFrame` by default. To avoid this and keep the same code as in the book, we use `as_frame=False`."
]
},
{
"cell_type": "code",
"execution_count": 46,
@@ -978,7 +985,7 @@
"import urllib.request\n",
"from sklearn.datasets import fetch_openml\n",
"\n",
"mnist = fetch_openml('mnist_784', version=1)\n",
"mnist = fetch_openml('mnist_784', version=1, as_frame=False)\n",
"mnist.target = mnist.target.astype(np.int64)"
]
},