mirror of
https://github.com/ArthurDanjou/handson-ml3.git
synced 2026-01-14 12:14:36 +01:00
Update notebooks to latest nbformat
This commit is contained in:
@@ -1756,9 +1756,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 97,
|
||||
"metadata": {
|
||||
"scrolled": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"grades >= 5"
|
||||
@@ -1978,9 +1976,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 110,
|
||||
"metadata": {
|
||||
"scrolled": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"bonus_points.interpolate(axis=1)"
|
||||
@@ -2242,9 +2238,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 125,
|
||||
"metadata": {
|
||||
"scrolled": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"much_data = np.fromfunction(lambda x,y: (x+y*y)%17*11, (10000, 26))\n",
|
||||
@@ -2264,9 +2258,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 126,
|
||||
"metadata": {
|
||||
"scrolled": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"large_df.head()"
|
||||
@@ -2298,9 +2290,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 128,
|
||||
"metadata": {
|
||||
"scrolled": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"large_df.info()"
|
||||
@@ -2322,9 +2312,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 129,
|
||||
"metadata": {
|
||||
"scrolled": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"large_df.describe()"
|
||||
@@ -2775,9 +2763,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# What next?\n",
|
||||
"As you probably noticed by now, pandas is quite a large library with *many* features. Although we went through the most important features, there is still a lot to discover. Probably the best way to learn more is to get your hands dirty with some real-life data. It is also a good idea to go through pandas' excellent [documentation](http://pandas.pydata.org/pandas-docs/stable/index.html), in particular the [Cookbook](http://pandas.pydata.org/pandas-docs/stable/cookbook.html)."
|
||||
@@ -2807,7 +2793,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.7.4"
|
||||
"version": "3.7.6"
|
||||
},
|
||||
"toc": {
|
||||
"toc_cell": false,
|
||||
@@ -2818,5 +2804,5 @@
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 1
|
||||
"nbformat_minor": 4
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user