mirror of
https://github.com/ArthurDanjou/handson-ml3.git
synced 2026-01-14 12:14:36 +01:00
Replace lr with learning_rate in Keras optimizers, fixes #456
This commit is contained in:
@@ -559,7 +559,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"model.compile(loss=\"mse\", optimizer=keras.optimizers.SGD(lr=1e-3))"
|
||||
"model.compile(loss=\"mse\", optimizer=keras.optimizers.SGD(learning_rate=1e-3))"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -601,7 +601,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"optimizer = keras.optimizers.Nadam(lr=0.01)\n",
|
||||
"optimizer = keras.optimizers.Nadam(learning_rate=0.01)\n",
|
||||
"loss_fn = keras.losses.mean_squared_error\n",
|
||||
"\n",
|
||||
"n_epochs = 5\n",
|
||||
@@ -637,7 +637,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"optimizer = keras.optimizers.Nadam(lr=0.01)\n",
|
||||
"optimizer = keras.optimizers.Nadam(learning_rate=0.01)\n",
|
||||
"loss_fn = keras.losses.mean_squared_error\n",
|
||||
"\n",
|
||||
"@tf.function\n",
|
||||
@@ -674,7 +674,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"optimizer = keras.optimizers.Nadam(lr=0.01)\n",
|
||||
"optimizer = keras.optimizers.Nadam(learning_rate=0.01)\n",
|
||||
"loss_fn = keras.losses.mean_squared_error\n",
|
||||
"\n",
|
||||
"@tf.function\n",
|
||||
@@ -1687,7 +1687,7 @@
|
||||
" keras.layers.Dense(1)\n",
|
||||
"])\n",
|
||||
"model.compile(loss=\"mse\",\n",
|
||||
" optimizer=keras.optimizers.SGD(lr=1e-3),\n",
|
||||
" optimizer=keras.optimizers.SGD(learning_rate=1e-3),\n",
|
||||
" metrics=[\"accuracy\"])\n",
|
||||
"model.fit(dataset, steps_per_epoch=len(X_train) // batch_size, epochs=5)"
|
||||
]
|
||||
@@ -1824,7 +1824,7 @@
|
||||
" keras.layers.Lambda(lambda images: tf.cast(images, tf.float32)),\n",
|
||||
" keras.layers.Dense(10, activation=\"softmax\")])\n",
|
||||
"model.compile(loss=\"sparse_categorical_crossentropy\",\n",
|
||||
" optimizer=keras.optimizers.SGD(lr=1e-3),\n",
|
||||
" optimizer=keras.optimizers.SGD(learning_rate=1e-3),\n",
|
||||
" metrics=[\"accuracy\"])\n",
|
||||
"model.fit(mnist_train, steps_per_epoch=60000 // 32, epochs=5)"
|
||||
]
|
||||
|
||||
Reference in New Issue
Block a user