mirror of
https://github.com/ArthurDanjou/breast-cancer-detection.git
synced 2026-01-14 11:54:10 +01:00
379 lines
179 KiB
Plaintext
379 lines
179 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 60,
|
|
"id": "4e6f6cb1",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from sklearn.model_selection import train_test_split\n",
|
|
"from sklearn.neighbors import KNeighborsClassifier\n",
|
|
"from sklearn.model_selection import cross_val_score\n",
|
|
"from sklearn.metrics import accuracy_score, f1_score, recall_score, classification_report, confusion_matrix, roc_curve\n",
|
|
"from sklearn.preprocessing import StandardScaler\n",
|
|
"\n",
|
|
"import numpy as np\n",
|
|
"import matplotlib.pyplot as plt\n",
|
|
"import pandas as pd"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 61,
|
|
"id": "4dd5223b",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import warnings\n",
|
|
"warnings.filterwarnings('ignore')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 62,
|
|
"id": "c1ab7ec9",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Dataset shape: (116, 10)\n",
|
|
" Age BMI Glucose Insulin HOMA Leptin Adiponectin Resistin \\\n",
|
|
"0 48 23.500000 70 2.707 0.467409 8.8071 9.702400 7.99585 \n",
|
|
"1 83 20.690495 92 3.115 0.706897 8.8438 5.429285 4.06405 \n",
|
|
"2 82 23.124670 91 4.498 1.009651 17.9393 22.432040 9.27715 \n",
|
|
"3 68 21.367521 77 3.226 0.612725 9.8827 7.169560 12.76600 \n",
|
|
"4 86 21.111111 92 3.549 0.805386 6.6994 4.819240 10.57635 \n",
|
|
"\n",
|
|
" MCP.1 Classification \n",
|
|
"0 417.114 1 \n",
|
|
"1 468.786 1 \n",
|
|
"2 554.697 1 \n",
|
|
"3 928.220 1 \n",
|
|
"4 773.920 1 \n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"# fetch dataset \n",
|
|
"data = pd.read_csv(\"dataR2.csv\")\n",
|
|
" \n",
|
|
"# data (as pandas dataframes) \n",
|
|
"X = data.drop(columns='Classification')\n",
|
|
"y = data['Classification'].map({2: 1, 1: 0}) # Map 2 to 1 and 1 to 0, 1 = pacient healthy, 0 = pacient sick\n",
|
|
" \n",
|
|
"print(\"Dataset shape:\", data.shape)\n",
|
|
"print(data.head())"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "a1004c28",
|
|
"metadata": {},
|
|
"source": [
|
|
"# K-NN classifier "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "082c143b",
|
|
"metadata": {},
|
|
"source": [
|
|
"### 1) No curse of dimention "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 63,
|
|
"id": "754dce9b",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Number of samples: 116\n",
|
|
"Number of features: 9\n",
|
|
"Number of classes: 2\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"print(\"Number of samples:\", X.shape[0])\n",
|
|
"print(\"Number of features:\", X.shape[1])\n",
|
|
"print(\"Number of classes:\", len(np.unique(y)))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "01bb817a",
|
|
"metadata": {},
|
|
"source": [
|
|
"Then d is small enough to insure that we are not in the curse of dimention"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "9f74eaee",
|
|
"metadata": {},
|
|
"source": [
|
|
"### 2) train-test split and rescaling of the feature "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "5e67beb4",
|
|
"metadata": {},
|
|
"source": [
|
|
"Feature scaling is important for k-NN, as it is a distance-based algorithm and is sensitive to the scale of the features. This means that if some data are much farther from others due to unscaled features, it can damage the quality of the predictions."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 64,
|
|
"id": "b06c0b07",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # train/test split with 80% training and 20% testing\n",
|
|
"\n",
|
|
"# Feature scaling\n",
|
|
"scaler = StandardScaler()\n",
|
|
"\n",
|
|
"X_train_scaled = scaler.fit_transform(X_train)\n",
|
|
"\n",
|
|
"X_test_scaled = scaler.transform(X_test)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "31d5bc79",
|
|
"metadata": {},
|
|
"source": [
|
|
"### 3) Cross validation to find the best k nearest neighbor"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 65,
|
|
"id": "b2e03ac1",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Number of k values to test: 22\n",
|
|
"The best k for k-NN is k = 21\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"k_scores = []\n",
|
|
"score = []\n",
|
|
"K_list = np.arange(1, X_train_scaled.shape[0] // 4 ) # concidering 1/2 of the samples as neaighbors is large enough for k-NN to don't overfit\n",
|
|
"\n",
|
|
"print(\"Number of k values to test:\", len(K_list))\n",
|
|
"\n",
|
|
"for k in K_list:\n",
|
|
" knn = KNeighborsClassifier(n_neighbors=k)\n",
|
|
" score_f1 = cross_val_score(knn, X_train_scaled, y_train, cv=5, scoring='f1')\n",
|
|
" score_acc = cross_val_score(knn, X_train_scaled, y_train, cv=5, scoring='accuracy')\n",
|
|
" score_recall = cross_val_score(knn, X_train_scaled, y_train, cv=5, scoring='recall')\n",
|
|
" score.append(score_acc.mean())\n",
|
|
" score.append(score_recall.mean())\n",
|
|
" k_scores.append(score_f1.mean())\n",
|
|
"\n",
|
|
"k_scores = np.array(k_scores)\n",
|
|
"\n",
|
|
"k_optimal = K_list[np.argmax(k_scores)]\n",
|
|
"print(\"The best k for k-NN is k =\", k_optimal)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "698d03a8",
|
|
"metadata": {},
|
|
"source": [
|
|
"In k-NN classification, to achieve the best prediction performance, we need to find the optimal number of neighbors that maximizes the evaluation score of our models. Here, we use the $f1\\_score$ from sklearn.metrics, as it provides a good balance between precision (e.g., correctly predicting a sick patient as sick, or a healthy patient as healthy) and recall (e.g., correctly identifying sick patients among all those predicted as sick).\n",
|
|
"\n",
|
|
"To determine this hyperparameter, we use 5-fold cross-validation. We chose 5 folds instead of 10 due to the limited amount of data, as this provides a better balance between the sizes of the training and validation sets. After cross-validation, it turns out that the optimal number of neighbors, $k$, is $k = 21$."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 66,
|
|
"id": "4af329ab",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA1cAAAHWCAYAAACbsXOkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hUxdfA8e/d3fReSSFA6IReQ+9dUIrSRBEVXxEURQWxATbsYgV/ihURVARpgoIC0nvvEHp679ly3z9iIiE97GY34XyeJw/J3rlzz24K9+zMnFFUVVURQgghhBBCCHFLNNYOQAghhBBCCCGqA0muhBBCCCGEEMIMJLkSQgghhBBCCDOQ5EoIIYQQQgghzECSKyGEEEIIIYQwA0muhBBCCCGEEMIMJLkSQgghhBBCCDOQ5EoIIYQQQgghzECSKyGEEEIIIYQwA0muhBCimpszZw6KohAXF2ftUEQ19M0336AoCvv27bN2KEIIYXWSXAkhhChRz549URSFoUOHFjp28eJFFEXh3XffzX9s8+bNKIqCoijs37+/0DkPPPAArq6upV43Lyks6mPhwoX57ZYtW8b48eNp0KABiqLQs2fPcj2/2NhYpk2bRuPGjXFycsLf358OHTowc+ZM0tLSytWXEEKI25vO2gEIIYSoGtasWcP+/ftp27Ztmc+ZM2cOq1evvqXrLliwoFAyFh4eXuD4/v37ad++PfHx8eXqOyEhgXbt2pGSksKDDz5I48aNiY+P58iRIyxYsIDJkyeXKREUQgghQJIrIYQQZVCrVi1SU1OZO3cuq1atKtM5rVq1Ys2aNRw4cIA2bdpU+Np33303vr6+xR7//vvvCQ4ORqPR0KxZs3L1vWjRIi5fvsz27dvp3LlzgWMpKSnY29tXKOaKSE9Px8XFpdKuJ4QQwvxkWqAQQtyGLl26RP369WnWrBnR0dGltndzc+Opp55i9erVHDhwoEzXePzxx/Hy8mLOnDm3GG3JQkJC0Ggq9t/Z+fPn0Wq1dOzYsdAxd3d3HB0dCzy2e/duBg8ejJeXFy4uLrRo0YIPP/ywQJu//vqLbt264eLigqenJ3fddRcnT54s0CZvyuOJEycYN24cXl5edO3aNf/44sWLadu2LU5OTnh7ezNmzBiuXLlS4nP55ZdfUBSFLVu2FDr2+eefoygKx44dAyAqKoqJEydSs2ZNHBwcCAwM5K677uLixYslXqOsEhMT6dChAzVr1uT06dNm6VMIIaoCSa6EEOI2c/78ebp3746bmxubN2+mRo0aZTpv2rRp5UqW3N3dy52QFSUhIYG4uLj8j8TExAr3dbPatWtjNBr5/vvvS237559/0r17d06cOMG0adN477336NWrF2vWrMlvs3HjRgYMGEBMTAxz5sxh+vTp7Nixgy5duhSZuNxzzz1kZGTwxhtvMGnSJABef/117r//fho0aMD777/Pk08+yaZNm+jevTtJSUnFxnfHHXfg6urKTz/9VOjYsmXLaNq0af7I3siRI1mxYgUTJ07ks88+44knniA1NZXLly+X+jqUJi4ujt69exMdHc2WLVto1KjRLfcphBBVhiqEEKJamz17tgqosbGx6smTJ9WgoCC1ffv2akJCQpnO79Gjh9q0aVNVVVV17ty5KqDu379fVVVVjYiIUAH1nXfeyW//999/q4D6888/q0lJSaqXl5d655135h+fMGGC6uLiUua4b/6oXbt2sec0bdpU7dGjR5mel6qqalRUlOrn56cCauPGjdVHH31UXbJkiZqUlFSgncFgUENDQ9XatWuriYmJBY6ZTKb8z1u1aqX6+/ur8fHx+Y8dPnxY1Wg06v3331/ouY0dO7ZAXxcvXlS1Wq36+uuvF3j86NGjqk6nK/T4zcaOHav6+/urBoMh/7HIyEhVo9Gor7zyiqqqqpqYmFjoe3Yrvv76axVQ9+7dq0ZGRqpNmzZV69atq168eNEs/QshRFUiI1dCCHGbOHbsGD169KBOnTps3LgRLy+vcveRN3o1d+7cMrX38PDgySefZNWqVRw8eLDc1wNYvnw5f/75Z/7HDz/8UKF+ilKjRg0OHz7Mo48+SmJiIgsXLmTcuHH4+/vz6quvoqoqAAcPHiQiIoInn3wST0/PAn0oigJAZGQkhw4d4oEHHsDb2zv/eIsWLejXrx/r1q0rdP1HH320wNe//vorJpOJUaNGFRitCwgIoEGDBvz9998lPp/Ro0cTExPD5s2b8x/75ZdfMJlMjB49GgAnJyfs7e3ZvHmzWUcBr169So8ePdDr9WzdupXatWubrW8hhKgqJLkSQojbxNChQ3Fzc2PDhg24u7sXOJaWlkZUVFT+R2xsbJF9VCRZmjZtGp6enhVee9W9e3f69u2b/9GlS5cK9VOcwMBAFixYQGRkJKdPn+ajjz7Cz8+Pl19+mUWLFgG5UymBEgtmXLp0CaDIaXBNmjQhLi6O9PT0Ao+HhoYW+Prs2bOoqkqDBg3w8/Mr8HHy5EliYmJKfC4DBw7Ew8ODZcuW5T+2bNkyWrVqRcOGDQFwcHDgrbfe4vfff6dGjRp0796dt99+m6ioqBL7Ls19991HTEwMW7ZsITg4+Jb6EkKIqkqSKyGEuE2MHDmS8+fPFzny8+677xIYGJj/0b59+2L7yUuWKnP0qjIoikLDhg15/PHH2bp1KxqNxqyjZEVxcnIq8LXJZEJRFNavX19gtC7v4/PPPy+xPwcHB4YNG8aKFSswGAxcu3aN7du3549a5XnyySc5c+YM8+bNw9HRkZdeeokmTZrc0vdnxIgRJCUlFSrwIYQQtxMpxS6EELeJd955B51Ox2OPPYabmxvjxo3LP3b//fcXqFZ3803/jfKSpTlz5jBhwoQyXfvJJ59k/vz5zJ07t9C0OltUt25dvLy8iIyMBKBevXpA7tTKvn37FnlO3jS4oqrjnTp1Cl9f31JLrderVw9VVQkNDc0faSqv0aNH8+2337Jp0yZOnjyJqqqFkqu8az399NM8/fTTnD17llatWvHee++xePHiCl338ccfp379+rz88st4eHjw3HPPVagfIYSoymTkSgghbhOKovC///2Pu+++mwkTJhTYr6pu3brlmnqXt/bolVdeKdO18xKy3377jUOHDt3K0zCr3bt3F5qqB7Bnzx7i4+Pzp/i1adOG0NBQ5s+fX6hiX966rMDAQFq1asW3335boM2xY8f4448/GDx4cKnxjBgxAq1Wy9y5c/P7vfE6ZdkkuW/fvnh7e7Ns2TKWLVtGhw4dCkw/zMjIICsrq8A59erVw83Njezs7PzHIiMjOXXqFHq9vtRr5nnppZd45plnmDVrFgsWLCjzeUIIUV3IyJUQQtxGNBoNixcvZtiwYYwaNYp169bRu3fvcvfj4eHBtGnTyjw1EHKnE37wwQccPnzYrJvlbt26la1btwIQGxtLeno6r732GpC7Xqt79+7Fnvv999/zww8/MHz4cNq2bYu9vT0nT57kq6++wtHRkeeffx7Ifd0WLFjA0KFDadWqFRMnTiQwMJBTp05x/PhxNmzYAOSODg4aNIhOnTrx0EMPkZmZyccff4yHh0eZ1pzVq1eP1157jVmzZnHx4kWGDRuGm5sbERERrFixgkceeYRnnnmmxD7s7OwYMWIES5cuJT09nXfffbfA8TNnztCnTx9GjRpFWFgYOp2OFStWEB0dzZgxY/LbzZo1i2+//ZaIiAjq1KlTaux53nnnHZKTk5kyZQpubm6MHz++zOcKIUSVZ8VKhUIIISrBjaXY82RkZKg9evRQXV1d1V27dpV4/o2l2G+UmJioenh4lFiKvbhYylOK/ca4S2pX1Mfs2bNLPPfIkSPqs88+q7Zp00b19vZWdTqdGhgYqN5zzz3qgQMHCrXftm2b2q9fP9XNzU11cXFRW7RooX788ccF2mzcuFHt0qWL6uTkpLq7u6tDhw5VT5w4Ua7ntnz5crVr166qi4uL6uLiojZu3FidMmWKevr06RKfT54///xTBVRFUdQrV64UOBYXF6dOmTJFbdy4seri4qJ6eHio4eHh6k8//VSg3YQJE1RAjYiIKPFaN5Ziz2M0GtWxY8eqOp1OXblyZZliFkKI6kBR1ZvmHQghhBBCCCGEKDdZcyWEEEIIIYQQZiDJlRBCCCGEEEKYgSRXQgghhBBCCGEGklwJIYQQQgghhBlIciWEEEIIIYQQZiDJlRBCCCGEEEKYgWwiXASTycT169dxc3NDURRrhyOEEEIIIYSwElVVSU1NJSgoCI2m5LEpSa6KcP36dUJCQqwdhhBCCCGEEMJGXLlyhZo1a5bYRpKrIri5uQG5L6C7u7tVY9Hr9fzxxx/0798fOzu72zoOW4jBVuKwhRgkDtuLwVbisIUYbCUOW4jBVuKwhRgkDtuLwVbisIUYbCUOW4jBluIASElJISQkJD9HKIkkV0XImwro7u5uE8mVs7Mz7u7uVv8Bt3YcthCDrcRhCzFIHLYXg63EYQsx2EocthCDrcRhCzFIHLYXg63EYQsx2EocthCDLcVxo7IsF5KCFkIIIYQQQghhBpJcCSGEEEIIIYQZSHIlhBBCCCGEEGYga64qSFVVDAYDRqPRotfR6/XodDqysrIsfi1bj8NcMdjZ2aHVas0YmRBCCCGEEJJcVUhOTg6RkZFkZGRY/FqqqhIQEMCVK1esuueWLcRhrhgURaFmzZq4urqaMTohhBBCCHG7k+SqnEwmExEREWi1WoKCgrC3t7dosmEymUhLS8PV1bXUTcssyRbiMEcMqqoSGxvL1atXadCggYxgCSGEEEIIs5HkqpxycnIwmUyEhITg7Oxs8euZTCZycnJwdHS0enJl7TjMFYOfnx8XL15Er9dLciWEEEIIIcxGClpUkDUTHXFrrDm9UgghhBBCVF+SIQghhBBCCCGEGci0QCGEEEIIcduJTIskMTsRAIPBwHXDdU4mnESny7099nLwItA10JohVhp5LcxHkisrMZpU9kQkEJOahb+bIx1CvdFqZLqaEEIIIYSlRaZFMmTlEHKMOQUe/2z9Z/mf22vtWTNsTbVPKuS1MC+ZFmgF649F0vWtvxj7xS6mLT3E2C920fWtv1h/LNJi13zggQdQFKXQx7lz5wDYunUrQ4cOJSgoCEVRWLlyZal9Go1G3nzzTRo3boyTkxPe3t6Eh4fz5ZdfWux5CCGEEELcqsTsxELJxM1yjDn5oznVmbwW5iXJVSVbfyySyYsPEJmcVeDxqOQsJi8+YNEEa+DAgURGRhb4CA0NBSA9PZ2WLVvy6aeflrm/uXPn8sEHH/Dqq69y4sQJ/v77bx555BGSkpIs9AxyqzUKIYQQQghhi2RaoBmoqkqm3lhqO6NJZfaq46hF9QEowJxVJ+hS3zd/iqDJZCIzx4gux1CoQqGTnbZcle8cHBwICAgo8tigQYMYNGhQmfsCWLVqFY899hj33HNP/mMtW7Ys0MZkMvHuu+/yv//9jytXrlCjRg3+7//+jxdeeAGAo0ePMm3aNHbu3ImzszMjR47k/fffz9/g94EHHiApKYn27dvz6aefYmdnR0REBFeuXOHpp5/mjz/+QKPR0K1bNz788EPq1KlTrucghBBCCCGEuUhyZQaZeiNhL2+45X5UIColi+Zz/ihT+xOvDMDZ3nrfwoCAAP766y8ee+wx/Pz8imwza9YsvvjiCz744AO6du1KZGQkp06dAnJHywYMGECnTp3Yu3cvMTExPPzww0ydOpVvvvkmv49Nmzbh7u7Ohg0bSEtLQ6/X55/3zz//oNPpeO211xg4cCBHjhzB3t6+Mp6+EEIIIYQQBUhydRtZs2ZN/ogQ5I5W/fzzzxXu7/333+fuu+8mICCApk2b0rlzZ+666678EbDU1FQ+/PBDPvnkEyZMmABAvXr16Nq1KwBLliwhKyuL7777DhcXFwA++eQThg4dyltvvUWNGjUAcHFx4csvv0Sn05GSksKyZcswmUx8+eWX+SN3X3/9NZ6enmzevJn+/ftX+DkJIYQQQghRUZJcmYGTnZYTrwwotd2eiAQe+Hpvqe2+mdieDqHeQO60utSUVNzc3YqcFlgevXr1YsGCBflf5yU0FRUWFsaxY8fYv38/27dvzy+K8cADD/Dll19y8uRJsrOz6dOnT5Hnnzx5kpYtWxaIo0uXLphMJk6fPp2fXDVv3hx7e3tMJhMAR44c4dy5c7i5uRXoLysri/Pnz9/ScxJCCCGEEKKiJLkyA0VRyjQ9r1sDPwI9HIlKzipy3ZUCBHg40q2BX4E1VwZ7Lc72ukLJVXm5uLhQv379W+rjZhqNhvbt29O+fXuefPJJFi9ezH333ccLL7yAk5OTWa5xcxKYlpZG27Zt+eGHHwq1LW56ohBCCCGEEJYm1QIrkVajMHtoGJCbSN0o7+vZQ8Oq9H5XYWG5zy89PZ0GDRrg5OTEpk2bimzbpEkTDh8+THp6ev5j27dvR6PR0KhRo2Kv0bp1a86ePYu/vz/169cv8OHh4WHeJySEEEKIasfLwQt7bclrtO00dng5eFVSRNZTltfCXmt/W7wW5iAjV5VsYLNAFoxvw9zVJwqUYw/wcGT20DAGNrPO5mxpaWn5e14BREREcOjQIby9valVq1aR59x999106dKFzp07ExAQQEREBLNmzaJhw4Y0btwYnU7HzJkzmTFjBvb29nTp0oXY2FiOHz/OQw89xL333svs2bOZMGECc+bMITY2lscff5z77rsvf0pgUe69917ee+897rrrLl555RVq1qzJpUuX+PXXX5kxYwY1a9Y0++sjhBBCiOoj0DWQNcPWsP7ien46/RPNfZsTGhdKl65d+PDQh+yJ2kML3xa3xaa5R+OO8mL4izTyzn1j22AwsH3bdrp07YJOl5sqeDl43RavhTlIcmUFA5sF0i8sgD0RCcSkZuHv5kiHUG+rjljt27ePXr165X89ffp0ACZMmFCgct+NBgwYwI8//si8efNITk4mICCA3r17M2fOnPxfxpdeegmdTsfLL7/M9evXCQwM5NFHHwXA2dmZDRs2MG3aNNq3b1+gFHtJnJ2d2bp1KzNnzmTEiBGkpqYSHBxMnz59cHd3N8OrIYQQQojqLtA1kInNJjKx2UQysjL4c8OfNPFuwmtdXuPtvW/zTPtnrB2ixcVlxjF351xSclL4sNeH9K7VG71eT4QugibeTbCzswPgWNwx/rn2D6MajbJyxLZPkisr0WoUOtXzqbTrFZcg5enZsyeqWtRKsOJNmjSJSZMmldhGo9Hwwgsv5O9rdbPmzZvz119/FXt+cXEHBATw7bffljlWIYQQQoji2Gnt8j8PdA3kg14fWDGayuNi58LIBiPZE7WH7jW7F9nmTOIZ7l13Lxo0tPJvRUOvhpUcZdUiyZUQQgghhLjtRKVHUcO5Rv62Lrfaripy0jkxvd109CY9Ok3RaUEDzwb0rNkTZztnfJ18KznCqsfqBS0+/fRT6tSpg6OjI+Hh4ezZs6fE9vPnz6dRo0Y4OTkREhLCU089RVZWVoE25e1TCCGEEELcPowmI6PXjGbA8gFcTL5YbLuvjn3F4F8H88elPyovuEpgNBkLfG2nsSumZW5V7Hd7vMu8bvPwdvS2dGhVnlWTq2XLljF9+nRmz57NgQMHaNmyJQMGDCAmJqbI9kuWLOG5555j9uzZnDx5kkWLFrFs2TKef/75CvcphBBCCCFuL5dSLpFpyCRNn0awW3Cx7bIMWehNerZe3VqJ0Vnem3ve5JktzxCXGVem9jdOm4TCyZn4j1WTq/fff59JkyYxceJEwsLCWLhwIc7Oznz11VdFtt+xYwddunRh3Lhx1KlTh/79+zN27NgCI1Pl7VMIIYQQQtxe6nrWZevorXzZ/8sSR20ebv4w83vO57Uur1VidJYVlR7FL2d/YcPFDZxLOlf6CTfI0Gfw1p63ePyvx8u9Vv92YbU1Vzk5Oezfv59Zs2blP6bRaOjbty87d+4s8pzOnTuzePFi9uzZQ4cOHbhw4QLr1q3jvvvuq3CfANnZ2WRnZ+d/nZKSAoBer0ev1xdoq9frUVUVk8mEyWQq/xMvp7wf3LxrWostxGGuGEwmE6qqotfr0Wq15T4/72fi5p+NymQLMUgctheDrcRhCzHYShy2EIOtxGELMUgctheDNePQoqWBe4MC93s3x6Cg0D2oOwaDoVJiqozXwsfeh+/6f8f2yO209W1b5L1ucTFcT7nOT6d/IseUw97re2nt39picdrKz2d5Y1BUK6Wd169fJzg4mB07dtCpU6f8x2fMmMGWLVvYvXt3ked99NFHPPPMM6iqisFg4NFHH2XBggW31OecOXOYO3duoceXLFmCs7Nzgcd0Oh0BAQGEhIRgb1/yhmvCNuXk5HDlyhWioqIq7Y+lEEIIIao2g2pgd/Zu2ju0x165fe8B92TvwUvjRQO7BtYOpdJkZGQwbtw4kpOTS932p0pVC9y8eTNvvPEGn332GeHh4Zw7d45p06bx6quv8tJLL1W431mzZuXv6wS5I1chISH079+/0AuYlZXFlStXcHV1xdHRscLXLCtVVUlNTcXNzc2qVWpsIQ5zxZCVlYWTkxPdu3ev0PdQr9fz559/0q9fv/z9HyqbLcQgcdheDLYShy3EYCtx2EIMthKHLcQgcdheDNaIY+GRhRyJO8L9Te6nY2DHMsfw+N+Psz15O36hfjzZ+kmLxGbJ1+JK6hWcdE6lVvwrLYbBDDZrXBWNozLlzWorC6slV76+vmi1WqKjows8Hh0dTUBAQJHnvPTSS9x33308/PDDQO4eSenp6TzyyCO88MILFeoTwMHBAQcHh0KP29nZFfpmGo1GFEVBo9Gg0Vh+yVre9Le8a1qLLcRhrhg0Gg2KohT5/S2PWz3fHGwhBonD9mKwlThsIQZbicMWYrCVOGwhBonD9mKozDj+vPInEckRDG8wvND1SophbJOxnEw8SXO/5haP09yvhdFk5KVdLxGRHMG7Pd6lc1Bns8SQoc/gatpVi+59ZQs/n+W5vtXu1u3t7Wnbti2bNm3Kf8xkMrFp06YCU/pulJGRUeimOm/NjKqqFepTCCGEEELcPj7q9RHT2kyjW81u5TqvR0gP1o1Yx8DQgRaKzHISsxMxmAyYVBN1Peqapc+ziWcZ9tswpm6aSoY+wyx9VgdWnRY4ffp0JkyYQLt27ejQoQPz588nPT2diRMnAnD//fcTHBzMvHnzABg6dCjvv/8+rVu3zp8W+NJLLzF06ND8JKu0PoUQQgghxO2rjkcdHm7+cIXOdbFzyf9cVdUqs7Gwr5MvPwz+gXNJ5whwKX42V3kEuwajUXIHPa6nXae+V32z9FvVWTW5Gj16NLGxsbz88stERUXRqlUr1q9fT40aNQC4fPlygZGqF198EUVRePHFF7l27Rp+fn4MHTqU119/vcx9Wt3f80CjhR4zCh/b8jaYjNBrVuFjZrRz5066du3KwIEDWbt2rUWvJYQQQghR3RyKOcS8PfN4u/vb1Havbe1wykSn0dHYu7HZ+nO2c+aT3p8Q5BqEs51z6SfcJqy6zxXA1KlTuXTpEtnZ2ezevZvw8PD8Y5s3b+abb77J/1qn0zF79mzOnTtHZmYmly9f5tNPP8XT07PMfVqdRgt/v56bSN1oy9u5j2vKXxq8vBYtWsTjjz/O1q1buX79usWvV5ycnByrXVsIIYQQt5dradd4c8+b7I/ef8t9LTy8kBPxJ/jwwIdmiMxy/rz0J8vPLLfYnlT1vepLYnUTqydX1UpOevEf+qzcNj1mQK8XchOpv17LPfbXa7lfd38WOk0BfWbBfvUZhfuroLS0NJYtW8bkyZO54447CiSvAKtXr6Z9+/Y4Ojri6+vL8OHD849lZ2fz3HPPERISgoODA/Xr12fRokUAfPPNN4WS3JUrVxYYLp8zZw6tWrXiyy+/JDQ0NL9S3/r16+natSuenp74+PgwZMgQzp8/X6Cvq1evMm7cOEJDQ3Fzc6Ndu3bs3r2bixcvotFo2LdvX4H28+fPp3bt2lbdG0wIIYQQtmPjpY38cPIHPjv02S339WLHFxnZYCQvd3zZDJFZRlJWEq/teo05O+ew8txKi19v69WtLD211OLXsXVVqhS7zXsjqPhjDfrDvT/nft5jRu5I1dZ3cj/y5H1duytM/G+6nvtXXdBkJhTsb05yhUL86aefaNy4MY0aNWL8+PE8+eSTzJo1C0VRWLt2LcOHD+eFF17gu+++Iycnh3Xr1uWfO3nyZPbt28dHH31Ey5YtiYiIIC4urlzXP3fuHMuXL+fXX3/NXyeXnp7O9OnTadGiBWlpabz88ssMHz6cQ4cOodFoSEtLo0ePHgQHB7NkyRLq1avHoUOHMJlM1KlTh759+/L111/Trl27/Ot8/fXXPPDAA1atsCiEEEII29Hctzl31ruT9gHtb7mvmm41mdN5zq0HZUGu9q482OxBNlzcwJC6Qyx6rQPRB5iyaQp2Gjs6BHYwW9GMqkiSK2vR2oGp8necXrRoEePHjwdg4MCBJCcns2XLFnr27Mnrr7/OmDFjCmyo3LJlSwDOnDnDihUr2LBhA/379wegbt3y/+Lk5OTw3Xff4efnl//YyJEjC7T56quv8PPz48SJEzRr1owlS5YQGxvL7t270el0uLu707DhfyU/H374YR599FHef/99HBwcOHDgAEePHuW3334rd3xCCCGEqJ7a1GhDmxptLNL3haQL1PW0rYRCp9ExoekE7gu7L7/whKW09m9Nz5Ce1HGvQ4CzeQpmVFWSXJnT8yWsX1JuWkvVaUruKJXWHow5uVMCuz71b9uCvwApD27H3c3tlkdhTp8+zZ49e1ixYgWQu4Zt9OjRLFq0iJ49e3Lo0CEmTZpU5LmHDh1Cq9XSo0ePW4qhdu3aBRIrgLNnz/Lyyy+ze/du4uLi8qfyXb58mWbNmnHo0CFat26Nt7d3kZu4DRs2jClTprBixQrGjBnDN998Q69evahTp84txSqEEEIIURJVVXl779ssPrmY+b3m06dWH2uHhN6oR6vR5idUlk6sIHcP0g97fVgp17J18gqYk71L8R92jv+1y5sS2OsFeCk299+t78DOT/9t61SwXzvnwv1VwKJFizAYDAQFBaHT6dDpdCxYsIDly5eTnJyMk5NTseeWdAxyN+a9ebGkXl94ZM7FpXDsQ4cOJSEhgS+++ILdu3eze/du4L+CF6Vd297envvvv5+vv/6anJwclixZwoMPPljiOUIIIYS4ffx9+W9iM2LN3q+iKDjqcu/xjsUdM3v/FTH/wHwe3PAgF5MvVup1b06scoy3Z+EyGbmqbHlVAXu98F859rx//3694NdmZDAY+O6773jvvffyp/XlGTZsGD/++CMtWrRg06ZNRe4J1rx5c0wmE1u2bCl0PoCfnx+pqamkp6fnJ1CHDh0qNa74+HhOnz7NF198QbduuZv5bdu2rUCbFi1a8OWXX5KQkIBOV/SP7MMPP0yzZs347LPPMBgMjBgxotRrCyGEEKL6S85OZvrm6RhVI3/c/YfZ9nnK838t/o8uQV1oF9Cu9MYWlpSVxPKzy0nXp3Ml9Qp1POpUegxxmXG8tectsoxZfNTroyqzF5i5SHJV2UzGgolVnryvTUaLXHbNmjUkJiby0EMP4eHhUeDYyJEjWbRoEe+88w59+vShXr16jBkzBoPBwLp165g5cyZ16tRh7NixPPzww/kFLS5dukRMTAyjRo0iPDwcZ2dnnn/+eZ544gl2795dqBJhUby8vPDx8eF///sfgYGBXL58meeee65Am7Fjx/LGG28wYsQInn/+eerXr8/hw4cJCgqiU6dOADRp0oSOHTsyc+ZMHnzwwVJHu4QQQghxe4jNiCXMJ4wsY5bZEysAR52jTSRWAJ6Oniy/czkbL22kW81uVokhKSuJjZc3oqoqZ5PO0tCrYeknVSMyLbCy9ZpV/MhUjxkW20B40aJF9O3bt1BiBbnJ1b59+/D29ubnn39m1apVtGrVit69e7Nnz578du+99x4jR47kscceo3HjxkyaNIn09Nyy8N7e3ixevJh169bRvHlzfvzxR+bMmVNqXBqNhqVLl7J//36aNWvGU089xTvvvFOgjb29PX/88Qd+fn6MGjWKli1b8uabb+ZXG8zz0EMPkZOTI1MChRBCCJGvvld9frjjB34Y/IPFr5Wak8qnhz4l25ht8WsVJ9g1mAlNJ1jt+vW96vNSx5dYcseS2y6xAhm5um2sXr262GMdOnTIXy/VokWLYqfUOTo68t577/HBBx8UeXzYsGEMGzaswGM3FsiYM2dOkQlX3759OXHiRIHHbl6/Vbt2bX7++WdSUlJwd3cvsrjHtWvXaN68Oe3b33qJVSGEEEJUL3lroyxFVVUe+eMRjsUfw2gy8kSbJyx6vRtdSbmCXtXbTAn0EQ1u3+UZMnIlqry0tDSOHTvGJ598wuOPP27tcIQQQghhI5KykjCYDJVyLUVReKj5Q9Ryq0XHwI6Vck0Ak2ripR0vcfequ1l/cX2lXbes4jLjOBl/0tphVBpJrkSVN3XqVNq2bUvPnj1lSqAQQggh8r2x5w16/9SbDRc3VMr1+tbuy4q7VtAhsEOlXA8gQ5+Bk84JnUZHc9/mlXbdsjgUc4g7V97J01ueJtOQae1wKoVMCxRV3jfffFOm4hlCCCFuT5FpkSRmJwK51XOvG65zMuFkfgVaLwcvAl0DrRmisACTauJI7BESsxMtUsiiOPZa+wIxWHrvJ1d7Vz7r8xmXUi4R7Bps0WuVV33P+jjrnHG1cyUxKxEn1+pfcEySKyGEEEJUW5FpkQxZOaTQnjufrf8s/3N7rT1rhq2RBKua0Sga1gxfw4HoA1YZ0dl0eRMf7P+Az/t9bvGkR1EUq5RdL42rvStfDfiKINcgdJrbI+2QaYFCCCGEqLYSsxNL3cw0x5iTP7JV3UWmRXIi/gQn4k9wMuFk/ihe3mORaZHWDtGsdBodHQI7WHz06GaqqrL4xGIupVziiyNfWOQamy5vYuHhheiNeov0by613GvdNokVyMiVEEIIIcRtQUbxKo+iKMzuNJtV51fxSItHzN5/uj6d13a9RlxmHM46Z+5ver/Zr2Fuqqqy4twKso3ZjG081trhWIyMXAkhhBBC3AZup1G8vVF7Gb9uPD+f+dlqMdTxqMMTbZ6wSAl4Z50zz7Z7ljb+bRjdeLTZ+7eErVe3MnvHbN7b9x5XU69aOxyLkeRKCCGEEEJUK39e+pPDsYc5EnvE2qHkOxp71Gx9KYrC4LqD+WbgNzhoHczWryV1r9mdXiG9eLz145VaYKSyybRAIYQQQghRrTzc/GHqetSlsXdja4eCSTXx7JZn+ePSH3za51O61+xe4b6yjdlo0GCntQNyk6yqQlEUPuz1YZWKuSJk5KqS3biQtKiP6raQ9GaKorBy5UoALl68iKIoHDp0yKoxCSGEEKJ68Xf2Z0zjMbTyb2XtUNAoGgJcAtApOi4mX7ylvhYcWsCoNaPMOgpWmW5MrFRVJUOfYcVoLENGripRcQtJb2TJhaQPPPAA3377LQA6nY6aNWtyzz338Morr+DoaP75wEIIIYQQAqa0msKd9e6kkXejCveRoc9g9fnVxGTGEJsZa8boKt+VlCvM3jkbTwdP3u/5vrXDMStJripReRaSWqpKz8CBA/n666/R6/Xs37+fCRMmoCgKb731lkWuJ4QQQliTl4MX9lr7Ut/Y9HLwqsSohKWoqsoH+z+gbY22dA7qnD99ztqc7ZxvKbHK62P5nctZf3E9vWv1NlNk1pFuSOdA9AHstfZcTb1KTbea1g7JbGRaoBll6DPI0Gegqmr+Y3qjngx9RqlJ1Y1u3q8g05BJhj4Dk2q65RgdHBwICAggJCSEYcOG0bdvX/78808ATCYT8+bNIzQ0FCcnJ1q2bMkvv/xS4Pzjx48zZMgQ3N3dcXNzo1u3bpw/fx6AvXv30q9fP3x9ffHw8KBHjx4cOHDglmMWQgghKirQNZA1w9awbMgylg1Zxg8Df+Ax18f4YeAPLBuyjHnd5vFk6yel9Hg1cTbpLF8f/5rpm6eTYyr7vVdlik6P5q09b1VofypPR0/GNB5jgagqV2PvxsztPJdf7/y1WiVWIMmVWYUvCSd8SXiBEqZfH/+a8CXhvLH7jTL3s+DwggJf3/PnPXRa2okLSRfMFivAsWPH2LFjB/b29gDMmzeP7777joULF3L8+HGeeuopxo8fz5YtWwC4fv06PXv2xMHBgb/++ov9+/fz4IMPYjAYAEhNTWXChAls27aNXbt20aBBAwYPHkxqaqpZ4xZCCCHKI9A1kDCfMMJ8wmji3YQgXRBNvJugqiovbHuBDw9+yJXUK9YO0+KcdE7Ya+1LbFPVR/GctE6MazyOO+vfiYudi7XDKcRoMvLghgdZfHIxi44tKtM5V1KvcCjmkGUDs4K76t9V7RIrkGmBt501a9bg6uqKwWAgOzsbjUbDJ598QnZ2Nm+88QYbN26kU6dOANStW5dt27bx+eef061bN7788ks8PDxYunQpdna5w+wNGzbM77t374JD1P/73//w9PRky5YtDBkypPKepBBCCHEDVVX5+8rftPBrgYfOI//xMJ8w2tVoh4+TD046JytGaHkGk4GZW2fSPbg7YxuPxdU+915g+7btdOnaBZ0u95bQy8GrSo/ihbiHMCt8lrXDKJZWo2VKqyksPrm4TFP7VFVl7s657Incw/Phz1eLUauiRCRHkGnIJMwnzNqh3DJJrsxo97jdAAX+QE9sOpHxTcaj0+g4l3SuTP1Mbjm5wNc/9/sZNzc3nO2dbznGXr16sWDBAtLT0/nggw/Q6XSMHDmS48ePk5GRQb9+/Qq0z8nJoXXr1gAcPXqUrl275idWN4uOjubFF19k8+bNxMTEYDQaycjI4PLly7cctxBCCFFR19OvM+3vaeg0OrbevTX/cUVR+KzvZ1Vmn6BbsS96H6cSTnEt7RovdHwBXydf9Ho9EboImng3wc7OjrjMOI7FHavSyVVVMCh0EAPqDECr0ZbaNseUQ6BLIA5aBzoHda6E6Crf1qtbeervpwh2C+bnoT9X+d9HSa7MyNmucPJjp7Ur92LKm9s76ZxwtnNGo9z6LE4XFxfq168PwFdffUXLli1ZtGgRzZo1A2Dt2rUEBwcXOMfBIfeH3Mmp5Hf1JkyYQHx8PB9++CG1a9fGwcGBTp06kZNjm3OehRBC3B4SMhNo6NUQJ50TjrqC1XFvvpFTVbVa7sPTMbAj3w/+nvjMeHydfAsdv5h8kXtW3wPA7yN/L7KNrTsaexQPBw9qudeydiglUhQFrfJfYqU36ou9V3TQOvBql1eZ0mpKtd14t6VfS9wd3AlyCSJdny7Jlai6NBoNzz//PNOnT+fMmTM4ODhw+fJlevToUaityWSiadOmLFu2DL1eX+To1fbt2/nss88YPHgwAFeuXCEuLs7iz0MIIYQoSXO/5iy/czl6kx6MRbfJ0GfwyaFPMKkmnuvwXOUGWEla+rUs9lht99o09Mqd6p+UlVQlk6s3977JkdgjvNntTe6oe4e1wymVSTXxy5lf+N+R/7F48OISk6fqmlgBeDh48OMdP1LDuUa1eGNDClpUorxysCWp7IWk99xzD1qtls8//5xnnnmGp556im+//Zbz589z4MABPv744/y9sSZNmkRKSgpjxoxh3759nD17lu+//57Tp08D0KBBA77//ntOnjzJ7t27uffee0sd7RJCCCEqi52m+Jkkx+OP8/2J71lycgmXU6rPdPa9UXtJzEostV3eFMnFgxdT36t+JURmXnqjHlc7V+w0dnQI6GDtcMpEVVVWnV9FdEY0S04tKXDsn2v/8Nqu10jLSbNSdJUrwCWgWiRWICNXlSqvHOyN1QRvVtkLSXU6HVOnTuXtt98mIiICPz8/5s2bx4ULF/D09KRNmzY8//zzAHh7e7Nx40ZmzpxJjx490Gq1tGrVii5dugCwaNEiHnnkEdq0aUNISAhvvPEGzzzzTKU9FyGEEOJmJtWEglLqjVv7gPY81Owh2gW0s/lpZWUVlxnHk38/iVbR8tWAr0pNmjwcPEo8bsvstHZ83u9z0vXpNlklsChajZa5neey4eIGugd350T8CQwGA5cNl1m+eznxWfGYTCYmtZh026yDu5xyme9OfIeLnQt9avbhuuE6JxNOVqmCK5JcVbJA10Cr/VB88803RT7+3HPP8dxzuVMgpk2bxrRp0wq1MZly99hq0aIFGzZsKLKf1q1bs3fv3gKP3X333QW+vnEPsDp16hT4WgghhPlEpkXmv5lnMBiq5E2KOfx56U/e3vs2d9W7iyfaPFFi2yfbPlk5QVWS5Oxk/J39sdPYUcejTpnP05v0rDm/hm41u1W56YFVJbHK46xzZtGxRYW24cnz89mf+e3Cb6wZtqba/75GpkVy18q7MKi5W/x8dewrAD5b/1l+G3utvc2/FpJcCSGEENVMZFokQ1YOKbSBfVW7STGHA9EHiMmIIU1fvulVGfoMsoxZeDt6Wygyy6vnWY+fhvxEfFY8Ok3Zb/lm/TOLDRc3MCFsAs+0t/0ZKFmGLIBCxUqqgsTsxEK/pzfLMeaQmJ1Y7X9XE7MT8xOr4lSF10LWXAkhhBDVTHlu2Kq7J9s+yZf9v+SehveU+ZwD0QcY/ttw5uyYY7nAKomd1q7cxRCG1R+Gt6M3Qa5BForKvH6P+J3uy7rz4YEPrR2KEDJyJYQQQojqy0nnRHhgeLnOcbd3JyYjBhWV+Mx4fJx8LBSdZXx04CNCPUIZUndIhYoEdAnqwvqR66vMxsr7oveRacis8iW8RfUgyZUQQgghxA3qe9Xno94f0bZG2yL3sLRlR2KP8MXRL4DcaYFhPmHl7kNRlCqTWAG81uU1xjUeV+XWh4nqySamBX766afUqVMHR0dHwsPD2bNnT7Fte/bsiaIohT7uuOO//QweeOCBQscHDhxo1pilEEPVJd87IYS4Paw6v4pvjn1TodLq3Wp2q3KJFUATnyY80foJxjQaU6HE6mbH4o6x4uwKM0RmOYqi0NS3KTVcalg7FCGsP3K1bNkypk+fzsKFCwkPD2f+/PkMGDCA06dP4+/vX6j9r7/+Sk7Of/PI4+PjadmyJffcU3Au9cCBA/n666/zv3ZwMM9Qcd7muRkZGbKHUxWV9/Oj1WpLaSmEEKIqW3ZqGUfijuDt5H1L5dW3XduGn5MfjbwbmTE6y7DT2DGpxSSz9HU87jhj147FUetYJSsHCmENVk+u3n//fSZNmsTEiRMBWLhwIWvXruWrr77KLw9+I2/vglV7li5dirOzc6HkysHBgYAA8+9mrdVq8fT0JCYmBgBnZ2eLbnpmMpnIyckhKysLjcZ6A422EIc5YjCZTMTGxuLs7JxfjlgIIUT1NCh0EN6O3rSr0a7Cffxw8gfe3PMmzXyasXjwYrQa23xjLjk7GXd7d7Pek4T5hNHGvw0hbiGYVJPZ+jWXbGM2E9dPpHNQZx5u/nCVrBYoqh+r3l3m5OSwf/9+Zs2alf+YRqOhb9++7Ny5s0x9LFq0iDFjxuDiUnBfg82bN+Pv74+Xlxe9e/fmtddew8en6AWp2dnZZGdn53+dkpICgF6vR6/XF2rv4+OD0WgkOjq6TDHeClVVycrKwtHR0ao7V9tCHOaKQaPREBQUhMFQcrnP4uT9TBT1s1FZbCEGicP2YrCVOGwhBluJw1oxlPXvm8FgqLTYrPFajG4wmtENRhd5/bLG0SuoFwvsF9DStyWZOeYrmmDO18NoMvLon4/iaufKy+Evl7k6YFliWNh7YX4Zd0t97yr6Wvxz9R+Oxh0lJiOGR5o+ckvxWet31VXrir3GnhxT8dU97TX2uGpdq/XvKtjma5GnPNdTVCsuQLl+/TrBwcHs2LGDTp065T8+Y8YMtmzZwu7du0s8f8+ePYSHh7N79246dOiQ/3jeaFZoaCjnz5/n+eefx9XVlZ07dxY5FWzOnDnMnTu30ONLlizB2bn4+daKosjUsipGVVWMRqO1wxBCCItKMiUxP2U+BopPsnToeNL9STw1npUXWBWVacrESWO7SwGuGa7xRdoXaNEyzX0a7hp3a4dUKbLULE7pT2FUjbR1aGvtcCosyZREhimj2OPOGufb5vfUVl+LjIwMxo0bR3JyMu7uJf9+Venk6v/+7//YuXMnR44cKbHdhQsXqFevHhs3bqRPnz6Fjhc1chUSEkJcXFypL6Cl6fV6/vzzT/r165e/3ut2jcMWYrCVOGwhBonD9mKwlThsIQZbicOaMUSmR7Irchev7nkVLwcvHPQORJmieDDsQfrU6oOngyeBLpW3EWdlvxanEk5R2712oap3tvBzYYk4LqVc4lLqJboHd7dIDIlZiSw+tZixjcaafe2VLXxPbCEGW4nDFmKwpTggNzfw9fUtU3Jl1WmBvr6+aLXaQtProqOjS10vlZ6eztKlS3nllVdKvU7dunXx9fXl3LlzRSZXDg4ORRa8sLOzs/o3M4+txGILcdhCDLYShy3EIHHYXgy2EoctxGArcVgjhlqetXBxcMHR3pHMnEx2HdmFp5MnDX0a0qJGi0qN5UaV8VrojXom/jkRo2pk7fC1RW6GW5E44jLjeGfvOwytN5SuwV3NEqu5Xo/6PvWp71PfYjE8//fz7I7cjREjz7Z/tkLXMUcclmYLMdhKHLYQg63EUZ7rWzW5sre3p23btmzatIlhw4YBuQUHNm3axNSpU0s89+effyY7O5vx48eXep2rV68SHx9PYGDlvUMnhBBCWJuPkw931rsTvV6Pw2kH7hh0h9VvUirD9fTreDh4YDAZzDo6t/jEYtZFrONY3DFWDVtl9eIWO6/vpKZbTULcQix+rYlNJ5Kak0rHwI4Wv1ZZLD+zHEedIz1q9sDV3tXa4QiRz+rl0qZPn86ECRNo164dHTp0YP78+aSnp+dXD7z//vsJDg5m3rx5Bc5btGgRw4YNK1SkIi0tjblz5zJy5EgCAgI4f/48M2bMoH79+gwYMKDSnpcQQghhS6xZFKmy1Xavzca7N5KYnWjW5/1Ii0c4n3yeR1s8avXEKiErgRlbZ5BlyGLRgEW08LPsaGTnoM50DupsEz9HJtXEJ4c+IS4zjgV9F5htFFEIc7B6cjV69GhiY2N5+eWXiYqKolWrVqxfv54aNXI3grt8+XKhstunT59m27Zt/PHHH4X602q1HDlyhG+//ZakpCSCgoLo378/r776qtn2uhJCCCFsXbYxm61Xt9LEuwn+Dv/tG2lSTSRmJeLjVHQF3epCURS8Hb1Lb1gOznbOfNz7Y7P2WVE5xhwaejUkMTuRJj5NLH49W0iq8mQZshhefzi7IncRHhBu7XCEKMDqyRXA1KlTi50GuHnz5kKPNWrUiOLqcDg5ObFhwwZzhieEEEJUOWcTzzJ983S8HLzYOGIjAAdiDjBj2wyCXIL4cciPVo6w6kvKSsLdwR2NUvn7Pwa4BPBl/y9JyErATlN5Uz0NJgO/R/xOQlYCE5pOqLTr3sjZzpkn2jzBEzxhlesLURLr7UorhBBCCIvJMmQR5hNGS7+W+aMOIa4hJGQlcDHlIhn64ssdV2WnEk4xctVIPjzwoUWvs/r8au5YcQcrz6206HVKoihKpY9A7o/ez/Pbnufjgx8TlxlXqdcWoiqwiZErIYQQQphXu4B2LBuyDFVV8zcV9nP2Y/HgxYR5h2GnrZ6FLfZF7eNM4hn8nf1Lb3wLErISSMlJYe2FtQyvP7zSps19eOBD3O3duS/svvzNfStTh4AO9KzZk5b+LXHWFb8XqKVEpUeRkJVAE+8mNjVVUYg8klwJIYQQ1djNN6At/VpaKZLKMbjuYPyd/S1eQe7eJvfibu/O0HpDK+0m/2ziWRYdXYSKSjPfZrQPaF8p172Roih83Md6685+OfMLnx/5nJENRjKn8xyrxSFEcSS5EkIIIaoZVVVv23f1vR296V+nv8Wvo9PoGN5guMWvc6P6nvWZ23kupxJOWSWxsgXZxmycdE60rdHW2qEIUSRZcyWEEEJUM2eTztLnpz7M2DqjyOM/nPyBhzY8xNnEs5UcWfWkqirrI9aTbcy26HUURWF4g+HMCp9l0euU1cn4k0zfPL1S11493e5ptozeUikJtBAVIcmVEEIIUc2cSjhFTGYM0enRRR7fdm0be6L2sP3a9kqOzLL2Ru1lxdkVRKZFVup1Z/4zk2e3PstXR7+ySP/xmfEYTAaL9H0r3tj9Bn9e+pNFRxdV6nWddE44aGV7HWGbZFqgEEIIUc30rdWXkEEhmFRTkcdHNxpN1+Cu9AzpWbmBWdjys8tZe2Etj7Z8lCmtplTadXvX6s3fl//Gxc7F7H2bVBPTN08n05DJvG7zqOdZz+zXqKjJrSaz6vwq7ml0T6VcL0OfgbNd5RfREKI8JLkSQgghqhlnO2da+7cu9nh1S6ryNPFuwvW063QI6FCp1x1QewBt/NtYpELhpZRLnEs6h96kx0nnZPb+b0XnoM50DupcKdeKTIvkjhV30DGwIx/1/sgqlRKFKAv5yRRCCCFEtTCh6QSrbGyrKIrFSr+HeoTy27DfOJVwiiDXIItcoyrYHbUbvUlPuj5dEith0+SnUwghhKhGotOjWXNhDc19m9MhsPgRnExDJnuj9qI36ulTu08lRli9XUy+yMcHP+blTi/j4eBhlj59nXzpGtzVLH1ZQlJWEt+d+A6NomFq66kWucaw+sNo6deSdH26RfoXwlykoIUQQghRjRyMPcj8A/P5YP8HJbbbdm0bUzZN4cODH1ZSZJYVkxFT7BqzyqKqKjP/mckfl/7gowMf3VJfO67t4HjccTNFZlkn4k/wxdEv+Ob4NxatHBjqEUoz32YW618Ic5DkSgghhKhGfBx9GFhnIN1rdi+xXYeADtR0rUnbGm3Rm/SVFJ3lPLThIbou7crR2KNWi0FRFGa2n0mX4C480OyBCveTnJ3MrG2zGLduXJWo6NgpqBMjG4zkre5v4e3obe1whLAqmRYohBBCVCPtA9qXaYNZDwcPfh/5eyVEZHmpOanEZMSQaciklnstq8bSpkYbFtZYeEt9qKpKeGB4ldksWFEU5nSeY7H+Z++YjbPOmfFh4wl2DbbYdYQwB0muhBBCCFGludm7sX3sdi4kXzDbOidzqUj5cE9HT97u/japOanYa+0tFFnVkJKTwqrzqzCYDIxqNMra4QhRKpkWKIQQQlQT2cZsMvQZ5T4vKj3KJjepLQ+dRkdDr4bWDiOf0WTkf0f+R//l/bmSeqVM56iqWuBrN3s3S4RmMaqq8nvE74xaPYrYjFiz9OmkdeK9Hu8xsdlEQj1CzdKnEJYkyZUQQghRTey4toOOSzry+F+Pl/mcCb9PoN8v/TgWd8yCkd1+NIqGPZF7SM5OZuW5lWU656ODH/Hu3ncrlCDbiiUnl3Ay4STfn/jeLP3Zae3oXas309tON0t/QliaTAsUQgghqomLKRdRUXG3dy/zOb5OvmgUDWeTztLKv5XlgrOQlJwUnvr7KdrWaMujLR9Fo9jG+8aKovBixxc5Fn+MO0LvKLX9tbRrfH3sa4yqkfDAcLrV7FYJUZqXoig83vpxDsYcZFyTcdYORwirkORKCCGEqCYmNpvI0HpDyTHmlPmc6e2mm3VPpsp2KOYQe6L2EJMRw2OtHrN2OAXU8ahDHY86ZWob7BrMR70/YlfkriqZWOXpENihxP3VyuNgzEHOJp6ld63e+Dr5mqVPISxNkishhBCiGinvTWhVr77W2LsxL3d6GY2Nr3TQm/TsjdpL56DOxbbpXrN7qSX0qxqTaqrwaOJPp39izYU1XEy5yIz2M8wcmRCWIcmVEEIIIaosf2d/7ml4j7XDKFGGPoPxv4/nXOI5fhj8A839mucfi82MxRPPclcUtHUXki7wyaFPCHAJqHBi1MKvBZdSLtGvdj8zRyeE5UhyJYQQQlQDR2KP8OvZXwkPDGdQ6KByn/vdie8IcA7gmfbPWCjC25eznTONvRoTnR7N4djDaDVaDAYD1wzXWLJlCbGZsTzR5gnCA8IJdA20drhmEZURxZ+X/sRJ58TklpMrVPlwbOOxjG081gLRCWE5klwJIYQQ1cDeqL0sP7ucNH1auZOr1JxUNlzcQA3nGjzd7mkURbFQlOYVkRxBRHIEbfzb4Onoae1wSjQhbAIbLm7grb1vFXn8pe0vYa+1Z82wNdUiweoU2In/a/F/DKgzoMqVlL+dGU0quyMS2B+n4BORQKf6/mg1VePvga2Q5EoIIYSoBtoHtGdS80k08m5U7nPzKu11CepigcgsZ13EOhYeXsjg0MG81b3opMVWGDGSYyq50EiOMYfE7MRqkVwpisLU1lMrdK7RZORgzEFa+7dGq9GaOTJRnPXHIpm7+gSRyVmAlu/O7iPQw5HZQ8MY2Kzq/0xWFkmuhBBCiGqghV8LWvi1qNC5jjpHprSaYuaILM/d3p1Qj1Da1mhr7VBEKfQmPXYauzK1PRR7iIkbJlLHvQ6rhq2qMiOpVdn6Y5FMXnwA9abHo5KzmLz4AAvGt5EEq4xsu7SOEEIIIUQx7gu7j1XDVtl8QYvbmcFkYMGhBfT/pT+xGbFlOic6PRp3e3da+LWQxKoSGE0qc1efKJRYAfmPzV19AqOpqBbiZpJcCSGEEFVcXGYcZxLPYDAZKtyHqqocjT3K54c/J8uQZcboLE9uwG2XVtGyM3IncZlxrDi3okznDK47mM2jN/Nsu2ctHF2uG9cZ7Y5IuK2SCJNJZdney/9OBSyaCkQmZ7EnIqHyAqvCZFqgEEIIUcVtuLiBN/e8SZ9afZjfa36F+3ly85PEZMTQ3Lc5nYOL34/JFmQZsnDUOVo7DFEKRVGY3nY60RnR5Sqpbqexq5QiJbfbOiNVVYmIS2f7+Xh2nItj54V4kjL0ZTr39bUneLhbXfo08cfNsWxTPG9HklwJIYQQVVymIRNXO1caeZW/mEUeRVHoX7s/kemRVWLPpembp3Mh+QIvdXyJLsFVqxDH7aaVf6syt802ZuOgdbBcMDe4XdYZRSVnsf1cHDvOx7PjfFyhUSpHnYYsg6nUfo5dT+HJZYew12no0dCPIS0C6dOkBq4Okk7cSF4NIYQQoop7uPnDPNjsQXKMJVejK83MDjPNFJFlmVQTR+KOkJydjJejl7XDEeVgUk1kG7Nx0jkVOqaqKqNWj8Ld3p25XeZS16OuxeIobZ2RQu46o35hAVWuFHlSRg67LsSz/Vw828/HcSE2vcBxe62GNrU96VzPly71fWga5EGvdzcTlZxV5OuhAL6uDozuEMK6o5FciE3nzxPR/HkiGnudhp4N/bhDEq188goIIYQQ1YBG0dw20+Q0iob1I9ZzOPbwLY3WVSYvBy/stfYlJsD2Wnu8HKpvsrg3ai/z9swjPCC8yET+Wvo1LiRfwE5jh7+Tv0Vj2RORUKZ1Ro8vOUCnej7U8nGhjo8zwZ5O6LSWKVlQ0T2mMnIM7L2YyI5zcWw/H8fx6ymoN2RJigLNgz3yk6l2tb1xsi9Y4n720DAmLz6AAgUSrLyrvzqsKQObBfJ0v4acjk5l7ZFI1h6J5EJcOn+ciOaPE9E46DT0auTPHS0C6d3YH5fbNNG6PZ+1EEIIIYqVlpNGak6qTe+35GrvWqWmAwa6BrJm2BoSsxMxmVSOXElk18GjdGzdnBYhXmg0Cl4OXjb9mt8qg8nA2cSzJGQm8GTbJwtN/6vpWpONd2/kZMJJXO1dLRpLTGrZirasOxbFumNR+V9rNQo1vZyo5e1MHR8Xavs4537u60Itb2cc7Sq2L1d51n7pjSYOXUnKn+p38HIiemPBMaf6/q50qedD5/q+dAz1wcO55DVSA5sFsmB8mxtiyBVwUwyKotA4wJ3GAe5M79eQk5GprDsayZoj17kYn8H641GsPx6Fo52G3o39Gdw8N9Fytr99Uo7b55kKIYQQ1dDq86tZcW4Fg0MHc3fDu2+5v+VnlvPartfoU7sP7/Z41wwRijyBroEcvsgNN7C1WHU2mUCPbGYPDSOsGqzvKUnHwI681PElBtQZUOy6qhouNajhUsPisfi7lW2Ud3CzAHKMKpcT0rkUn0G2wcSl+AwuxWfwz9m4Qu0D3B2p5eNMHR9navu45CdhtXyc8XAqOsEpbe3Xp+PaUMvHmZ3nc6f57YlIICPHWKBtkIcjnevnjkx1rudLDffyj2IPbBZIv7AAdp6L4Y9/dtO/W3iJo2eKohAW5E5YkDtP92/IiciU3BGto5Fcis9g3dEo1h3NTbT6NK7BHS0C6dXIv9CoWXUjyZUQQghRhR2KOcTeqL00921ulv7qetbFoBqITI80S3/mpqoqL25/kTCfMIbXH14lim/kuV0KKBRHURRGNRpl7TAAaBTghk6jYCim7LpC7qjNx+Pa5CcXJpNKTGo2F+PTuRyfwcX4dC4lZHApPjfxSs0yEJWSRVRK0WXLvZzt8qcX1vZ2ppaPCyFeTrz82/ES95ia8uOBAtP88vrqXM+XzvV96FLPl9o+zmbZkkCrUQgP9Sb+pEp4qHeZ15spikLTIA+aBnnw7IBGHL+ewtqjuVMHLydk5H5+NBInOy29m/gzpHkgPUtItCo6RdIWSHIlhBBCVGHjw8bTzLcZDb0bmqW/5r7NWTdiHSFuIWbpz9wiUiJYdX4VGy5uqFKbB9taAQVbuHlNzErML0iyL3sfe3ft5e5Gd5erumBFZOQYeOS7fSUmVpC7DunG10SjUQjwcCTAw5GOdX0KnKOqKkkZ+tzEKyGDi3EZXPp3tOtSfAZxadkkZuhJzEji8JWkcsWrqrkV/TrV86FLfV861/OlcYAbGhtNNhRFoVmwB82CPZgxoBHHrqWw5uh11h6J5GpiZv56LWd7LX2a1OCO5oH0bOSXP6WyqpfHt4nk6tNPP+Wdd94hKiqKli1b8vHHH9OhQ4ci2/bs2ZMtW7YUenzw4MGsXbsWyP0Bnz17Nl988QVJSUl06dKFBQsW0KBBA4s+DyGEEKKyhXqEEuoRarb+dBqdzSZWAG52bkxrM42UnBTstfbWDqfMylpA4d4vdtEkyJ0A99ybeH+33H8D3B3NNp3K2jevmYZMZm+fzearm1kzfA1edl4cyDnA5QuXCfMNs2hylW0w8n/f72ffpUTcHXU83rsBX22PKHGdUVkoioKXiz1eLva0rlW4KElatoHL8RlcTkjn4r8J16X4dE5GppBYhn2m3hjRnBFtapY5HluhKArNa3rQvKYHzw1szJGryf+u0YrkWlImqw9fZ/Xh67j8m2gFejryvy0XqvTortWTq2XLljF9+nQWLlxIeHg48+fPZ8CAAZw+fRp//8KVYn799Vdycv6rtBMfH0/Lli25557/3r16++23+eijj/j2228JDQ3lpZdeYsCAAZw4cQJHx9ujkpIQQghRHfk5+/Fw84etHUaZpWUbWH34Ogs2nytT+10RCewqYkoZgJujLj/pquHuSA13BwLc8z7PfdzX1aHEEShbmJroqHXkcuplMg2Z/HT6J7oHdae1fWsa+zUmxC2EE/EnLFLcw2A0Me3HQ/xzNg5ney1fT+xA29pePNg1tMzrjCrK1UGXvz7pRjvPxzP2i12lnh/oUbh0fVWjKAotQzxpGeLJc4Mac/hqMmuP5I5oXU/OYtXh68WeW5XK41s9uXr//feZNGkSEydOBGDhwoWsXbuWr776iueee65Qe29v7wJfL126FGdn5/zkSlVV5s+fz4svvshdd90FwHfffUeNGjVYuXIlY8aMsfAzEkIIISrHqYRTXEu9RjPfZmYtAqA36Xlrz1vsjtzND3f8gLu9e+kniXyqqnL4ajJL91xm1eHrhYoPlGRCp9o42muJTs4iOiWb6H/X8GTkGEnNMpCalcbZmLRiz9dqFPxcHajh7pCfcOUlX/6uDry48pjVpyZGpUdxJvEMAJ8f+ZzPj3yee+Ay/HH5DyC3LP2aYWvMlmCZTCozlh9h/fEo7LUa/ndfO9rWzh1hqug6I3PoEOpNoIdjiXtMBXg40iHUu4ijVZeiKLQK8aRViCfPD27CwStJfLn1QoHKjDfLG93dE5FAp3o+xbazNqsmVzk5Oezfv59Zs2blP6bRaOjbty87d+4sUx+LFi1izJgxuLi4ABAREUFUVBR9+/bNb+Ph4UF4eDg7d+4sMrnKzs4mOzs7/+uUlBQA9Ho9en3pQ7WWlHd9icM2YrCVOGwhBonD9mKwlThsIQZbicPSMaw4s4Ilp5cwttFYnm37rFnj2B25m4spF9lxZQd9avW55VjN8VokZScRkRxBU5+mFZ4SaMnvSXKmnlWHI/lp31VORf+XAIX6OHN322C+3XmJ2NScEm6iHZg1sGGhm3tVVUnLNhKdkkV0am7CFZOS/e/n2USn5iZicWk5GE1qflEFSC5X/Hk3rzvPxRBuwZv52PRY9KaSX/8cYw6x6bH4Ovje8vVUVeXVtaf49cA1tBqFD0e3ILyOR4GfAWv+vXhhUCMeX3q42D2mXhjUCJPRgKnsOfotscZr0TzQlb5N/EpMrvJEJqWj11fuGz7leS0UVb25/kjluX79OsHBwezYsYNOnTrlPz5jxgy2bNnC7t27Szx/z549hIeHs3v37vw1Wjt27KBLly5cv36dwMD/3u0YNWoUiqKwbNmyQv3MmTOHuXPnFnp8yZIlODtXfhWiJFMSGaaMYo87a5zx1HhWXkBCCCFs0j9Z/3BEf4SuDl1pad/SrH0fyzmGVtFSV1cXB6XostmV7WDOQZZnLKe2tjaT3CZZOxwgt9jA+VTYGa3hcLyCXs29JbZTVFr6qHSqYaKeW+5GrofjFb46k7cB7Y0JVO6t2IMNTbT0qfhtmUmFVD0k50ByjkJSDqT8+29yDkRlKCTrSx+Vub+Bkba+lrs9vG64zmdpn5Xa7jHXxwjSBd3y9dZe1vDHNQ0KKuPrm2jnZ7Vb32Idjlf49aKGpJz/vj+e9ioj6tzaz0RVcjZZ4ZMTpa8rnBpmpIFH5b4mGRkZjBs3juTkZNzdS07srD4t8FYsWrSI5s2bF1v8oqxmzZrF9OnT879OSUkhJCSE/v37l/oCmltkeiTDVw8nx1TCDu4ae1YMXUGgS+Ut6NPr9fz555/069cPO7uSN6KrzjHYShy2EIPEYXsx2EocthCDrcRh6RgGM9hicZS177Iyx2uRcTYD76Pe9AjtweDWFYvPXN+T+PQcVhy8zs/7r3Ih7r83RBvVcGVUu5rc1TKw0L5Gg4E2x6N5bd0polL+mzET6OHIC4MaM6CpZfd32h2RwPiv9pXarn+3cIuOXJ1MOMln60tPrrp07UIT7ya3dK0vtkXwx7WzAMwZGsa4DkUXa7H234vBwAyTyq7zsfy1cz+9O7WlYz0/q6wtstZrYTSp/PLeVqJTsksc3Z06unulvy55s9rKwqrJla+vL1qtlujo6AKPR0dHExAQUOK56enpLF26lFdeeaXA43nnRUdHFxi5io6OplWrVkX25eDggIND4Xfl7OzsKv0XLM2YVmJiBZBjyiHNmGaVX35rvCa2GIM14ohMiyQxOxEAg8HAdcN1zqWeQ6fL/TW2xOLfsrpdvye2GoOtxGELMdhKHLYQg63EcSsxjA0by5gmY8g2ZmOnu7XnUZE4TCaV7efjWLrnCn+ciEJvzL0FdLbXcmfLIEa3D6FViGeJ+w0NaVWTQS2CLV5AoSid6vuXuL4HwM1BR3hdP+x0mmJa3Lq8/7fK0u5Wfl5/2H2JtzfkJlYzBzZmQpe6pZ5jzd8RO6BLA3+Sz6p0aeBfpX9XK3Q9YM6dTZm8+ECxUyRnD22Ko0PlVwktz+tg1eTK3t6etm3bsmnTJoYNGwaAyWRi06ZNTJ06tcRzf/75Z7Kzsxk/fnyBx0NDQwkICGDTpk35yVRKSgq7d+9m8uTJlngaQlhcZFokQ1YOIcdYMPG+8Z0/cy/+FULYNqPJiFZjntLcxYlKj2Lr1a0EuATQvWZ3i16rrBRFwVFXuZV/o5Kz+GX/FZbtu8KVhMz8x1vW9GBMh1oMbRmEq0PZb6msVUBBq1GYPTSsyJvXPKnZBh7/8SDvjWqJSzmek6357dA1Xlx5DIDHetZjcs96Vo5IlMXAZoEsGN/mhq0CclWkPL61WP23Zvr06UyYMIF27drRoUMH5s+fT3p6en71wPvvv5/g4GDmzZtX4LxFixYxbNgwfHwKVgtRFIUnn3yS1157jQYNGuSXYg8KCspP4ISoahKzEwslVjfLMeaQmJ0oyZUQt4mPD37M6gurebj5w4xtPLbYdreyWez6iPW8t/89ugZ3tXpypapqiSNC5mYwmth8Opaley/z16kY8vabdXPUMbx1MGPa1ypUVrsqKO7mNdDDkb5N/Fm69wrrj0cR8Vk6/7u/LbV9XKwYbcX8eSKa6T8dRlXh/k61eXZAI2uHJMphYLNA+oUFWGV01xysnlyNHj2a2NhYXn75ZaKiomjVqhXr16+nRo3ceceXL19Goyk4NH369Gm2bdvGH3/8UWSfM2bMID09nUceeYSkpCS6du3K+vXrZY8rIYQQ1caphFPEZMSgVYofvbrVzWK7BHdh89XNdAzsaMbIK+adfe9wIPoAk5pPok/tilUvLEuieSUhg5/2XeGnfVeIvmFdVPs6XoxpX4vBzQPNtpmvtZR08zqsdU0eXbyf09Gp3PnJdj4d14auDW69Yl9l2X4ujilLDmA0qYxoHcycoU0rNSkX5mHN8vi3yurJFcDUqVOLnQa4efPmQo81atSIkoocKorCK6+8Umg9lhBCCFFdvNvjXU4nnqaWW60ij5tjs9gGXg34ZuA35gn4Fu2N2suphFMYVEOFzi8p0ezduAYbT0bz457LbDsXR94thpezHSPb1GRMhxDq+7uZ78nYgOJuXtvW9mL11K783+L9HL6SxP1f7eb5wU14qGuo2ZIULwcv7LX2Jc7IsNfa4+XgVa5+D1xOZNJ3+8gxmBjQtAZv390CTRW6KRfVg00kV0IIIYQoH1d7V9rWaFvkMaNJZe7qE1bfLNacPu79MQeiDxAeEF7uc4tLNCOTs3h08QFcHXSkZf+XtHWt78uYDiH0C6uBg65qj1JVRICHI8se6ciLK4/xy/6rvLb2JMevpzBvRHMc7W799Qh0DWTNsDUFijRt37adLl27VLhI08nIFB74ag8ZOUa6NfDlo7Gt0WktV5RDiOJIciWEEEJUM3siEgqsp7lZ3maxeyIS6FTPp9h2eQwmA6cTTtPUt6kZoyyfAJcABtctf/n1khLNPGnZBvxc7RnVPoTR7WpRy6fy97i0NY52Wt65uwVNg9x5be1JVhy8xrmYND6/ry1Bnk633H+ga2B+8qTX64nQRdDEu0mFqtNdiE3jvkV7SMky0La2F5/f1/a2TIqFbZCU3sbkDZWXpCJD5UIIIaqPjZc28vWxrzmbeLbI4zGpxSdW5W2Xoc+gx7IejFk7hpiMmHLFaQtKSzTzfDC6Fc8OaCyJ1Q0URWFil1C+f6gDXs52HL2WzJ2fbGPvxQRrh5bvWlIm47/cTVxaNmGB7nz1QHuc7WXsQFiP/PTZmJuHyvV6PT9s+QGfOj70q9MPR52jVfczEkIIYX2rzq/i7yt/Y6exo4FXg0LH/d3KVsCpLO2c7ZwJcQvhWto1LqVcwt/Zv9zx3qovj35JgEsAPWv2xNXetVznljXRjE8vuSLr7axzPV9WTe3KpO/2cSoqlXFf7GLOnU25N7y2VeOKTc1m/Je7uZ6cRV0/F757qEOhjZuFqGySXNmgm4fKt2RvIeNUBsMaDKORt5QTvR1ZavGvEKJq6hrcFTuNHa38WxV5vEOoN4EejsWO2CjkrqvpEOpdput93PtjvB29Lb6vVlEy9Bl8evBTDKqB30f8Xu7kypyJ5u0sxNuZXx/rzLO/HGHtkUheWHGMY9dSmHtnU+wtuOFwcZIz9Ny3aDcRcekEezqx+KFwfF0dKj0OIW4myVUV0FDXEN8AXzSKzOK8XVli8a8Qouoa1WgUoxqNKvZ43maxjy4+UORxFZg9NKzMxSz8nP0qEqZZ5BhzGB82nojkCIJdg8t9fodQb3xd7YlLK/rNqfImmrczZ3sdn4xtTdMgd97ZcJof91zmbHQqn41vU6nJaXq2gQe+2cOpqFT83Bz44eFws6wDE8Ic5G7dhuXtxxGaeQ8jaz5HXY/61g5JWFGASwAfH/yYvy7/RbBrMEG6IJp4N6GBZwN8HH0ksRJCFDCwWSB1/UraALZiVQJL2grFEjwdPXm63dN80ueTCpUC1xtN2BVTNS6vt/Ikmrc7RVF4rGd9vprQHjdHHfsuJXLnx9s5cjWpUq6fpTfyyPf7OHg5CQ8nO75/qAN1fKveRsei+pLkykatPxZJ17f+YvxX+/jurJbxX+2j61t/sf5YpLVDE1ZyMuEk265t49vj32KnyZ1TvuXqFrou7cqL21+0cnRCiMoSmxFLhj6j1HaRyZlciE0H4KPRLbi/gZHFD7bjke51AZj16xFiUsq2HglgfcR67l17L4uOLapY4FbyxrqTRCZn4e6ow9+t4LSxAA/HMu33JQrr1dif36Z0oZ6fC1EpWdy9cCe/Hrhq0WvqjSamLjnI9nPxuNhr+fbBDjQOcLfoNYUoL0mubFDefhw3z5WPSs5g8uIDkmDdpmq712Zet3lMbjUZJ51T/mMZhgwupVzCYKrYxppCVCeRaZGciD/BifgTnEw4yXXDdU4mnMx/LDKt6v/9fHvv23T6sRM/nf6pxHbrjkYB0K62F4OaBdDWN3ez2Gf6NyIs0J3EDD3P/HKkzCNRKTkpHIk7wj9X/7nl51BWepOeC0kXKjxatvFENN/tvATAJ+PasHNWHxY/2C4/0dw2s7ckVregrp8rK6Z0oW8Tf3IMJqb/dJhX15zAYDSZ/Vomk8qzPx9m48lo7HUavpzQnlYhnma/jhC3StZc2Zii9uPQ2EfjFPItoJBx/tkqt/GjMA8XOxeG1B0C5BY6AajtVptfhv5CA68GsiZP3PYi0yIZsnJIocIvn63/LP9ze609a4atqdLTaKMzojGpJmq61iyx3doj1wG4o0XB52qv0/DhmFYM+XgbW8/E8t3OS0zoXKfU6/YM6Ymdxo5OQZ0qHHt5HY87zn2/30c9j3qsHLayXOdGp2Tx7C+HAZjULZTuDXPXjYWHehN/MjfRlP9Hb527ox3/u68dH2w8w8d/nWPRtghORaXwydg2eLmUvLVMWamqyku/HWPloevoNAoL7m1Tpv3ZhLAGuRuzMUXtx6EandHYJ6DYJaAqhvyNH4VQFIVG3o0ksRICSMxOLLGiJuQWR8grDFNVfTfoO/665y/a1GhTbJvrSZkcuJyEosCgIkZmGtRw4/nBTYDcaXNno1NLva6/sz/DGwwnwCWg4sGX07W0azhoHQj1CC3XeSaTytM/HSYxQ0/TIHeeGSCVdi1Jo1F4un8jFtzbBmd7LdvPxXPnp9s4FZVilv7fWn+aH3ZfRlHg/dGt6NOkhln6FcISZOTKxhS1H4dqdCXj4iOY9D6gaottJ6qvdRfWYcJUoT1eRPUXmRZZoJJk3lQ4qSRZfZVWvW/d0dzpj+1rexPg4Zg/2n2j+zvV5q9TMWw5E8u0pYdYOaWLVUpql+SOunfQv3Z/knOSy3Xel9susO1cHE52Wj4a2xoHXeWXkL8dDWoeSKifC5O+28eVhExGfLaD9+5pyaDmFf/78+nf51i45TwArw9rzp0tg8wVrhAWIcmVjSm6lKmCMbNuGdqJ6khVVRYcXsDFlIu81e0tBtcdXKjNwsML+evyX7zZ/U3qetQtohdRXd0uU+FE+az9N7ka3Lz4USZFUXjn7hYMmL+VE5EpvP/nGZ4b1LjEfrON2Wy+spnjccd5qu1TFareV152Wjt8nXzL3P7o1WTe2XAayK0CWM9P3pCqTI0D3Fk1pStTfzzA9nPxTP7hAFN71Wd6v4ZoyjkN89sdF/O/ly8MbsK48FqWCFkIs7Ktt6hE/saPxf35UYDA22g/jtthcXppDCYDA+oMoJFXI7rX7F5km/3R+3OrCV7dVsnRCWu7XabCiVyfH/6cuTvncjzueLFtriVlcjBvSmApIwb+7o7MG9Eit++t59l1Ib7E9kaTkef+eY6vj3/N5dTL5X8CFpaebeCJpQfRG1UGNQtgdPsQa4d0W/JysefbiR14qGvudM5P/j7HpO/2kZJVeAS1OMv3X2X2qtyf8yd612dSd3njUFQNMnJlY/I2fpy8+AAK5Be20NjHoHU5i2pwZ/bQCbfFIlx5Rz6XndaOqa2nMrX11GLb3Bd2H0PrDaVLUJdKjEwIUdn+uPQHZxLP0D24O01pWmSb3/OmBNbxpoZ76bMcBjYLYHS7EJbtu8LTPx1m3bRueDjZFdnW2c6Zu+rdhbOdMzqNZW8hlp9Zzh+X/mB4/eEMDB1YpnNeWX2CiLh0Aj0cmTeieaWMrImi6bQaXhoSRligO7NWHGXTqRiGf7qd/93frtTRxPXHovKLkTzQuQ5P9WtYGSELYRYycmWDBjYLZMH4NgR4/PefotY5AseA1bQOO3PblI2Vd+TLrnvN7txZ7058nKR6khDV2eSWk3mo2UM092tebJs1R3KTqyEtyv5/xctDw6jt48y1pExm/3asxLZzOs9hRvsZBLsGl7n/ith+fTs7ru/galrZ9k5aeySSZfuuoCjwwehWeDqbp1KduDUj29bkl0c7EejhyPnYdIZ9sp2/T8XkHzeaVHZHJLA/TmF3RAJbTsfwxI8HMalwd9uavDwkTJJkUaXIyJWNGtgskH5hAew8F8Prv+7hdFYQgbr2DGnYw9qhiUoUlR5FfGY8YT7yn4sQAvrW7kvf2n2LPX4lIYNDV3KnBA5sVvaqfi4OOj4Y3Yp7Fu5k5aHr9Grsz12tLJs8leaxlo/RrkY7wgPDS217LSmTWb8eyT2vZz061pU3mmxJi5qe/Da1C48tPsC+S4k8+O1enunfiLq+Lryy5sS/VZK1fHd2X/45g5oF8OaI5uVepyWEtcnIlQ3TahTCQ70J91MxZYXgkPAgE5pOsHZYohItP7ucMWvHMGfnnFLbJmcns+7COlafX235wISwQV4OXmhK+W/NXmuPl4NXJUVU+X7/d5P5DnW8y134qE0tLx7vXR+AF1ce41pSZrFtVVXlQvIFi657re9Vn3FNxlHPs16J7YwmlaeWHiIly0DLEE+e7CtTyGyRv5sjSyZ1ZGyHWqgqvLPhNJN/OFBo+5k8g5sHoNPKbaqoeuSntgqo7Za78upkZAqZOUYrRyMqU7YxGyedE+1qtCu17YHoA8z8ZyafHfoMVVVLbS9EdeNq75q/VcE73d/hh4E/0MquFf5O/jzR+gmWDVlWpddoHo09yrnEcxhMhmLbrD0aBZRvSuCNpvaqT6sQT1KzDDz90yGMpqL/lry19y3uWnkXS08vrdB1zOmzv8+x52ICLvZaPhrTCju5IbdZ9joN80Y059VhRa8XzKMAb6w7VezPnxC2TP4CVQFe9uDnao/BpHL4Wnyp65BE9TG97XS2jN5C/zr9S20bHhhOE+8m9KvTr8SbL1G9GE3yhkseN3s3NozcwHs93mNg6ECaeDdhmPMwfh/2O5NaTCLMJ6zKJlYA8/bMY/iq4Wy8tLHI41cSMjh8JQmNAgPKMSXwRjqthvmjW+Fsr2XXhQS+/OdCke2a+TbDTmNHuj69QtcpzfqI9fxz9R8y9Bklttt/KZH5m84C8OqwZtT2cbFIPMK86vu5lXhcBSKTs9gTkVA5AQlhRpJcVQGKAq1CPHEIWM7/be3PynMrrR2SqEROOicctA6ltnO2c+anoT8xve107LRFV/oS1c+F5KJvfm9U3afC3cjV3rXAmxE6RVct1iuqqoqrnSvOOmea+DQpsk3exsEdQss/JfBGdXxdmD00DIB3/zjN8euFN/DtW6sv28du58WOL1b4OiV5f//7PLbpMQ7HHi62TUqWnmlLD2I0qdzVKojhra27RkyUXUxq0VMBK9pOCFsiBS2qiJY1PdiaYI8JY5krJ4mqLTUnFTf7kt/dE+Ku+nehVbTEZsYSHhiOwWBg+7btbNRt5EzSGQbVGcRTbZ+q0iM2ZRGbEYufs1+xx1VVJS4zrsQ2tkxRFP7X/3+YVBNKMTsh5m0cfEeLoFu+3qh2IWw6GcMfJ6J5cukhVj/eFUc7bf5xR53lNrLPMeYQHhjOoZhDtPRrWWy7l1ce42piJjW9nHh1WLNqkUTfLsqa/N/KmwRCWIuMXFURrUI8yInvjnPUbJ5s86S1w6kUXg5e2GtLLqVbXd+Rv5B8ge5Lu/P4pscxqaZynauqKqcTTpNlkHf8bhdD6g1hYrOJhPmE0cS7CUG6IJ5q8xTdgrsxodmEap9YXUu7Rv/l/Zn21zSyjdmFjl9Nu8qQFUMYuWpklZ9GqVE0RSYRVxIyOHI1GY0CA5tWbErgjRRF4c2RLfBzc+BsTBpv/n6q2Lbl/RtVGnutPa92eZXVw1fjbOdcZJsVB6+y8tB1tBqFD8e0xt2xiozW/z0Ptrxd9LEtb+cevw10CPUm0MOxmLcJctdcBXo40iHUuzLDEsIsJLmqIpoHu6MYPYhOdCI6pfDNQ3UU6BrImmFrmNbkUxzjJpMZNZTMyBFkxfYBIMAxtEovTi/Jnsg9GFQDBtWARinfr+n9v9/P3avvZk/UHgtFJ2zB9mvbSc1JLfZ4eEA4n/X9jKY+JS8crw52Xd+F0WQk05BZ5BTaGs41SM5JJl2fzvnk81aI0PLyRq061vXBz630acRl4e1izzt3twDgmx0X2XImtsDx2IxYHtv4GIN/HWz2BKskl+LTeWnlcQCm9WlA29pV6A02jRb+fr1wgrXl7dzHNdqiz6tmtBolf+rpzQlW3tezh4ahlTLsogqSaYFVhLO9jsYB7pyITOHQ5SQCmztZO6RKcfgivP5rKiq1gdoAKLoUVJ8tXI1xZt+FHIa2sGqIFjGm8Rg6BnYs8l340jTwasCphFMWLZEsrOtC8gWe+OsJvBy9WDx4MQEutz5SUZWNbDiS1v6ti73Bt9PYsaDPAup61sXFrmoWPJj21zTS9GlMbzudpr6FE+a1/24cPLi5ed9s6tnInwmdavPtzks88/NhNjzZHW+X3BkFng6e7I/eT4Yhg9MJp4tdC1ZeiVmJeDkWnTDpjSamLT1EWraBDnW8mdKrvlmuWWl6zMj99+/X0RiNQBiaf96FrW9Crxf+O34bGNgskAXj2zB39YkC5dgDPByZPTSMgc2q3xun4vYgyVUV0qqWJ2cz/2DRyX/o2GBmsf/5VBdGk8rc1Se4uRCranAn7eyLKCZH3lh7jsHNalXLd7fqeNSp0HlTW09lZoeZZSqCIaqmTH0mNVxqUMutFjWca5TYNkOfwdLTS0nITOCZ9s9UUoSVr65n3RKPN/drXkmRmJ9JNbEnag9p+rQii9Vcjs/g6LV/pwRWsEpgSZ4b1ITt5+M5F5PG878eZcH4NiiKgp3Wjte6vkYtt1o09DLP3lJxmXH0+qkXoR6h/DL0l0JTwz/ceJZDV5Jwc9TxwZhWVfNvf48ZkJmEduubDFW0aFTjbZdY5RnYLJB+YQHsPBfDH//spn+3cDrV96+a31ch/iXTAquQ1iGe2Pts4XTmWiKSI6wdjsXtiUjIfTdLMWDnsRet00Xg33emTY5SqrUY3o7eklhVc019m7L8zuW83vX1Uhfxn006ywf7P2DxycVcTrlcSRFWjuTsZFJyUqwdRqX4asBXzO08l1CP0ELH8qYEdqrng6+r+X/3ney1zB/dCjutwvrjUfy8/7+iSv1q96ORdyOzFZM4lXAKBQU7jV2hxGrXhXg+3XwOgHkjmhPsWUVncOiz4MJmADSqEVVrf1smVnm0GoXwUG/a+qqEh3pLYiWqPEmuqpDWtbzQJ7fBmNgdNztPa4djcXklWDV28TgGLccp5GsKzc7WZHAs9nTlB2dBUzZN4c09bxKbEVt641LIZsKVw2hS2R2RwP44hd0RCZWy8aWTzgkfJ59S42jp15LRjUYzt/NcglxvvYqcLfniyBcM+GUAK86uKFP7vVF7eXzT43x26DMLR2ZeGkVDE58mjGgwAjtN4ZGrtUevA3BHc8t9f5sFezC9XyMA5q46zqV4y+xv1TW4K/+M+Yc3u71Z4PGkjByeWnYIVYVR7WoyxAwVEa3mr1chJnfNmEnRohhzii9yIYSocmRaYBVS19cFx7RBpGQZyM70Kf2EKi6/BKtiwpDWAFW148bkSut6Cqfgxay61oBJdLZOkGZ2OeUyW69uRatoebTFoxXu53j8cT4+8DGOOkfm95pvvgBtSGRaJInZiQAYDAauG65zMuEkOl3unzUvB69KKXay/ljkDWsGtHx3dh+BFlgzYFJNPLvlWe6oewe9a/UuVxyW2ovImkyqiYOxB0nTp+Hr5Fumc+Iz49l8dTMXki8wueXkalG6+1J8OseupaDVKAxoWvIU0Vv1SPe6/H06hj0RCTy17BA//V8ndFoNR2KPsOnyJroFd6NdQLtbvo6HgwceDh75X6uqynPLjxKZnEWorwuzh1bhIi0RW2HnJwAYm45kjf1dDHE7gfbv1yH+PAxfmLu5pRCiypLkqgrRaBRa1fJi65lYDl5OpFmwR+knVWF5pVqjkgPJvPJQoeNqZk0URcVOZyAlJwV3e3crRGleAS4BfNz7Yy4kX8DT0bPC/dhr7Nl+fTsOWgeyDFkW3ZPGGiLTIhmycgg5xpwCj3+2/r8RCXutvcWrSa4/FsnkxQcKrQuMSs5i8uIDLBjfxmwJ1m/nfuOPS3+w7do2fh/5O96O/5UoLk8cqqpWi6RCo2j4ftD37Lq+i05Bncp0Trea3ZjSagp9avWxcHTmtfr8alzsXGgf0L7Q3nf5UwLr+uBjgSmBN9JqFN4f1ZJB8//hwOUkPtt8nif6NGDV+VUsO72MdH26WZKrmy3be4X1x6Ow0yp8NKY1Lg5V9NYlMxGWjsv9PLAVpmGfw7p1mLo9g/baHjiyFOJOw0MbQVtFn6MQQpKrqqZ1iCdbz0Sz69JF7utUx9rhWFReqdbJiw8UedxkdGVGsy8Z37ZttbhZhNyEoGdIT3qG9Lylfup71uf58OfpENChWq6/SsxOLJRY3SzHmENidqLFkqviCq4A+Y/NXH6UpAw9dloNWo1S4EOnUdD8+69Wo6BVFHRaBa1Gg1Yp3LaFZ09G1b+fYNdgTAYXkjJy8tcmzFl1vNg4FGDu6hP0CwtgV+QOPj30KS93epnG3o0t8rpUJo2ioXNw2UetXexceLRlxUeErUFVVd7d9y4JWQksGbykUGGOvCqBd7SonMpqNb2ceXVYM55cdogPN52le0M/etfqTbo+na7BXW+p771Re/n59M/0rtWbgaEDATgXk8bc1ScAeKZ/I5rXrMJvKq59BrJTwckLHlhb8FijwXD+b7h+EJaOhbu/BgdX68QphLglklxVMYF+Kbg2eol/Mh2A3dYOx+LySrVOW3qIbEPBMssaBTrUNN9C6upEURTGNh5r7TCqtfyCKyVIztTz3K9HzXjV3H1hXmFjmc+4sfDLb1d/42jcUb448gXv9XzPjHFVrgvJF6jjXqfce8BVRTmmHLoFd+N04mkaeDUocCwiLp3j1/OmBFZeOf67WgWx6VQMqw9f58mlB1n7RDc6B9361Ox/rv3D7xd/x8nOiYGhA8k2GJm29CCZeiNd6vswqVvJFSFtWnYaJF0CRQv3/pKbOOn1/x3vMAncg+CXh+DsH/DNHTDuJ3Cz7FRPYSP+npe7x1lRhU22vA0mI/SaVflxiQqR5KqK6R7aAOWwEZOazdWkBGp6Vv/dy+efnohdLci5PJ7Bge6M6duBb3ddYePJGGb9eoRfHu2Mion4rHj8nf2tHW6Frb+4nuSsZPrW7luoUIGwPXkFV0oTFuSOn6sDRpOKwWTCZAKDyYRRBaPJhMGoYlJVDCYV4w0fBpOKyaSi18Sh5nj/d1xVK1QwIyY1i8mtJuPv7M/EZhPLfb6tSMtJY/y68fg7+bOw38IK7fF1OPYwGy9tZHSj0dR0q2mBKM3HQevAa11fK/LYun+nBHau55O/91RlUBSF1+5qxv6LCVyMz+C1tSeZN+LWS90PqD0AJ60TLf1aAvDuhtMcv56Cl7Md749qhaYqV5FzcIWJ6+HKLqhZzNTJxnfAA2tgyWiIPASL+sK9y8HPPGXuhQ3L21waoPNT/z2et7l0rxesE5eoEEmuqpggDw+841/hUoyOs9EGanpaOyLLSs5O5lraNRQHcNG50zdYpWNdH+oHeLDrwlYOXE7inc1/8FfC+3g6erJsyDJrh1xh3xz7huPxx9FoNNzT8B6z9Lkncg9brm5hbOOxNn8TWdXkF1wpxUt3hNGpXsWS5Wtp1xj+23C6BnfltS6v4WznDOROFctLtHaej+eBr/eWKd5Qj+Aqv9fVqYRToIKKWuE3Uz4++DG7I3fj4+jDA80eMG+AlSh/SqCZNw4uCw9nO94d1ZJ7v9zNj3su06uRH23r2nEh+QLtA9pXqM+mvk3zN0jeeiaWL/7J3XLk7btbUsO9Gqwb1eqgTilTJ2u2g4f/hMUjIeECfD0QnjgIjlV4OqQonWwuXa1YfU7Fp59+Sp06dXB0dCQ8PJw9e/aU2D4pKYkpU6YQGBiIg4MDDRs2ZN26dfnH58yZg6IoBT4aN676awtu1LZmKKDh4OUka4dica52rtxX81MyLk+kba0a5L1xGejhxIyBuWWBv/8nndjMWK6kXiEmI8aK0VacqqoMCh1EC78W9A4pXAmuohYeWch3J75j69WtZutT5GoS6IauhHfSFSDQw5EOoRUfXT4QfQC9UU98ZnyBoiSKoqDTanDQaenWwI9AD8ebNykowNvFvsg4jCZjhWOzlnYB7Vh/93re6fFOhacFDqk7hEGhgwjzCTNzdOaXacgs8vELsWmciKz8KYE36lzPl0f+nao3c9Wf9PypJ1M3TUVv0pdyZsni0rKZ/tNhAO7rWJt+YVV4atyOT+CPF8GQXfZzvOvmFrWo2QF6zpLE6nbRYwa0eyh3c+mDD6Dd+iZ0nymJVRVk1ZGrZcuWMX36dBYuXEh4eDjz589nwIABnD59Gn//wu9I5uTk0K9fP/z9/fnll18IDg7m0qVLeHp6FmjXtGlTNm78b01CXmnm6qJ1LS9+PXCNg5cTrR2KxWk1Ws5ec8aY3ogOdbwgNSr/2L3htVlx8BoHLyfR0fQ039wzsspWxVMUhQlNJzCh6QSz9jsodBBBLkE08m5k1n5vd3qjicd/PIihmOl5eYnO7KFht7Qh5tB6Q6nvWR9XO9diE4kbC78oUGRhi8T0HL7dcZGJXeqgKAoxGTF8cvATItMj+aL/FxWOz1rc7d1vqTrosPrDGFZ/mPkCsqC7Vt4FwGd9PqO+V/38x/OmBHap74tXJU4JvNn0/g3ZejaOk5EmvALdqeUWRGxGbLn3VDsUcwitoqWRdyNm/HKEuLRsGvi78sIdTSwUeSWIOgab5oIxBwJbQfO7y36uiw9MXAfaG/Y1y0oGB3cp1V4dpUbl7n928AcANPy7xrxW+H9tctJB5wQaq4+LiFJY9Tv0/vvvM2nSJCZOnEhYWBgLFy7E2dmZr776qsj2X331FQkJCaxcuZIuXbpQp04devToQcuWLQu00+l0BAQE5H/4+pZtD5SqwsMjCgf/tRxKXoOpEjYrtSaTSWXvxQSA3OTqBlqNwrwRzdFpFHad9GTzqSQrRGjb7ml4D691fY22NdpaO5RqI2/PnX/OxuFsr+W5QY0J9CiY1Ad4OJqtDHsTnyaEuIeU2Cav8EtAEXF0quuDCryy5gSzfj1KjsGE0WRkzYU17IrclTvNrgrINGRyLvGctcOoVMnZyUSmRxKZHllobdma/CmB1hm1yuOg0/LhmFbY63Qknn6aO/3eqdBm1Z8c/IRx68bx3B+L+OtUDPY6DR+NbY2jndYCUVcCfRb8Oik3sWo0GJqNLH8fNyZWGQnwRR/4fUZucQNRPegzYcs78FEbOLiYvLfH1Ly36C7v/K/t32/AO/Xg5wdg/zeQeKmyoxVlVKEhHYPBwObNmzl//jzjxo3Dzc2N69ev4+7ujqtr2UqH5uTksH//fmbN+q/6iUajoW/fvuzcubPIc1atWkWnTp2YMmUKv/32G35+fowbN46ZM2ei1f73B/js2bMEBQXh6OhIp06dmDdvHrVq1So2luzsbLKz/xuyT0lJAUCv16PX39r0hluVd/0b4zBporD3+QdDRh3ORCVTz8/FKnFUhq8O/Uqa3WmcnRrR0M+J6zfFUM/HiUnd6rBgSwQv/3aMDrXdsdMZLTqCZe7XIi4zjgvJF2jj3wadpmy/ktb6fthKHK5aV7SKFqNa/E2GvcYeV62r2WP7cNM5lh+4ilaj8OHoFvRs6McDHUPYdT6Wv3bup3entnSs54dWo1To2qqq8sWxLxhebzh+zn5lPq9PI196NuhWKA6NAl/tuMRbG86wdO8VLsSm8fGYljzb9lkaejWknls9s79Glvi5+OnUT7x74F3GNRrHM23Ltm6stDgSsxI5Fn+MbsHdzBZneWMoibPGmS13byEiJQIHxSG/jwux6ZyKSkWnUejV0KdMfVvydzXU25EZ/Rvw2rrTvLb2JO1qeVDfv/C9QEkxeDp44qJzY+0eJwBmDmhIfV8ni8RbGX+3NH/ORhtzAtXFD8Og98BguKU4lLOb0MafQ4k/iynpKsZhC+HfNZi34nb/v8TqMaQloNv+AYo+HZNbEJrU6+R0fZbf05szyOUo9lvfwYg2dy+0y7vRZCbA8RW5H4DqFYoptAdqaA/UhoNzC2OYgS18P2wpjvLGoKiqWq6hj0uXLjFw4EAuX75MdnY2Z86coW7dukybNo3s7GwWLlxYpn6uX79OcHAwO3bsoFOn/zaAnDFjBlu2bGH37sJlxhs3bszFixe59957eeyxxzh37hyPPfYYTzzxBLNnzwbg999/Jy0tjUaNGhEZGcncuXO5du0ax44dw83NrVCfkLtOa+7cuYUeX7JkCc7Ot/7Hy9zijHF8fn0vCalBjPJtRbh/9R29ejPhY9I00XjHT2B6vQZFttGb4K3DWuJMcQTU+g13xwwmu06uMiXat2VtY33WepromnCv670WuUaKKYVkUzIhupJHQKoKg2rgreS3yCSTgY4DqasrXKLZWeOMs+LMxqyN9HLohZPG6ZavuzNaYemF3P+8xtQ10qmG+X/39mfvZ0XmClwVV552fxo7xa70k8rgeKLCt2c1ZBsVfBxUJjU2Emh7f96KtTpjNbtzdnOn0510cOhwy/2lmlJ5O+VtFBSec38OZ03VeTE2XFVYd0VLE08TjzYxlX5CJTCp8PlJDaeSNQS7mJjWVI+Dtuw3ejlGePeoQnSmhjBPlUcam6rs7Dff1ON0OfcWALvqTifao5VZ+g1M3EPbS5+jVfUkONdjd92nyLGr+PRYYR1umVdJdfqvwFTtuL/xSz1OcNIeTgaO4EzAsPxjDaNW0iTyV04GjuBsjSF4pZ/HL/U4fqnH8Uo/nz99MEvnyYZmH+ZPGXXLvEq6gz8mjfWmDFc3GRkZjBs3juTkZNzdS/69K/fI1bRp02jXrh2HDx/Gx+e/CljDhw9n0qRJ5Y+2HEwmE/7+/vzvf/9Dq9XStm1brl27xjvvvJOfXA0aNCi/fYsWLQgPD6d27dr89NNPPPTQQ0X2O2vWLKZPn57/dUpKCiEhIfTv37/UF9DS9Ho9f/75J/369cPO7r+brMgNHfly20VMDWsyeLDlF2UXF4elfbZkK0np5+nXpCP9erQpNoaApgmM/2YrqdqLpBuNNO3WlDrudSwSk7lfi5gTMew8sZM7W9zJ4IaDzR7DzsidvPj3i9R2q82KwStuOd6KxmFOmYZMYk7FsO36Nub2nQtGioxj5raZ7EjegcHTwILeC24p4d58Jpafdx8CVKb0rMuTfeoXOG6u16JRUiPO7DpD31p9uSvsrnKfX1wcg4Fh0Wk88sNBriZm8vEpBz64pwW9GvmRacjEUetotjckLPFzMZjBnEs6Ry23Wthry3bDUFocK9atQKNoaNGxBQ29LFPu2hKvxWef7ADSuL9Xcwa3CbZaHDdr3y2Lwd/PIcltJ5t4gE8GFyz5X1IMc9ecJDrzCr6u9nz1f53wcbXc5ucWfS0yk9B9MRMAY+sJtB38vBnjGIx6ZSDqz/fhnXGegdfewzBmKXjXq3C41vobbotxWDyGpEto/3oFzanfMIz9BbVuz38PDEaz9S2MSm/qd3uG2gXiGIzxn4Y0VI3U735nge6M2amYLu9AidiKnb0Lg3vekXtANaGbHwY56ai1OqLW6Y4ptAfUaAZlLAJkC98PW4oD/pvVVhblTq7++ecfduzYgb19wf/c6tSpw7Vr18rcj6+vL1qtlujo6AKPR0dHExBQ9BzywMBA7OzsCkwBbNKkCVFRUeTk5BSKCcDT05OGDRty7lzxc/UdHBxwcCj8h9zOzs7q38w8N8fSro43X267yOGrKZUaY2W+JqqqEn9lIJlpOfQfFJZ/3aJi6NqwBqPaNOTX06MIcWlELY+62OksO1ffXK/FpJaTeKD5A5hUE3ba8vVXlhhaB7TGTmOHm70bOeTgYmf+aaSV/btiZ2fH5NaTmdx6MvDfcP3Ncfxfy//jRMIJpraZWuTfh7I6cjWJJ5YewWhSGdmmJs8MaFxsInKrr0Vjv8YsvmMxCgraW5jiUVQcYTW9WDW1K48u3s+eiAT+74eDDO1yicPpy5jTaQ69avWq8PXKGsOtaOJXseIGxcXx/eDv88vbW1pFXou3975NDecaDKs/DA+H3Ipx52LSOB2dhk6jMKh5ULn7tOTvak0fO3o09mRzdCpbruzg4NW7i6xSeXMMG45dY/HuKwC8N6oVAV5lW15wqyzyWlw7nbthsHc9tIPmoS1D/+WKo243eCi3VLuSGIHdt4Nh/K8Q1OqWwraV+x1biMPsMWQlwz/vwa4FuWvwFA26mCPQqN9/bfq8CMCNf/Hz4+g9q9Cx3AbeEDYk9+PG48nXQKMDQybKhb/hwt+5x5y8oW4PaH5P7p5qNytiI+P8GCpzI2NbieMm5fmZKHdBC5PJhNFYeJ3D1atXi512VxR7e3vatm3Lpk2bCvS9adOmAtMEb9SlSxfOnTuHyfTfNIgzZ84QGBhY7I1TWloa58+fJzCw8vcBqbC/5+X+ABVly9vw9zxahnig6JI4HRtJenbhudzVwfnYdOLScnDQaWgZUnop2ucHN8FTbUdElAOfb7lQCRGaj53GDgetZd6pdbN3Y8voLfw45EeLJFa2rJF3I1YPX01r/9YV7uNyfAYPfrOXTL2Rbg18eXNkc4tMOb2xfLVOo7ulxKok3i72LH4onDHtQ1BVWH/6JAlZCfxy9leLXO9WnUo4RWpOqkX6rqzEqiLSctL4/sT3vLvv3QJrC/OqBHZt4Iuns+1N+Xm60320d3iOrKjhPLXsEClZJa9TuJ6czjN7RuJc+zPu7exJj4ZlX2dok+p0hcnbYdR3YG+hv7e+DeDhjRDUOvca7uUvICIqgdEAexflFqvY/mFuYhXaA/7vH+j2tOWu6xEMT5+Cx3bDwLeg4UCwd4W89VpXb9gXMTsNTvyWWzAlbyPjm+8/8zYyttD/SYXYShy3oNzJVf/+/Zk/f37+14qikJaWxuzZsxk8uGxTmvJMnz6dL774gm+//ZaTJ08yefJk0tPTmTgxdyrB/fffX6DgxeTJk0lISGDatGmcOXOGtWvX8sYbbzBlypT8Ns888wxbtmzh4sWL7Nixg+HDh6PVahk7dmx5n6r1lOEHa/7hubg2eBOt+36OXE22TpwWtuN8NKDSupYnDmUYhfJ0tuflobkbUH7y1znORlvmhsyc4jPjK+U6bvZlf+PD1v11+S8Oxx6mrMtF7TT/vdsUlR7FnB1zyDJklencxPQcHvh6D3FpOYQFuvPZvW2w097wZ7MMb4SURUxGDHf8egc/nf6pzM/rVtjrNMwb0ZyXh4RhSOhOVuQIos+OIj6tHHvxVAKDycBTfz/FgF8GcCjmkMWuY1JNJGfb1t9Ro2rk8daPM6LBCLwd/xv9sebGwWVRx6MOHw0fTS0vd64lZTLnt+PFtjWZVB7/+XfQpqNziuH5ge0qMVIL8qoNAc0sew1Xf3hgLUxYnfu5sD3LxsPa6ZARBz4NYOwyuP83y/9sQO7aK//G0PFRGLcMZl6EBzfk7pvW5IbphZd2wE/3w9t14fQ6qNUpdyPjLW8C5G5k/PfrlbuRcY8Zudf7+/Xc61srjltQ7mmB7777LgMHDiQsLIysrCzGjRvH2bNn8fX15ccffyxXX6NHjyY2NpaXX36ZqKgoWrVqxfr166lRI3fDwMuXL6O5oZ5/SEgIGzZs4KmnnqJFixYEBwczbdo0Zs6cmd/m6tWrjB07lvj4ePz8/OjatSu7du3Cz68KvRtWhp26gw98hIIWRZvFoStJdKrnU2KXVdGScx/j2nA7rt73AkWPZt5saItAlh04zr7kn7h37RfsnPALWq1t7gkRlR7FgOUDaOnXkkX9F5V7SmBFmFQTqqpabFTE0gwmA6/vfj13n6ben9AjpEeZzzWpJh7/63FOJZxCRWVu58JFbG6UpTfy8Hf7uBCXTrCnE19PbI+b403fo7w3QgA6P/Xf43lvhPR6oUyx/XjqRyLTI/n17K+MaDACnWL5vfkUReHBrqHU9XPh8SXu7EtK4c5PtrPogXY0DrCNRfLRGdHYa+3RaXQWWxO16fImXtuVu13Buz3etcg1KsLDwYNHWjxS4LFzMamcjk7FTqvQP8y6JdhL4uqg44PRLbln4U5+PXiNXo39Gdqy8OjKl9susP+cI45Oz/Ha3TVwsbfcOiuLMhnh10eg9b1Qz3ybwJfK3qXg6NihHyH6GPR7VfZCsgUtx8CVXbkJTbsHC5bWr2xaO6jVMffjRsYc8GsCsSfh+sH/mm97lzv5d8/GvITm0I9w4Lvir3HHe1Dj3xoAx5bDni+LbzvgdQhuk/v5qbW5m23fzCME7dY3GaLo0KqGKpNYQQWSq5CQEA4fPsyyZcs4fPgwaWlpPPTQQ9x77704OZW/GtfUqVOZOnVqkcc2b95c6LFOnTqxa9euYvtbunRpuWOwSf/+AGn/fp2haNFgLPCD9XDzh3FIHcS8k2eq5WbCqqoSmXEFxTGLRn5lTxwVReHFwc25Z90MMjUG5m/7i6d79LVgpBV3MOYgqqqioJQrsTKaVHZHJLA/TsEnIoFO9f3LtFHtu3vfZdX5VbzZ/U06B3W+ldCtJl2fTsfAjuyJ2kOnoLIl3Hk0ioaZ7Wcyb888Hm3xaIltjSaVJ5ceYv+lRNwddXw9sT013Iso71+GN0LKYmqrqXg7ehMeGF7mcvzm0rORPyumdOahb/dxKT6dkZ9v4MN7utM3rEalxlGUYNdgVty1gssply02hc/fyZ+4zDgOxRzCaDLa9BsPa4/kbqLetb4vHs7WXx9TnPjMeI6mria87Tl27uvECyuO0q6OF77O//1sH72azDsbTgMKLw/sxt1Ni98uxebt/ASO/QJn1sOTR8G58Dozi0u6AqufyL1ZTr4Kwz8HO8ttSSJukh4Hm+flFo1o928hl7C7oF4vcCx9WYPVNBmS+5ESCRFb4MJmOP83pEXlbkqvsUPJ+38s+Spc3lF8Xzlp/32eElly26wbZgqkRRfbVkVBqxpQtfb/xVEFlOt/cb1eT+PGjVmzZg333nsv995rmbLR4l89ZqBufhONakRFKfCD5WznTNvauUnHwStJuTfpVbVubRGuJGSSfPE+7B0TGD9iUOkn3KBJjQB6+z/M2v0GvonQc1/rLPyLujG2skGhg2hboy2JWWVPjtcfi2Tu6hNEJmcBWr47u49AD0dmDw0rdcPalJwUErMT2Xl9Z5VNrjwcPHi96+voTfoC0/3Kql1AO34e+jOaEiomqarKq2tOsP54FPZaDf+7vx0Na5QwrbLAGyGa3NK45XyHTavRcl/YfWVub271/d347P7aPLhuOmmGJCZ978DMgU35v+51rf53RaNoqONRx2L9N/Ntxuf9Pqd9jfY2lVidTjhNbffaBfbsW3v0OgB3tLDtNTapOam8t/897DR2NK/Zi6NXs5i+7BCTu4eyP07B+XQsr/9+Gr1RZUDTGoztUIW3iIg8Aptezf184DzrJFYAniFw12ewcjKcWAmpUTD2R+vFc7swZMPuz2Hru5CdDM4+0GJU7oiioth2YnUj98DckbaWY2DzW7D5DUxo0Jj0uTMxesyAsDtz1/sVx+eGCroNB4JHzeLb1mj63+d1e8E93xZuc+I3lOO/YlR0aI05/8VRBZQrubKzsyMrq2xrFYQZbHkbRTWiAgoq/DYF7vo0/3CzYA90GoXY1GyuJWVS08t2F2eX166IeFDtaO7fmEA333Kf//7AyURc2MHRa8nMXXOCT8e1sUCUt87f2R9/57LNl19/LJLJiw9w84qcqOQsJi8+wILxbUpMsO5tci9D6w2llX+rigdsIyqSWOW5MbE6EnuEX8/+yosdX8wfMVq0LYJvdlwE4L1RLelYtwwjp+0eRP37dTSYCr0RUhxVVdl6dSvdanYrMdmrLKHeATg4JZCVnYbicJ03f9dyJjqVeSOal2nNozmZVBM7ru+gc1Bni782iqLY3JsN2cZsxqwZg4rKxns24uvky5noVM5Ep2GnVehnA6OKJantXps7691JY+/GtPZqxohPDrDzQgI7LySQ+6ZQ7vQjD7cUaoQe4K8ryfSp1ce6QVeEPjN3OqBJD42HQGvrvUECQIt7wC0Alt6bOx1tUX8Y/wt41bFuXNWRqsLJVfDny5B4MfexgBYw4A3LFTKpDFvehs1vYOz+HGtSwxjidgJt3tT3HjPAr1HZ+vGtn/tRFt6huR83x3H81+LjsHHl/l9rypQpvPXWWxiK2G1cmNG/azaM3Z/jou+/c7gPLi6weH7R8YX41P0RxS6Bg5eTrBOnheyJSAAgvIgyvmWh0+Yu2NdqFNYeiWTTyejST7JhRpPK3NUnCiVWQP5jc1efwGgqvhhCI+//Z+++w6OovgaOf2c32fRGQhoECJ3Qa+hIR6QpFhQUULFiQ0XRnyJYEV/Fjr0XLIAI0kQILfTeQgsQSCGk92x29/1jSCOdbLITOJ/nyUMyMztzEjabOXvvPacV3f27VysxsaV9F/dxKeuS1c6XYcxg+rrp/HniT7459A0Af++P5rUVRwF4cWSbUteJlGrJg+SP7yhYyi5yUcTqM6uZ/t90HljzAGaL7RvBOts7M3/AfNbeuorZw0ag1yks3nOBOz/fRnxa7Ra6WH9uPQ//+zBTV02tlQIfWhObEYu7gzvuBne8HdXkPr+QRf8W9fFw0vbvsKIovN73de4OuZvzCWZyTaU/vzP1x1hy6jd+OvpTLUdoJf/OUdequPjC6MIGrjYV3A/uWw3uDSHhBHw5BC7ssXVU15a4I/DNSLUQRNIZcPVXRw0f2KD+/OuqImuFzf2eAVD/vVxcojJ/166pOKqhypP7d+7cybp161izZg3t27fHxaV4hr54sTbL+dYpRZ9YvZ/iRML3NEnciGLOK1w8P2Am/579l0z7k+gMndl7LrnyN4J1wJbzuzH4HMC9ngK0vqpzNPW1p2+Xw2yP2c3/ljoQ2tQbV4faXc9Slsf/exx3gzsPdnyQILeKp8TsiEy8PBWwdBYgJiWbHZGJ12RxE7PFzPObnicuI47Phn5Gj4Ae1T6ni70Lr/R+hUURi5jYZiLbTyfw9G/7AZjSuwn39wuu4AyXbZgHJ/8F4FDgBNo0b1L4Dlvvx8C+9LWoueZcnO2c6eLXRRMjVwChAaEATO4NTeu78MhPe9hzLplxH2/hi3u6ERJYO4UuEnMScbF3oatf11qblrjkxBL+OvUXj3R8xCrPr+po7N6YDbdvIDU3teD7zy/BPlKjVQJLk/+mUFnM2QHYp/dneOMbai8oazn1H2z/VP187MfgUvUZFjXGt41aqv3n2yD2IJxYW1g8QFSfKRfOhYOdE/R5HHo/Dg6105utRpmLrO03FmmhkD9SZC7ZhumajqMaqnyn6enpyfjx42siFpHviidWlsEHS/s7UPb/BPWaFjyxJrWZxI6zsfx20p19UddOUYvo5CwS8g7h4LuOyCxnoGol/vOZLCaOZP+GvXs2FxMjeGd1AK+MaVvxA2tYfGY8G6I2YMHC9M6lF3O50sW0yk3Hrei4+Mx4/jr1F5nGTB7v8nilzqkFidmJeDt5k5qTSvv67a123kGNBjEwaCAnL6Yz7ftd5JrMDG/rx0ujQip3U395CgWAxc6Rsz430KrfrWqj8/Wvq71NxnwA7Uq+Zo5pNoZuft2o76TNSqZNA3L57aFuPPLjQSIvZXDrwq28d0cnhret+Sp1t7W8jWGNh9Vq0rkvfh+743az5uwamydXoI7+5DcOPh6XxomL6Rj0Ok0UGqmszSdjuJh3AEUfgMVUct2iKTuIxKggGtn3LOXRGndirfpv9/uh5TDbxlIa9wCYuhL2/AA9H7Z1NHVbbgacDYcWl4tjBXZSRyqbD1F7Sl0rymvMW5tT8bQSRzVUObn65ptvaiIOUVQpTyxTnyfRHfgVEk9DC/WFfHzL8XStl8GidRs4FJ1KTp6p1tdG1IQdkYmYshvgltuHfkFXvxbCzeDGAx0e4GKyji8ivPgu/AzjOjegU5Cn9YK9CvUc6/HV8K84dOkQ/i6Vu1H1datcQY6KjkvITuD9Pe/jZOfEQx0fwqDXXhPS0vg4+fDTyJ9IyErAya7qVUnLczEthynf7CQ1O4/mwREENd+PTulauQebTWojz+i9WFqPJk9/ed3jgJlwfDVc2AV/3KtOHek7o8S0oUBXbY42f7rvUz4/8DlPd3uapY/cwaM/72HzyUs8+MNunh3eikduaFbjI0r5iUVtubn5zTT3bM6QRtqrLro8f0pgSx/NTwks6t2Dz+HcaB/ZMTdjTA4t87jKvnmkKSPeVHsCNdfe86WAgxv0eqTw69xM2PcTdLtPSrXnW/+m2lKjtJv2DfMgZp86rTIzAR7dDt7N1H1dJ9dqmKJuuerfrvj4eDZv3szmzZuJj4+3ZkyiNF7BagUa/w5gLlzv1tjbGS9ne3LzzByN0X7T3MrYHpmAKaM1NwU+zqimo6p1rmkdpvFi//u4uWNTLBZ4/s8DGMuY/19b9Do93f27M7Xd1Eo/pll9F+wqKLce4OFIjwrWqLXyasVNTW/iqa5PkWeue+smvZ2sO+UxPSePqd/s5EJyFo19s7jk9D2Ljv/C6rOrK3eCAc9BVjIA5o53Fd933xroefnGZt1cWPYYSRkXmb5uOqeTT1vvm6gB9Z3rk2fJ41DCITyc7flmanfu6dUYgPmrI3hq0T6yjdafmhGRGMHpFNv8bDr5duLukLsJcLXttLs8cx6TV07m1fBXyTRmYrFYWHEgv0pg3ZkSCNC+XhfMRg9QSr7mKvYJKPYJgKXSbx5pTsgYMNSRQlIWCyyeBv88A0seUKvcicJehVeu4/nrUXVWQsQ/kB4L7oGQftE2MYo6p8ojVxkZGTz22GN8//33mM3qC6Zer+eee+7hww8/xNm5jrzQ1EUj3yks74labexi5kVaNEpixzFX9p5LsvmojDVsP51fzMJ6N9L/u6kNGyIuciw2jS82neaRGypZxUYDYlKymPTldvLKKVYB8OSQFhX2u1IUhbf6vWXN8GpcVGoU/q7+Vi/EYTSZefjH3RyJScXH1cAPkweyO1HP4YTDDGtcyWk+Oh08ugNOrcPSuA8cWVVkn159d9srGFY9B3t/YEHyHsJIIz4rnl9v+tXmZc7LMrb5WJp5NqOzb2cA7PU65o5tRws/N15Zdpil+6I5k5DJ5/d0teqN8Rvb32Dvxb3M7TOXcc3HWe28dUlkSiR7Lu7hWOIxXuz5Isfj0jkVn4FBr2Nwm7ozJRDgf30f5d9t7YlLKXkjb/AOw+C1A/u04fQIvskG0V2FpLPw32vq77WW1lhVhqJAq5FqL66Dv0PUDnhwI9hdUdku7O3LSxPKmZp1LbmiV6FLjjf6hb0h4bi63cEd+j8DPR6UvmGi0qo8cjVjxgzCwsL4+++/SU5OJjk5mb/++ouwsDCefvrpmohR5HNwLTat6EL6BYb8MYTjyjzAfE1UDLyYls3pSyko+ky6N7FOfw6T2cShpG106rwOsPD+vyc4cynDKueuqn/P/suXB7/kQvqFSh1/5lIGt34azqn4DAI9HHllTAgBHsVf4O316nNi4wnrVdLTCovFwiPrHmHI70M4GH/Qquedtfggm05cwslez9dTutPI25mbW9zM/3r+r2CtT6Uq1dkZoNWNUNb6oNAHYMIvYO/Cw+eOcUOenpfaP6LZxArUUvf5iVVRd/dszA/39sDDyZ59UcmM+2gLhy6klHKGqsvKy8LDwQN7nT29AqrWILo0RZttb49MLLeSZr48cx5bL2zlvd3v2axKoZ+LH/P7z+eprk+hU3QFo1b9W9bH3bHuTAkEcLQ38MpodZ3rlc92RTFiMeuZ1Kl3pZqg25zZBEsegoO/wd9P2Dqaq9N5Itz1G+gNkHwWPuyqNobNl19MS0P93mrFgJkw8EX0G99i8JFn0SUcBxR1+uTje6HPE5JYiSqpcnL1559/8tVXX3HjjTfi7u6Ou7s7I0eO5IsvvuCPP/6oiRjFlXLSYPN7+Kcn4ah3xMvBB0Wfxd5roKjFjshE9E5RuLacy7R11mlSnZWXxbMbn2VX4j90apFETp6ZF5cetMnN0y/HfuH9Pe+z9szaCo89FpvKbZ+FcyE5i2AfF35/uDdTegez+blB/HhvN+5pYeLHe7vxx0O9C0rOrz1SuZLzmcZMwqLCrFravCbEZsSSlptGdl42TT2bWu287/17gj92n0enwMcTO9OhoWeJYywWC+/tfo+F+xeWfhJjFpgrOcW01QiY+g/+TvX5ED/aBZa9/kRrckw5xRLb3s19WPpoH5rWdyE6JZvbFoaz6lBMta/jZOfEB4M+YNX4Vfi5VG+EZtWhGPrO+49JX+/i+xN6Jn29i77z/qswzlxTLo+vf5yvD33N8aTj1Yrharkb3BkRPIIJrSdgsVhYfrlK4Kg6NiUw34h2AXw6qQt+HsVvN7wyJ/Nm16U81mu0jSKroq0fwLmtYHCFYa/ZOpqr13ww3L9O/T4yL2H3eR88M06h2/ROQZXiulI0oFqykuDAb2qfMpMRBszEojegABYUeCQcRr1b90YohSZUeVpgZmYmfn4l//D5+vqSmZlplaBEBVY+B/t+wi5mP+F3hZOZa6Hj/jVEJWZxKT0HH1cHW0d41bafTkSxTwbUwg/W4GpwZULrCZjMJm7w78XdZ06w5WQCf+65wK1dy+kgXgNuanoTOkXH0CZDyz1u77kkpnyzk5QsI6393fjhvlDqu6n/r3qdQmhwPRKOWggNroe9vT3T+jVlYdgpXlp6iNCm9Sp8h3v6f9PZGbuTl3q+xO2tbrfa92dtAa4BrL1tLSeTTuJib53GjIt2nuODdScAeG1cewa1Lv1GflfcLr45rBbw6dewH229r6g0ufEd9V3swbOh/a3lXjM2Ixb/wE4wbZ1avreOvAsalRrFlFVTyMrLYuX4lQVFJoJ9XFjySB+m/7yHTScu8dCPe3h6aEumD2qO2ULBiJF3ZCK9mvtWaWSivnP1qidWp9m2s70zo5uNRkHBQW/719FjsWmcjs/AYKdjcJvKNRvXmkOXDvHZqZcIbu/IOy0XsGbTdob1C63y88KmYvbDf5fbK9w4r2TD07omoINanOHzG1Ay4ul/fC7KcYuaWPV/Vn0D16Fkdcc6L+WCuobq2HI4s7lw/XrHCXB+F4opF5Nih96SB0f/VkvaC3EVqpxc9erVi9mzZ/P999/j6KjeIGRlZTFnzhx69ar+VA5RCT0fUSv+HF6K3Q2zcK/fiub1XTlxMZ1955LrVKneK+2ITCQvtTOv33QXPVtYr2/EjK4zCj5/cojCWyuP8dqKI9zQqn6tJqO3tLiFW1rcUu4xW09e4v7vd5GZa6JLI0++mdIDD+fyk6Unh7Rg1aEYziRk8vaqY7w2rvxy5T0DehKdHl3l+G3BXmdPG2/r/JFbH3GRF5YcAuCxQc25K7RRmcd29+/OE12ewN3gXjKxMptg38+QFl3hFJqwqDCe3PAkD3V4iAc7Plh857q54FJfs6WSG7g1wN3BHZ1OR1RaVLEKfh5O9nwzpTuvrTjKt1vP8H9rjxN2PJ7zSZnEpuYAer4/sYsAD0dmjw4pM6EBWBm5kv4N+1c7ga6o2baC2mx7aIh/mTf2s3vNrlYM1WGxWFgZuZLW9VrTxKNJQW+rAS3r41bHpgTm83X25WTySewUO0Ia2JPgo74pVGcSK2MW/DkNzEZoPQo6WWdGhc15NITpu7C8HYxiMaujNgNmqhWJP+wGDbtB0xvUj4bdQV83n38AnN0Kq1+E6CuaKddvA61vUsvqb/sEU//nWZ4Wwii3I4W9Cq+HUTxhdVVOrt5//32GDx9Ow4YN6dixIwD79+/H0dGR1asrWWFLVI9/O/VF/thy9d3z8V/QuZEnJy6mszcqqc4mV4kZuUTEqRUP+zRrgLdzzSQ99/UN5q990RyNSeW15UdYMKHk2hJbWXM4lum/7CU3z0zf5j58dndXXCrR+NjRXs8bt7Tnri+28+O2c4zt1KDcNWtT201lWvtpml73k56bjqvBegn2wfMpPPrTHkxmC7d0acCMoS0rfMz97e8v9rXFYlF/ZqfWq4mVk5e6SLwcmy5sIs+cR7oxvfiOs1th0/+pnydGqovkNbbWQafo+GDgB/i5+JVatt9Or+OVMW1p6efG/5YeZNfZklOTKxoxOnTpEDM3zqSeYz1W3rISZ3tnLBYLmbkm0rLzSMs2knr5X/Xrop9f/jdH/Tw2JbtON9s+n3ae5zY9h0FnIPyucFYcqNtTAkFNrj4e/DEdfDrgoleT5wfXPYizvTNPd3uaYA+NjwKtnQ2XIsDVD0Z/UKKdQp2243MUi1kdrTHlqmuuPBuBxQRR29WPsHnqFMLGfdREK2SMmphpldkMF3arzdv926nbHNwuJ1YKBPVQE6rWo9Sy6mFvw6Z3YOCLmHs/Bf/8g7nfM4W9CkESLFFlVU6u2rVrx4kTJ/jpp584duwYAHfeeScTJ07Eycm6/WdEOfo/C8eWs/fEMn5YoyPNMQDoXqeLWuyIVKsEtvB1xbuGRpMiUyJZe3Ytb958G7d8upWl+6K5uUtDBrSs2UauydnJ7L64mz6BfXC0K31K2JK953nm9wOYzBaGt/Xjgzs7V6lvWe9mPkzoHsSvO6N4/s8DrHi8H472pT/e2pX3rM1isXDPqntw0jsxt89cmnk2q9b5ohIzmfrtTjJzTfRr4cNbt3SocmKZY8rh6Q1PMyBoALft+1vd2OEOsCv/ufpi6Iv0CuhFnwZ9iu9o1AuGzoW1L8OOz9QF5uO/UgvXaEiQe1CFx9zRPYh31kSQmJFbYl/+KNLziw9yMS2HjBxTseToQvZBDBY/slMbM+zdbaRl55Gek1epAhRXqzJ9laLTo0nMTqSdT7sai+NK6cZ0OtXvhJ3OjpNx2Zy+lD8lsG6+YZavf8P+ABiNRrIt2eyK24UFi01HCSslJ02trgcw9hNw0V5CftUuF68oMVoz8EV44gBEhqlvIkWGqT2eTqxWP7waFyZXaXFqIuZu4359eblwZiMcXX65dHqc+tp8y+fqfr92MG4hNBsEblf8LplNhevMjMbC7fkJldn6LSfEta/KyRWAs7Mz06ZNs3YsoioCO0GL4aSeD2NtzFaauLUAurM/KhmT2VJ3plwUoSZXJuz8f2Xh/qNMbTfVqusesvOyuXPFnWQYM/hqWCem9A7m6y2RvLjkIGue6o+z4ap+HSpl7bm1zA2fSxffLnx343cl9v8QfoaX/joMwPguDZk3vj12+qq3oZt1YxvWHbvIqfgMPll/khnDWlX4GGuPEFlDVFoUkcmR6HV6fJyqt6A4KSOXyd/s4FJ6Dm0C3PlkYhcMdlX/2a44vYKw82HsiNnOwDNn8QHoPKnCxymKwuDGg0vboVah8mwMSx5Ub+K+HQl3LgJ3bY5UbI/ZTjPPZiX+T3ZEJpaaWBWVnGnk5cvP8eK8gSdAlwPmrGJ79DoFN0c7XB3scHO0x83RDnfHws/din1uz4WkTOatiqjw+6iofPyqM6t4NuxZ2vu05+ebfq7wfNbSxrsNP4z8AYvFwv+tUQtqDGxVH9dKjF7XFQYM/DDiB06knKj2+roa5+AGD22CiFXQQsPNgqsqvypgRaM1Xe5RR4LiDsHpDepHk76F59n5BWycDz6tCqcQNukLju41/z1YLHB4MRxboU7ry0kt3GdwU9vW5FMU6HRn6ecpr+S8jFiJq1TlV+w333wTPz8/7r333mLbv/76a+Lj43nuueesFpyowICZtPnmX2YmJtMkdBIP7dOTkWvixMU0WvvXwoublW2PTECxT+K8cTNfHdzFAx0esOr5He0cGdV0FHEZcbjYu/D0sJasPhzL+aQsFvx7ghdG1tziVQUFfxd/+jXsV2Lfx+tPMn+1ekM4pXcTXh4Vgu4qk2MPZ3vmjmnLwz/t4ZMNpxjZIaDM58KxxGM8G/Ysdjo7loxdclXXqymN3Bux9ra1HL50uNg6n6rKNpqY9v0uTl8uZf/t1O5XvXbl5uY3czb1LH1TEvA5+SEEdAL/0te2peWm8euxX5ncdnKp0+mKaTsO3BvALxPUhfNfDoGJv4Ff2/IfV8vm7ZjHj0d/ZFKbSTzXo/jrfGVGggDaNXCnpZ8b7mUkR1cmT072+iqNMJrMFr4PP0tsSnap666gcs22u/l1w06xw9HOkVxTbsX/hzVgxeX1ViPbazPRrqyY9BiScpLYcmELO2N20tjYmGY0I8Q7hCMJR/By8LJ54+ZyOXpAxztsHYV1VWW0RqdTC2AEdIA+jxc/T3qc2oLiUoT6seMzUPSF67X6PFE8yamu7NTCxE1RYNO7auIH6rTNViOhzSho0q/CGQVC1KQqJ1efffYZP/9c8p28tm3bMmHCBEmualPDbvgGD+JuR3fw60qHhjGEn05g37nkOpdcpWYbORKTCjoH7g95FJ2dUe01tP7yOpTS3kG6imaHL4a+WOxm7bVx7Zj67U6+3HSaMR0Dadfg6m/ky3Nry1u5pcUt5OVXJ0Kd+jZvVQQLw04B8Pig5jw1tGW110GNaOfPsBA/1hyJ4/k/D/Lnw6X3kQlwCeBc2jl06EjISsDbSVtTXnycfBgQNOCqH282W3hq0T52nU3CzdGOb+/tgZ/71VfpUxSFp7o8CZ9ent7X5W7yzHnY6Uq+jP7frv/jzxN/ciD+AB8O/rDikwd1h/v/hZ9vh0vHIf6Y5pKr/g37syhiUanfb2UbCb84MqRgrdOZlDOcST3DgIYDrLb2T69TmD06hId/3HO5pHJJL90UUuHIvo+TD2ETwnA31N7raH5rCEVROBKTSuSlDByqOyXQyq+fVRWTHsOopaPINRWOaoYTzq+rfi342qA3sHzccm0lWPsXQW6a2ufoWlpjlc9aozVjPlSnNkduujyytV4tiBG1XX0dG1DkfvDUf+Dqr1bgy/+ZVub52eF2dX35sRUQexCePVmYsHW7F5LPqeunGnRVE0EhNKDKyVVsbCwBASVfBOvXr09MTPV7nYgquvNX0Kv/jZ0bZRF+OoG955KZ0KPsKmhatOtMIhYLBHv580T3CYU7dEWmKfR+qnB7kWkNVXHlTdzA1r6M6hDA8gMxPL/4AEsf6XNV0/EqQ6foCt4BN5ktvPTXIX7efg6AF0e2YVp/6/RxUhSFuWPbEX4qgX1RyXwffoapfUouGvdw8OCzoZ8R4h1SqzeRFTFbzAVNfKvjtRVHWXkoFoNex+d3d6Oln5VKC496F/b9RHyzG7hv2S3c3PxmQgNCycvLIzovmqOJR2ni3gRPB09uanpT5c9bLxjuWwMn/oV2460TqxX1DOjJmlvXlDpNs0dwPQI8HMscMVIA/ytGjD7d/yn/RP7DPSH38Gz3Z60WZ35fpTl/Hym1uMWp+PRSHlVSbf9OXMy8yK1/30pbn7YEG9URgoGtfKs3JdDKr59VlZSTVCyxKk2uKZeknCTtJFeJkbBiBuSmg6NnhW0WrntOXmqRi5Ax6tdJZ9V1WjnphQV6LBb46zFIPa+OMAUPgGYDITcDwi+/+ZT//LRY4O8nYfc34OwDYW8Vv17UDvWxAN3vq/FvT4irUeVX7aCgILZs2UJwcPGbtS1bthAYaONFjdcjvR1J2UlEpkQS5KsmDnWxmfD202oxix5XVrjLf0dr/evoTCYgRG12uPGtajU7zDBmsO7cOkY1HcXLo0PYeDyeQxdS+WbLGaslOfliM2Lxd/Ev+NpoMvP0b/tZtj8aRYE3b25v9WTY38OR50e25sUlh5i/OoKhIX409HIucVzPgJ5Wva41TF01lUDXQB7v/PhV33B9uek0X2+JBOCd2ztarzKcokCjntCoJ19se4PIlEje3f1usUM+WfVJwecvbnmRjvU7Vv77cPKCDrcVfp0ao7Zd6DvD5u/KKopS5vq38kaM8t/OmD26cMTIYrHQwLUBznbOVUtAK2lEuwCGhvgTfvJiQV+lCyk5PPfnQd779zhdG3vRu3nl1vIZTUbMmGu879XRxKMk5yQTlxHHseNqM/CbqlslsOjrZ2YSDsbWVnn9vGaZTbDkITWxatQL2t5s64jqHq/G4HVP8W256VC/lVoYIz1O7Q948Dd1n7N3sb/v+t8mwsk16r7MS6CzU6f5tb5J/bB18QwhKqHKydW0adN48sknMRqNDBo0CIB169Yxc+ZMnn76aasHKCr2/p73+fPEn9xv3wg/JnDiojrNrqJGslqy/XKlwGYNMknLTcPNUGSU4fINgH7964xBQcFSrRsDk9nEmKVjuJh5kfpO9ekV2IsXb2rDc38e5N21xxnRzp+geiUTkauRnJ3MjX/eSBOPJvxw4w/YKU488tMe/jt2EXu9wnt3dGJUh5r5Y3Fn90b8tS+aHZGJvLDkEN9N7a7p0usAJ5NOsufiHg5cOnDVoxnLD0Tz2oqjALwwsjVjOtbMz3dMszH8EvFLucdU6115Ux78coe6Div2INy8UC0vrAGxGbHsjN3J6GajC7aVNWLkX0qfK0VReLzL49zX/j6rNYe+UmnNtnedSeL33ed5/Ne9/PN4P3wrmCb66b5P+f7I9zzb/dkK+9NVV+/A3vw66lcOR19kZngmDnY6BrW2QuPgATMhLRb99k8Ykb/t8hsE5OWCXe2vJ9Osze9B1Da1IMLNn2muNUKd5eAGdy+GvBx15On0enUaYfReNeFq2B39xrcYpdihs+SBzh5aj1Sn+7UYBk6etv4OhKiSKr8V+uyzz3LffffxyCOP0LRpU5o2bcpjjz3G448/zqxZNTd3W5StiXsTGlj0uMQd4BmXlVgscCAqxdZhVVpGTh4HL6jx/nR2Fr1/6c3hS1dUFet01+UmoBb1XfHg/ld9Pb1Oz8CggTRxb1IwZeX2bkGEBtcjy2jif0sPFax/qK7DCYdBAb2ix2J2YPLXO/jv2EUc7HR8fk+3GkusAHQ6hTdvaY/BTsfG4/H8ta/0psGrzqxixoYZ7InbU+r+2tTMsxk/jfyJWT1mUc+x/KID+UxmC9sjE9l9SeHb8DM89es+ACb3asy0flYchTyyDJbPUBMdQFfTI0l6O+j5qHqjcWQpfDcGMi7V7DUrITYjlpsW38RLW17iTMqZYvtGtAtg83OD+PHebtzTwsSP93Zj83ODymwgXFOJVVnmjm1Ha383LqXnMv2XveSZzOUer9fpSTemsy1mW43HZtAbaOvdlsgL6s9qUGvfSvW4q5TAK3r5ndsG342Gt4Phl7vUdSvXu+i9sOFN9fORb6sjMMK67BwguB8Mfhmm/QczT8PtP8CoBVj0BvSWPCx6A7xwAW7/Xl1vJYmVqIOqfHegKArz5s0jPj6ebdu2sX//fhITE3n55ZdrIj5RCVPaTWFVv3e5PyWVsea11CeZvefqztTA3WeTMJktBHraFUwbKtFbZ9njBdONFIBvRsKhP6/6mjO6zmDZuGUFBRMUpTARCTsez7L9pSciVdWnQR/C7gjj+W5zmPTldrZHJuLqYMf39/ZgYCsrvCtdgWb1XXlicAsA5vx9mIT0nBLHbDq/ibVn17I+an2Nx1MRRVHoUL8Dt7e6vVLHrzoUQ995/zHp6118f0LP6/8cx2i20LGhBy+PbmvdkbqdX8CuryBipfXOWZGOd8A9S9W1H+d3wJeDIf547V2/FP4u/vQM7Ekn304YzcYS+/NHjLr6qCNGVxaPWHZqGWdTz9ZWuMU4GfR8MrELLgY9OyITeXdt+T/Lsc3G8sONP/BWv7fKPc5aLBZLQePgak8JLCpNPadZuTwS498eXOqr07VOrFano+Y7sRZO/gvGrFJOdI3KzYQ/p4E5D0LGQscyynYL68pfrxXxD4opF5Nih2LKhS3v2zoyIarlqt96dXV1pXv37ri5uXHq1CnM5vLfARQ1rOlAaNgdgyWXaXYr2BeVbOuIKi2/eXDPpn78d/t/hN8ZXnwxedjbcGodpjbj2NDqVczeLdTGhX/cCxvfURfAVpGzvXOJG++m9V15bGBzAOb+fYSkCvr2VFZWtoFZv15i//kU6rkY+GVaT0Kb1l5lvgf6N6W1vxtJmcaC6XJFjWo6ikc6PsKopqNqLSZrWHUohod/3FNq0YID51NYeyTWehdLjITIjYBS+zdeTfqqlQS9mkDSGfhqKJzZXLsxXGF+//l8M/wbWni1qNLjYjNimb11NmOWjiEyJbKGoitf0/quzLu1AwCfbDjFf8fiyjzWz8WPTr6drFJgpTwpOSl8uu9Tfti/knOJmTjaW2lKIBRrFvt3p28w9X9eHX3tPg0e3AhjP1anbeVb/zr8OB7mBcOPt8K2hXDp5FW9ztYZZzarVe5c/WHUgmuzQqBWFW1m3Olr9fm5/nV1uxB1VKX/Ynz99de8+27xhdsPPPAATZs2pX379rRr146oqCirBygqSVEKyp5O0v9L5LmzVpvaVtO2RyYAEHq5klixhrZFmx3e8iWpzo0xPbAZGvZQ929ZAFlXP0pntpjZGbsTs0V9c+DBAc1o6edKQkYur/9TMhGpCovFwrmETG5duJUTF9Pxd3fktwd70r5hzZR7L4u9Xsdb4zugU2DJ3gtsiLhYbH+vwF483OlhWtWruOFwTZq5cSYL9y8kOTu5wmNNZgtz/j5SZi8jgDl/H8FkttLvwL7L7SeaDQTPoPKPrQk+LeD+derzPjsZVs1Sm3vaSGlvTlRGrimXPoF96OrXlWCPkhUsa8uoDoFM7qVO+3pq0X7OJ2XaLBaAIwlH+GT/Jyw89B6gTgm0SlPzRfcUvn72ewZA/Xfgi7DhDTi+GjoWqc5qNkNAR3ALhLwsOLkWVj0HH3WF9zvCurnVj0mLWg6De1fD+C/BuXLTkYUVFP37fuXzUxIsUYdVOrn6/PPP8fIqnDqwatUqvvnmG77//nt27tyJp6cnc+bMqZEgRcVeDX+V2499wbHA9jgrOdya+xfnEm17w1AZ2UYT+y+vDwsNvmI0Jy9H/ePf54nixSt0erh/LbQcAe1uu+o/hhaLhUn/TOLe1feyLVpdU2Gw0/HmLR1QFPhj93m2nrz6NS4Prn6C0b9N40JGJI29nfn9oV4097VSOfAq6hTkWVCO/cUlh8jIyavgEbXrVPIpVkauZOH+haVONbvSjsjEUkes8lmAmJTsglHRajGb1Ip9AJ0nVf98V8vFByYvU3u7TPjJ5tUDQU2Wfj32KxGJEZU6vpF7Iz4a/BGfDvm0hiOr2As3taFjQw9Ssow8+vNecvNKT1ZzTbl8tv8zJv0ziay8mpkq525wZ3TT0eSmhgBwU3srrMVMjYGIf9TPg6/oFzdgpnoDW7RZLKjPqdHvw4wj8HA4DH1VfazOHpLPqiOn+SwW2P4ZxB0uc1TLy8GrwgbMBr0BLwevco+pFUHd1fVAovYUbWZcVFnPTyHqiEq/NXbixAm6detW8PVff/3F2LFjmThxIgBvvPEGU6dOtX6EolIikiI4mniUs20n0jr6IPfo1xB28gyNvbXViPRKe88lk2sy4+fuwIqob4k+Fs0dre6gQ/0O6rukF3ap6wIGv1LywXctKv51xCrwCwHPypU1VxSFdj7tOJ1ymuiMwjVWXRt7MSm0MT9sO8usJQdZ/WR/HO2rVjUqPPI84bEbwdlEk3pj+XVqrwork9W0p4e1ZPXhWM4nZfHOmghmjy58bpjMJg4nHOZC+gVuDL6x1mNr4NqAN/q+wdnUs9R3rl/h8RfTyk6srua4cp1eD6kX1HVPraxfNrxK7J1g1HvFt534V70ptKvZUuGlmb9zPr9G/MoNQTfwoRJY6Ya1NV3WvDIc7PR8dFcXbvpgE/ujknnjn6O8Mqbk66W9zp7FJxYTnRHN1uitDG402OqxtPVpy4Tgmfy8YgtO9noGtq74d6BC6+aC2aiOdgb1gLwr3lApr9qqoqivpX4h0OdxtWfRmU1q36F88cdg5eVzuAVC88HQfAg0vaGgCEGAawDL/W4kyWKErpPJy8tjy+Yt9OnbBzs7O9j9HV6Kfe30uLqyYa3Fgm79q9DpTjj6d403VBalsFYzYyE0ptJvfWZlZeHuXrgOZuvWrfTvX1ixrWnTpsTGWnGNg6iSBzs8yPsD36dr5/uJdOvCF3k3sf9C5Zpl2lL+lMAewd6EnQ9j2allJGQlqOtbwj9WDxo8u+J36c9tg9/uhi8Gw4XKV717qOND/Hfbf9zasnijyJkjWuHv7sjZhEw+WHeiSt9T+KkE7v/mIBmRj1AvZzyLp42zeWIF4Gyw4/Wb2wPw7dYzxYqeHEs8xsR/JjInfA5GU8UjR9bmaOfI6Gajmd55eqWOr+yMNF83K/zc9/6o/tvhDrAvPJ8m3pU/+jf8dCt82BX+faX0Y8LeVm8sa8Bdbe7C38WfPoF9sCi60qfyhL1NYtibfJt2jEyjtkbTg+o58+7tnQD1d+KfgzEljlEUhQc7Psjc3nPp6tu1xmJZcfnag9pYYUrghd2w//JU1hvfqv4aIgdXaHWjOrqTz5QLzYeCnSOkRcPeH+D3yfB2U/hqOJxcB0CAwZ2QrQsJObScNvXaEGgXSJt6bQg5tJyQrQsJqK1mzfkNlS8/PxslbkS/9X34bIC6XcquCyGspNKv4I0bN2b37t00btyYS5cucfjwYfr06VOwPzY2Fg+P2l1LIgr1a1g4nWHr4B95/9d9dIiu/ZvkqspvHhwaXI/AwIc4kXSCNi6B8N3NgAW6TFb7XVTEIwh8WkLcIbWS4K1fqQ0HK1BWuW83R3vmjG3Lgz/s5vONpxndMZA2ARXfBPx3LI6Hf9xDTp6Z3s068Pk99+JqrXLKVjCgZX1u6dyAxXsv8PyfB/n7sb4Y7HS08W5DY/fGtPRqSUpuSpnNYrXgVHw6b5ZSmKMoBbW/Uo9gK6yfqN8G3LaVmBIY4BrA8nHLScpRk9QS78qjJmA1+q68vTMYXCElSu3Rk5cNg18t3F9kTUNNCHZvwqrRS9HnZYNfOmTEqw1BL53EI7dtQcPa7zvdyFdJewjf8BSfDf2sRmK5WkNC/HhwQFM+CzvNzD8O0CbAnWCf4iXia7LHldFkJNOYWVglsH01ny8WC6x8Xv28453QoIYSwoCOMOkPtarg2a1qhcGT/8Kl42qvqPypggNmQvpF9XmRnQZ0s00j46INlTMu0f785am+phxpqCyEsKpK3/VNnjyZRx99lMOHD/Pff//RunVrunYtfNHeunUr7dq1q5EgRdV0bqS+U34kOpVso6nKU9pqS26emT2XR096Nq1Hc9/GDGo0CP64T52GVa8pDH+jcifzaABTV8IfU9U/8L9OVB/b8+FKv2sbnR6Nn7Mf+svvYA5v68/wtn6sPhzH84sPsvjh3iXKShf1174LPP3bfvLMFoa08eOjuzpr8mf/0qgQwo7HExGXxmdhp3hscAt0io6/x/1tkybD7+5+lzb12jC40eAKR4IOR6dwz1c7SMjIxc/dgbjUnIIS/fnyv4PZo0PK/f+qtBueg/7PlPrOdoBrQEHyZDQaibSLpE29Ntjb11ID7+aD4b7V8NPtkHoetn2KLjsdlKElb2DNZjBmQm6GOtU2N+Py1+nQuG/hqNzJderNctHjCj7S4Y4fC4t6rJuLfvO7JcLSH1zEDQARwMAXaRnUjkb7PuaOVnfUzs+lip4Z1oo9Z5PYeSaJR37aw5JHetfa7+7BSweZvGoyJvfGOKVPr36LhoN/qGX77V3UUf+aZu90eUrgYOBNSDqrvgY36VP8GEAf/gFjuPw76t5ALft+Yq2apDlefnN28wI4tqLs6034CVwv/4y2LSy/JcetXxVOE9/1jXot9wbodxRJ8G+YJYmVEMKqKp1czZw5k8zMTBYvXoy/vz+///57sf1btmzhzjulN4StGE1GDiccJjYzluGNh+PjYqBd1g5yvv0Mx7t/AMdamnpRBQfOJ5OTZ8bbxUCz+pcrBB74HQ79AYoebvlCnY5SWY7ucOci+OcZ2P0NrJ4FSZEw4q0Kp3zM2jSLFadX8PHgj4uNAs4Z046tJxPYH5XMD+FnmNKn9ApnP20/e7n5MPRtH0dIqxOcT/ekuVfzysdfS7xcDLw8OoQnft3Hh/+d5Mb2ATT3dbVJYhWVGsU3h75BQWHV+FUEupa9kH/32USmfLOTtOw82ga68/29Pdh5JpE5fx8pVtzC38OR2aNDymxce1W0PGXIr61aqv2XOyBmP/p9PzCGH1GwFCZWK5+D7QvLPscT+9VS7wCRYeX3mclOAS4nVwbngs27nd3Z4OrC07kGtfgBYNHZowyYyUhgWJNhNV7S/GrZ63V8eKe6/upoTCqvLDvMW+M7FDsm05jJ5gubyTBmcHOLm6127fyeXxaTM4Pb+OJkqMZzLTcT/r2cUPV7CtxrYS3TlbwaQ/f7im/zaAh+7SDuUMGbH6ReUD+geOGCpDNqclgWU5EWGSlR5R9rLLLmMvVCiWMtOnuUG54v+/FCCHEVKp1c6XQ65s6dy9y5pZdivTLZErUr3ZjO3SvvBuCGiTfQpZE7z536AY8LMbDzS+g3w8YRlrT9ciW3HsH1OJ92nvTcNBqHf4gzqDeEDbuV+/hS6e3UBf/1msLal2DH5xDQCTpPLPdhng6eWLBw4NKBYsmVv4cjM29szUtLDzF/dQSD2/hx9lIauy8peEcm0qu5L19sOs1bK48BcHfPxiS7reKbwxsw6O2Y7lW5NUS1bUzHQJbuvcD6iHhmLT7Aogd6obs8ypOam4qdYoezvXMFZ6k+Z3tnHur4EHEZceUmVptPXGLa97vIMpro1tiLr6Z0x8PJnhHtAhga4k/4yYus2bSdYf1C6dXc1zojVpdOqL1vmg1Wn1da5h5weeT2Pji+EgVLQWIDgL7oSJqiTiU0uBR+WIpUymvUS70pLdjvWvzzoqXoez4CPR4kwZTDtMXDMZqN9Gs6hB7bvsKk2KE3G9WpiQNmYqfT9s/Q38OR9yd05u6vt/Przii6N6nH+K4NC/bvvbiXp8OextvRmzHNxhSMcFfXuObjmL/Ynpi0ZEbdUM1kyM4Bbngedn8HvTT02hP6oJqUxx3CjB4dJmh3K7S9nKQWbb/R7V61MEZZnIpM9e10l/p8LUvR5LL9berfgsNL4NAfmBU9uiLPTyGEsBZt/7UTlebp4Elzz+bUc6xHujGdTo29+TDiZhYYPoHwj6DHA1UbBaoF+clVaHA9fon4hR+O/MDdHScws80Y6PPk1Z9YUdQKV16NIWJlpZq+Tmk7hQmtJ9DYvXGJfRN7NGLp3gvsPpvEkHfDyMkzA3q+P7ELFwc9GTnqu66P3NCMZ4e34t9zY7DT2TG8yfCr/x5qmKIovHZze4a+G8bOM0n8vOMck3o25rVtr/HH8T94udfLNbrOJJ+3kzePdnq03GNWH47lsZ/3kmsy06+FD5/d3bXYgn+9TiE0uB4JRy2EBtezTmIF6kjPzi+h6xS1PLXWGVwgsBMcX4kZXfEbx35PQ+8n1GPsncqfKtvqRvWjstcEvIEJrSeQdW4bjXZ+qzYETQtB0a3Ac9v/0S8nHWWY9nsk9W3hwxODW7Dg3xP8b+kh2jf0oKWf2j6hh38PQrxDCPUPJceUg7POOm8+7D+fQnSSgrPBhxuqOyVQp4cu90Dnu7XVCLdoo9i0EEa5HUG/8S2o36pkYhPQQf2oDL+26kdl1G8FR/6CQ38Uj2P96+p+SbCEEFYiydU1QlEUloxdUvB1pyD4P3MvnmExDTNjYdfXasKhEXkmM7vP5I9cebMyWo+XgxdNvFpAq9utc5GQsepHPmO2Ol2pfslmuX4ufmWeRqdTuKl9ALvPJl1OrArlJ1bjOjVg5ojWAAxtPJShjYda4RuoWQ08nZg5vBWv/H2Et1YeY0gbP7wdvTFZTBxLPGbr8ABYvOc8z/5xAJPZwoi2/rx/Zycc7Gphip4xCw5eHo0PGVfz17OGsLdhw5s2u3GclJJOcsRGEkOncbHtTZzZvJ5fsw+S7u/Ls4e+ZmheOgEjS67P0prHBrVg99kkNp24xMM/7mbZ9L64ONhhr7dn0ahFFZ+gilYcUNtADG7jV711XiZj4QilBhMrBr6IufdT8M8/mPs9g15/uXof1E5io5U4hBDXPG1OgBfV1qGhJxZFz/vGMeqGrR+q8/E14nB0Khm5Jjyc7GnNGZ7Oc2Hj7RtKlES3GrMZlj4MXwxS+wKVIzsvG1ORNQAms4UvNp0u9zHbIxMwmUtvpKlld/dqQudGnqTn5PG/pYe4teWtrBq/ihdCX6jxa/989GcOJxwuc/8P4WeY8dt+TGYL47s05KO7OtdOYgVwdLk6jckjqGQDVi0qeuPY7xkA9d+BL5ZeHt3KYtJjGH3hL+5oEMAdMf8wcdVEvkz/kvQ8tR3EfG8vRl1cS0xadAVnsj29TuG9Ozrh5+7AqfgMXlhyEEsZTXKr60TSCf48Nx97zx3VqxJ4bjt80Ln84g62opVGsVqJQwhxzbN5cvXxxx/TpEkTHB0dCQ0NZceOchanAsnJyTz66KMEBATg4OBAy5Yt+eeff6p1zmuRq4MdLf3cWGLqS6ZzA8i4CHu+s3VYBfL7W/Vq5IpuyQOw6jnY9E7NLXjPy1LLROemw8+3qyN5pfh036cM+n0Qmy5sKti2IzKxWMGE0sSkZLPxxHmWnVpGam6qVUOvSXqdwrzxHbDXK/x7NI4dJ/No4Nqgxq8bkx7DWzveYsLyCVxIv1Bi/8frT/LSX2riNaV3E+bf2gE7fS2+XO39Qf2308SKe6xpgY1vHJNyksjFXO4xuQok7f22RuOwFh9XBz66qwt6ncJf+6L5afu5gn0Wi4UTSSeIzah+X8e/I8IxOu/CweMgN7S6ysbBZrP6+pkSBafWVzsmqxtYTjW+ATNrr3GvVuIQQlzzbHrXsGjRImbMmMHs2bPZs2cPHTt2ZPjw4Vy8eLHU43Nzcxk6dChnzpzhjz/+ICIigi+++IIGDRpc9TmvJTtidjBh+QSeDXsWUEuy52FHmJ9a6IIt7xevnmRD+f2tHjX/CPFHwaU+dJ1acxc0uMCkxer6K4sJlj8Fa15Sb0yKSDemk5abxrpz6wq2XUyr3M9sU3QYL25+kckrJ1s19JrW0s+Nh29QqxrOXnaI5MzcCh5RfXnmPEYEj6BPgz7FkjmLxcJbK48xf3UEAI8Nas7s0SEFxTZqRdIZtWIeSoWFUDSjrtw4bvsEEk7ZOopK6d6kHjOHq1OI5/59hEMXUgB4Y/sb3LLsFn6L+K3a14iOrU9O/FBC3AZd/ZTAA79C9F4wuMHgl6sdkxBCiOqxWnIVFRXFvffeW6XHvPvuu0ybNo2pU6cSEhLCwoULcXZ25uuvSx9V+Prrr0lMTGTp0qX06dOHJk2aMGDAADp27HjV57yWKIrC4YTDHEk4AkDnRp4A/JDVW614Nuy1K6qG2YbJbGHHmUR66w7RPuontjg5MrlZCJ+fXlLxg6vDzgDjPoUbLk952/oB/D5ZXV9z2V1t7uLTIZ8yp/ecgm2+bo6VOr2XsxPNPZszMGigVcOuDY8ObEZzX1cupefy0vLNvBr+Ko+te6zGrhfkHsTb/d/mk8GfFGwzmy38b+khFoapN98vjGzN08Na1X6J+H0/q/82HVDYI0dYR142LHmozkzBeqB/U4a08SPXZObhn3aTkmWkk28nDDoDmXnVm2ZtNlvYetRA7qXB3Nf5KqdD56TBv6+on/d/prD/kxBCCJuxWkGLxMREvvvuu0onMbm5uezevZtZswrfUdXpdAwZMoTw8PBSH7Ns2TJ69erFo48+yl9//UX9+vW56667eO6559Dr9Vd1ToCcnBxycnIKvk5NVad1GY1GjEZjpb6fmpJ//crE0cytGf/X7/9o5NYIo9FI+wC1OuCeC5lkvfiLOq3KZFY/ajCOihyJSUWXncy7DmrfnaPBvdiTdgrfxBPlnt9qMfSZgeLeEP2KJ1GOLsP8ayamCb8C4Ovgi6+vL6Y8EybUG8DODd3wv9ywtrSVFwrg7+HAtE5DeUg3BqO55p831vz/APVdltfHhjDhyx0s3x+PW9bvWLAQnRJNfeeypytZIw4TJowmM88tPsTfB2JRFJg7OoQJ3RtW+rzW/HnoL+xFB+R1uAtLFc5n7f+Tq2WLOPLy8ip1nMXgAud3YNr0HubeT9RwVNb5Wbx1cwjjYlKISszimd/28e7t/Vk3fh0u9i6VOm9ZMeyNSiY6JRsXg54+wZ5XFaMu7B306XFYvILJ63o/1MbrZzVoIQaJQ3sxaCUOLcSglTi0EIOW4qhqDIqlkit1ly1bVu7+06dP8/TTT2MyVe4dyejoaBo0aMDWrVvp1auwT8XMmTMJCwtj+/btJR7TunVrzpw5w8SJE3nkkUc4efIkjzzyCI8//jizZ8++qnMCvPLKK8yZM6fE9p9//hln55rv9VNTzBZ4YaeeLJPCsx3yaOhi64hUG6JhcPQnjNJvI93Bj8UtnuaMJQ43xY2m9k1rLQ7v9GN0i/yYXcGPkuDausT+/F8NRVHYn6Dw9fH8gd6iIynqMfe2NNPRu+4VtLjSH6d1bIrT4em7gdsa1qeVoSn2inVHO48aj9JI3wgXnfqENJrh2+M6DiXp0CkWJjU309XHhj9LiwWPrLOkOQZi1hlsF0cdEp0XzSfpn1R43BxTL0ZdWM7+oKlEe/Wohcis41w6LDikx2RRGNfYxMDA6j8/fz+bxdbEFDq61mdKi6pPCXTOiWfQ0efRW4xsD36CWM+u1Y5JCCFE6TIzM7nrrrtISUnB3d293GMrPXI1btw4FEUpt2pSTU/fMZvN+Pr68vnnn6PX6+natSsXLlxg/vz5zJ49+6rPO2vWLGbMKGyym5qaSlBQEMOGDavwB1jTjEYja9euZejQodjbV/0m94/43Ww5lYBr4/aM7FIf3Z5vUY4uwzTprypNEaxuHEXt+W4pw3U7MaPH8c4fuLNBl1qPQTUSjA8Tau9UuCknDRzcWB65nO+Pfs8jHR7hhoY3MBLocjiO1/45Rmxq4ShngIcjL97YmjaNcghyDaq1KWzW/1mo+mXnMfLDLcRevAFaNmHs8JZWjSM+K57ZS2ejU3QsH7McZ70XD/+8j0NJiRjsdHw4oSODrmJhf039POpaDLaK42jiUT5ZVXFy1XzkoyhOr9LJuR6daj4sq/4s3Bqf45Xlx1geZcedw7rTpZEnWXlZONk5lfu40mIwmy3M/eT/cAn+GZNre0aOrHqxId32T9AfMWJu0p8ud/6vwvLrWnh+aiEGiUN7MWglDi3EoJU4tBCDluKAwlltlVHp5CogIIBPPvmEsWPHlrp/3759dO1a+XfOfHx80Ov1xMXFFdseFxeHv79/mTHY29urfSkua9OmDbGxseTm5l7VOQEcHBxwcHAosd3e3t7m/5n5KhvL6ZTTHEk4QhP3JrTzaUfXxl5sOZXAgQtpTO7uD1vfh4x4dEcXQ+dJNRZHWSwWC3/HeLIndw4f3aDQuElorcdwxckKP487At+NgmGvE5kXw8nkkyyLXMbQYLVn1ahODbmxQwPCT15kzabtDOsXSq/mvuSYshiwaACejp78PPLncqfRWZu1n6P17O15/eb23PfdLr7eepaxnRvSroGH1eJISU2hVb1WGHQGnO19mPLNTvZFJeNi0PPF5G70buZTrfir9fPIzQCLGRzcbBeDFdVmHHZ2lftTYmdvj71HkZ5yxmywr9yaxuqwxs9icp+m7I5K5e/90Ty+aB9dui9jZ1w4f437q1IVNovGsPtsIqk5mTiYnOkR2O7qYuv7BDTojM7FF52h8iOsWnh+aiEGiUN7MWglDi3EoJU4tBCDVuKoyvUrXdCia9eu7N69u8z9FY1qXclgMNC1a1fWrSusymY2m1m3bl2xKX1F9enTh5MnT2IuUuHt+PHjBAQEYDAYruqc15o/jv/BrE2zWBm5ElArBgLsjUoCgzP0vlykYNP/galy6ySs6cTFdBIzcjlh15yAwY+QacxkzZk1HE86XuuxlLD3B8hMgKUPcVviJZ7v/hyv9Xmt2CF6nUJocD26+lgIDa6HXqdwIvkEiqJgp9jh41S95EALBrfxY1SHAMz6BB5e9iFHLkVY7dxtvNuwaNQi5vZ8jwmfb2NfVDIeTvb8NK1ntROratv7I7zTCjbOt20cdZCXgxcGffk3+Aa9AS8Hr8INx1bA+x3UHk11gKIovHlLe5r6uBCXmsu+CzHkmHLYGr21yudacSAWY3JPhjgv5NkeT199UMH9wbfklGYhhBC2U+mRq2effZaMjIwy9zdv3pz166vWY2PGjBlMnjyZbt260aNHDxYsWEBGRgZTp6olue+55x4aNGjAm2++CcDDDz/MRx99xBNPPMFjjz3GiRMneOONN3j88ccrfc5rXZt6bejm142Gbg0B6BTkCcDp+AySM3Px7HYfbF4AiafVhpMd76i94Pb9TES8OqrTtbEXBjsdx+JP8nTY0/g6+bLu9nUVnKCGDXsd7Bxg83sEbf2YiR3ugJa3VfiwjvU7svGOjVxIv1D7le1qyOzRbQlLWkCy817mbc7ju3GvWO3c55MymfrVQc4kZFLfzYEf7wullX/1RouqzWKBPT+AMQMcbDsVuC4KcA1g+bjlJOUkAWqBiy2bt9Cnb5+CUS0vBy8CXIs0yj36N6THwZIH4aHN4OBqi9CrxNXBjk8mdWHcx1uIOzOEyT0f4tYWg6t0DrPZwj8HYwAY1SEQB33JWRPlitwI3s3BPbBqjxNCCFErKp1c9evXr9z9Li4uDBgwoEoXv+OOO4iPj+fll18mNjaWTp06sWrVKvz81Gkj586dQ1ekgWdQUBCrV6/mqaeeokOHDjRo0IAnnniC5557rtLnvNaNbjaa0c1GF3zt5WKgibczZxIy2ReVzA2tfKHXo/Dfq7DpHWh/K+iusr9KVcTsh2WPM8ICLZTX6dFEXctjspjo4NOhVqfSlUmngyGvgFcTWD4DDiyClPNwx4/gXK/chzraOdLMs1mthFkb6rs5cEvrYfwWkcyOWDvOXMqgiU/1KqIcTjiMfV4Dpny9m+iUbBp4OvHT/aHVPq9VxOyHuIOgN0D7ihNqUVKAa0BB8mQ0Gom0i6RNvTZlT6UY8RZEboKkSFj7Mox6txajvXqt/d15dWw7nv3DzHdhOQxtnkDv5pUfdd1zLonY1GzcHOzo17KKo7XZKfD7VDBmwuTl0FCKWAghhNZUelrg6dOnqzTtr7KmT5/O2bNnycnJYfv27YSGFq7B2bBhA99++22x43v16sW2bdvIzs7m1KlTvPDCC8XWYFV0zutRwdTAc8nqhh4PgKMHXDoOR5bWfADGLFj8AJiNbKYzJywNCG2qJiudfTvz000/sWDggpqPo7K6ToFJf4CDO7vidjHj5xv479ifpR5aE78TWvHKoIl0NbxIVlJnZi0+WK3vNSk7iUkr7mb88lHEpF+iWX0X/ni4lzYSK1CnBAK0HlVhIi2sxMkTxn2sfr7rKzj5r03DqYrbugVxW9eGmC3w+K97uZha+ebsKw7GoHc9gkezhfxy7IeqXTjsbci8BO4NIKBDFaMWQghRGyqdXLVo0YL4+PiCr++4444ShSOEtuTfDOc3E94XlazucHSHno+qn298R50SVZP+nQPxx8hzrs/TWfdi0OsLpitqVrNBcO8qNnv6stbewqJ9C9Ubmyu8sPkFpi0ayv5V1Vg3oVGKovDGze1xtNcRfjqB33edv+pzrYzYR16eAZPRlRC/QH57sBcBHuVXWas1xiw4+Jv6eZe7bRvL9abpDdDjQfXzv6ZDVpJNw6mKuWPb0TwgjzTnpYz//SnyKtE/MH9KoN7pHCmWk5xNO1v5Cyacgu2fqZ8Pf0MTDeGFEEKUVOnk6sp3rf/5559y12AJ25mxYQb9fu3H7ji1AEnnIHXkal9UMmbz5f/H0AfV6U/jPq2whG+1nPoPtn8KwJaQOSTiTqcgTxzta2EqYnX5tWX8uB+Y0PwWnvbuButfhw3zCnbnmnL5L3IV27Jj0dXG1EobaOTtzJNDmqEzXOS1FUe4mFb5d+jzbT5xiVf/yCHtxCya8zA/T+uJt2sV15nUpGMr1OlWHkEQXLWpzcIKhryiriFKi4F/Zto6mkpzMuiZPaYFBu+NJOm38ubqPRU+Zve5JOJSc3DI7M1rfd5kbLPSq++WavWLYDZC8yHQclg1IhdCCFGTKp1cibojPTed5JxkotKiAGgd4IaDnY6ULCORCZcTYidPGP8lBHaquUAyE2HpI+rn3e9naUZbgIIpgWaLmRv/vJF7V99LcnZyzcVRDUH+nXmxzxxaDn0TBr4IG95A//N4sFhw3PoBf5w7x/P1utFu6LyKT1YHnUk5w3cXJuPW9FNSs3OYs+xIlR6/+nAs9367kyyjiX7N/fn13pvwcNLYO+57L0/N6nRX7aw/FMUZnOHmz0DRg53BJlVMr1a/4BD6+Y4n+8KdfLXpPP8dK382x4oDaiGLoa3aMLb5KDr5dqrchU79B8dXqj+j4W9UM2ohhBA1qdLJlaIoJSqhXSuV0a41T3V9ij9G/8GI4BEA2Ot1dGio9ioqWHd1JbPJ+oHs+EJ9N9q7BQx9lR2RiQCEBnsDEJsRy/n08+y9uBdXg/YrhdG4NwC6yDDG7JuCfuNbBPV7jomjv7lmfxeC3ILQ6/S4Ghywc0hmxcEY1hyOrdRjF+85zyM/7cFIKiPa+vPl5G44GypdQ6f2jPlITZw7TbR1JNevht3g0R0w9mPQa/A5Uo5PbnyFie1GgcWepxbt53xSZqnHFa8SGFDqMaUy5cGqF9TPe0yD+q2qG7IQQogaVOm/YhaLhSlTphQ0283Ozuahhx7CxaX4gvTFixdbN0JRZW2825TY1inIk51nkth7LolbuzYs3JEeDxveUBvo3rvKulME+z+jljYP7k9UOlxIzsJOp9ClsScAPk4+/DTyJ+Iz47HTafuGKiotij8TdtGl3yP02/QJChYsgOIeCGazWmnwGqTX6fnlpl9o4NqA+auP8+mGU7z01yF6NvPG3bHsEagfws/w0l+HQZeFR8u3yfRuS7bpQxzsKm5IXOs8g2BA3ZmOds3yaV74ef409DrypsULN7VhX1Qy+8+n8OjPe/n9wV4Y7Iq/Juw+l8zFtBzc3C6RbreLqLQOBLkFVXxys1GdBpiVBAOeq/h4IYQQNlXpO8LJkyfj6+uLh4cHHh4eTJo0icDAwIKv8z+ENpWoGFjU/l8hahuctHKfKZ0e+j4JDboUjFq1b+hRMHph0BvoUL8DgxtXrU+MLSw5sYSvDn3F95d2oQBbHR15w9uLA6uegm9HqsnpNSrILQidouOJwS1o4u1MXGoO81YeK/P4j9efVBMrYHiXTFDySDOm4W6Q/lGiElKj4cfxhRUc64DMvFTG9D2Pm0cU+6OSeeOfoyWOWXlIHfFt1iSSF7c8z6f7Pq3cye2dYOhceGKfVLIUQog6oNLDBd98801NxiGsKMeUw7qz64jOiOa+dvehKEpBxcCIuDQyc/MKp2e51odu90L4RxA2D5oPrt67xWYTbF+ontO+sBrc9sgEoHBKYF3Tv2F/dkQsoe+Foxzq+QDvJJzkRN5JUhSFKbG78Fp0JwHT91zTa3Yc7fW8eUsH7vxiGz9tP8foDoHkmfLYfUnBOzKRns3q886a4ywMOwXAY4OaM2PoSC5mDudi5kXtTZ08vQG2fgTd74dWI2wdjch3eAmcWgdR2yG4P3g1tnVEFfr60Nd8e/hburQbSNiWIL7deoYewfUY2V6d/me2wKrD6nqsbkGNcEnvQMf6Hat2EXuNVNcUQghRLm3PxRJXxWKx8NwmdfrIrS1uxdPRkwAPJ/zdHYlNzebg+RRCmxZJcno/Bju/hPM7IDJMLY98tba8D+vmwKE/4b5/C6bLbS9Yb1X4zuuqM6sw6Ax09euKh4N2Rz1j0mO4b+VkcjGz39sL4lYV7Fvp5spKN1cMWFieeVFtolrHpjRVxp/H/+T3478zsc1E7uzRmF92RDHxq+2YzBZAz/cnduFs0JOZq67de2Fkax7orzZV9nPxw89Fg02893wPJ9eqN++SXGlH6ENw9G84F64WxJn8t+an3Q5uNJjtMdsZ3LQbre2a8lnYaWb+cYCWfm7EJmew6rxCfHoubg56ZvaegsHu3opPGh+hNjMf9io06FLz34QQQgir0PZfLHFVHO0cGRQ0iHHNx2E0Gwu2549e7c3vd5XPzV9tnAul9nKqtOh9arlygG73FdwQxaZkczYhE50C3Zp4FRz+3q73eGL9E5xKPnX116wFSTlJ5FJ+D5tcLCTlXO7Rs/sb+Pl2SIyshehqR3RGNIcTDrPx/Ea6NVETZJO5eHuG/MTqrh6NeKB/s2LPPc3JTISjy9XPO0tvK03R6dUWEfYucHZzQSsHLevk24nfRv/GPW3v4dlhrejRpB7pOXmMWLCRSV/vYvV5dUQ7z0yFFQULrH5B/f43vlODkQshhLA2Sa6uUe8Pep9X+7xKfef6BdsKkqtzpTTq7PME6A1wdguc2Vz1C+ZmwuJpYM6DNqPVstaX5U8JbBvogdvlIghmi5nOfp0J8Q6hiUeTql9Pq/JyYP2bcGINfNITwuar2+q4m4JvYm7vuTzd9VneWR1R7rHrIy6SlpPBsD+G8fKWl8k0ll49zaYO/gGmHPBrDwFVnJ4lal69YBh++Y2af+fAxbLX+GmNnV7HzV0aAJB3xRsQWcZcHv5xN6sOxZR/kuNr4OS/oLNXR66EEELUGZJcXUc6XW4mvOdccomm0LgHFr6Dv+WDqp/839lw6Ti4+sGo94tNicufEtijyJRAnaLjrX5vsWjUIuo5XkOLtO0cYOo/6lqRvGxY/xp82ltd31OHNfVsys0tbiYyTk9MSvmNhGNSsvl67wouZV1iz8U9ONlpcK1Ifm+rLndfU9M3ryldp0DzoWoSvORBMGl4JPQys8XM7ti9vL+u9GTQvt5mnFu8xovrF5QY+S1gMqqjVgA9HwbvZjUUrRBCiJogydU1zljkhqR9Aw/0OoX4tByiS7tB7vsU9J0B4z6p2kVO/As7Plc/H/cJuBQvWrGjlPVW1zSfFnDPMhj/lZpsJpyE78fCH/dBWuV6RGnVxbTyE6t8jR16892I75jZfab2ClnE7IfYA+pIbfvbbB2NKIuiwJgPwdETctLUnnkaZrFYGL9sPFNW30O8sfTRXb1jNDq7DNKyzQWviyXs+AISToBLfej/bA1GLIQQoiZIcnWNCo8OZ8CiAdy35r6CbU4GPW0C3ADYV1pJds8gGDIbXHwqfyGzGda8qH7e4wFoPqTY7kvpOZy8mA5A9yaFyVWJkbNrjaJA+1th+k7o8SAoOrXIh8ZvEMuTlZfFuexwDD5rKzzWz92JLn5d6N+wfy1EVkX5Jb5b3ySlrbXOPQDuXgwPbQbPRraOplyKotDWuy0OOmcU+1KmXgPZMbeSEfkoxpROpb9RkXEJNrylfj7oJXCU9gVCCFHXSHJ1jXJ3cCcxO5FzqeeKbe8clN/vqvQ//sXkVmKtjE4HkxZDl8kwZE6J3fnvzrb2d8PLxVCw/aUtLzH8j+EsP7284mvUZY4eMPJtmPYfDH8DAjsX7qtjo1gZxgw+j5iDQ/116PTppR6jAAEejsWmgGpOw+7QoJsUsqgrGnQFg7Oto6iUGd1m8F7Pv8hL6Vr6ARZ7zNlBWPI88XVzLLl/19eQkwL+7aHzpJoNVgghRI2QUuzXqOaezflt1G8EuQUV2965kSc/bDtbsmJgUXFHYOVMMLjAXYsqvphHAxhT+jqtsqYERqZGEp0RjUFnKO1h157AzsUTq/jjsLCvWvhjyGxw8ir7sRrh4+TDiCYjyMxyZeUJMwpQdPxRAVCMeDX/hm8OR3J3yN046B1sE2x5Otyuflzro6fXGrMZtn0CmZdgyCu2jqZU9Rzr0buZhQAPR2JTsintGaYA/mW9AdHvaXU6YP3W13TPPCGEuJbJyNU1ykHvQBvvNrgaXItt79xIvYk/eCGF3LwyyovnVw08vkpdn1KapDMQsar0fUVsO61WCuxxRfPgjwZ9xPc3fk8P/x4VnsPWvBy8MOjLTwINegNeDlVIkE6sVhfq7/4GPuwG+36uEzf78wfM5+MRs/lkwg34exR/593fw5H7R6QRlRnB7xG/Y6+zt1GUlaS1tWCifFHb1SnIm9+DyE22jqZMep3C7NEhoORR9BmmdzmGwWcdOscoZo8OQa8r5fmn00O3qdC4V63FK4QQwrpk5Oo608TbGU9ne5IzjRyNSaVjkGfJg3yaQ7vxcPB3te/VhJ+K7zebYPGDELUNRrylVrQqRXJmLhFxaQAl3qX1cvTCy1H7ozUAAa4BLB+3vKCPVV5eHls2b6FP3z7Y2am/Ql4OXmoD4crq/Zg6krXiaYg/Bksfhj0/wKh3wbdNTXwbVjWiXQBDQ/wJP3mRNZu2M6xfKL2a+5JjyiIk0BW9To9O0dh7NynnIWKluhauDowUiis07qVOP97zndpc+OEtmlyTdC71HIvOz6ZppzgyTs8gNkVtxWDvfhB7z90M6eDHiHZXvFbEH1fXvNprsLKmEEKIKpHk6hq2P34/O2J20Lpea/o17Aeoi647BXmyISKeveeSSk+uAPo9o/YCOrYc4g5DvZaF+za/pyZWBjdoNbLM6+88k4TFAs3qu1DfTYPTw6ogwDWgIHkyGo1E2kXSpl4b7O2rMTrTpC88uEmd6hQ2D85tVacK9n8WbnjeSpFbn8Vi4VTyKVwNroQGe5Nw1EJocD30OgVnnTM3t7jZ1iGWbu+PsOFNNcG6e7GtoxFXY/jraluD5LOwehaM/djWEZXg7eTNgfgD5Jpz+evh5kRfdGLNpu14th5GnMmf8S0GFn9AXo7adNxsgjt/Af92tglcCCGEVWjsrWVhTZvOb+KDvR/wX9R/xbbnF7XYV966K9/WEDJW/Xzj/MLtMfvUG1SAkfPBq3GZp9hexpTAvRf38t3h7zgQf6BS38c1zc4AfZ+ER7dD61FqE2a7Uha6a8ir217l5mU388fxP2wdSuWZzbD38ghsxwm2jUVcPQc3uHkhoKjJcsRKW0dUgou9C2/3f5tV41fR1LMJocH16Opj4bEetzGv/1v0CLhiKvS2TyEpEky54NXEJjELIYSwHkmurmGdfDsxptkYuvoVr1zVuZEnQPlFLQCcLk/lO7wULh1Hb87B7q+H1ASgfmv1hqAc+c2DezYtPiVwfdR63tn1zrVfKbAqPBup0y/vXgI9HyncHrNfXd+mIe192mPQGcgwZhRsyzXl8kzYM6w9u5Y8c54NoyvDmY2Qcg4cPKDNaFtHI6qjcW/oPV39fNljavlyjRnceDANXBtUfGD6Rdj4jvr5kNng4Fr+8UIIITRPpgVew/o26EvfBn1LbM+fCng2IZOE9By8XcuYsueevy7Agm7Pd4RcOIWScBIMruo6Id34Mq+dlm3kcHQKUHK9VWuv1gxrPIwuvl2q/D1d85oNKvw8LxcWPwBJZ6H/M9D7cXWky8ZGBI9gRPAInOycMBrVJtUbzm9g9ZnV7I3by8CggRWcwQbye1u1v1XWtVwLBv5PbV6ecBLOhWs+YU4zp5GWm0Y9+ysqBK6bC7lpENgFOsiIqhBCXAskuboOeTjZ06y+C6fiM9gXlczgNn6lHzhgJqTHwc4vwZRD00v/qttz02Hgi+r+Muw6m4TZAo3qORPgUfxmdmTTkYxsWvZaLXFZdrJaljn+GPz3KoR/DK1GwLhPSx4b9ra6ZmPgrBoPy8muZHLSzrsd97W7j3qO9bDTaexlJSsJjixTP5feQdcGe0cY/yVYzBDQwdbRlOrwpcP8eeJPWnm2Yn32eub9MY8nujzB/e3vVw+I2V+Y9I94S+0ZKIQQos6TV/PrQKYxk1xTbrFt+SXZ955LLv/BN/0fDHwR/Z5vMec/XSpIrKDs/laiClx9YfLfcMsXapKVlaiWbP+kt5r05gt7G9a/bpO+OCazCYBA10Ce7Pok97S9p9ZjqNDBP9Sy975ti/caE3WbfzvNJlYABy8d5Pfjv7Ps9DLSzGrV1IKpghYLrHwesEC7W6FRqO0CFUIIYVWSXF3j7l9zP6E/h7ItZlux7YXrrpIqPsmAmVj0BnSYsegNFSZWUFjMIrRp8WIWRpOxRKInyqEoasPb6bug+zR128XD2H3UBZecOHSb3lETq0okvNYSkx7D1uit3PPPPYxYOoLzeec5mniUIwlHOJJwhJj0mFqJo9JSokDRQ5e7pbfVtSp6H6x4RjO94mLSY2jo1pDBjQZzY5MbGeg4kM8GfYafs5/6O5J0CpzrgZ0TDJ1j63CFEEJYkcbm7whrc7N3Ayhxw5tfMXB/VAoms6X0hpb5wt5GMeViUuzQm3LVkZJybuQzc/M4cF5db3XlyFV4TDiP/fcYfQL78MmQT67mW7o+OXnCTe9Ap7vg17tQ0mIYeHQWekuemlg514Nz26FBF9DXXPPemPQYRi0dVSxBXshCFq5aWPC1QW9g+bjlVev7VZOGzoWej8paq2tVdgp8NxpyUqF+K+gxzabhXPk7su7cOnVHkaKtBb8jeUbwaGiDKIUQQtQUSa6ucbNCZzGnzxzcDcWbbbb0c8XZoCc9J49T8em09HMr/QSXp5yZ+j/P8rQQRrkdQb/+dXVfGQnW3nPJ5JktBHo40tCr+A1tVFoUZosZR42XG9esBl3gqcNYXvdDbzJi0RtQut0L85up+w1uENwPmt6gfvi0tOpoTVJOUoUjj7mmXJJykrSTXAG4lbGuUNR9jh4w6H+wciaseUktCuPdzGbhVOl3xDuklqISQghRW2Ra4DXO19m3RGIFYKfX0aGhBwB7z5UxNTB/Lc/AFzH3ewZA/Xfgi+r2sLdLfVjRKYHKFTf2d7W+i/W3r+fpbk9f7bckNv0fismISbFDMeXCpv+DkHHg5KVWHov4R73R/LgHvBsCu76xdcS2kZcDieW3CxDXiO7TILg/5GXBkgfBpMF2AEIIIa4LklxdxzoFVVDUwmwqfS3PgJnq9svFDK607XIxiytLsAMoioKPk0/lesCIkoqOJHb6GlP/52HbJ+DXFp49DQ+EwZA56qiV3gHSosGuSKn9+OPqQvrjqyEnzWbfRq04tgI+6AR/2naamKgFOh2M/QQc3OH8Ttj6vq0jEkIIcZ2SaYHXuBxTDj8c+YHzaed5qedL6ItUlCsoalFWclVeWe8ypgRmG03su9ycWCoFWlnRkcTeT8E//2Du9wx6vV7dDur/S2An6PskGLMgajv4tS88x4k1sP1T9UNnBw27X55COLDG12vVuvwy156NbBuHqB2eQXDjPFj6MKx/E1oMA+/Wto5KCCHEdUZGrq5xdoodH+/7mD9P/ElcZlyxfZ0vNxM+fjGNtGyjVa63PyqZ3DwzPq4OBPu4FNuXaczktW2v8dPRnzBbzFa53nWlqiOJ9k5q4uRSpGJjg67QdSp4NQFzntqAdcOb8PUwmBcMMQdq+ruoHclRcOpyBYHOE20bi6g9He8E7xZgNpY+HTbsbTXxEkIIIWqIjFxd4/Q6PZPaTMLZzhmD3lBsn6+7Iw08nbiQnMXB8yn0bu5T7ettz+9v1bReifVWZ1LPsChiEfUc6zGxjdzwVtlVjCSW0LiX+gHqeqTIMDi9AU6HQW4G+LQoPHbT/8GlE4XFMdz8rzJwG9j/C2CBJv2gXlNbRyNqi6JA65tgywJwvaKISZGRXyGEEKKmSHJ1HSiveETnRp5cSM5ib1SyVZKr/ObBPUuZEuhucOe+dveVSLqEjdQLVj+6TgGzGZIii5crP7QY4g5dTlSA+m0gqA404TWbC6cEdp5k21hE7Rs6BwwusP51dGYTDROT0f35BxxbBu3Gg397OLFWbbrt4qs2I84Xs1/tiaazu/yhV6fK6uzAzlFtiZAvL/fyMTIBRAghRCFJrq5znRt5sfxATNkVA6vAaDKz+6x6nh7B3iX2N3RryJNdn6z2dUQN0OlKlq8e/gacXq+ObEXvg/ijeCUex9AwkNxy+qIZ9Aa8HLxqNNxyndkEyWfV4gZtxtguDmE7l0dy9etfp2vR7Yf+VD/ytR4FE34q/PrzgWApvVAPzQbB3UsKv57fTO2thVIkGbPDy84Og587uZTd0NjmvyNCCCFqjCRX14msvCxSclLwdyk+tavT5XVXe88lY7FYqjWqdOB8CllGE17O9rTwda1OuEILmg5QPwAyEyFyIwGnN7A8cj1Jge3BvQHs+gqzYofOkqeudel8N17Nhti2x9WB39R/240Hg7Pt4hC2NWAmlo3zUUy5WFBQGvdR1xkWfJjAs3Hh8RaLOpWw6P6ixyv64uc355d7t6hrvMzqutWAXFhubknSmAXq3i8Go5iNWHR2KNPUdYBeDl7a6gMnhBDCajSRXH388cfMnz+f2NhYOnbsyIcffkiPHj1KPfbbb79l6tSpxbY5ODiQnZ1d8PWUKVP47rvvih0zfPhwVq1aZf3g64Ct0Vt5cO2DtPRqyZ9j/iy2r22gO/Z6hYSMXKISs2jkffU3ozuKlGDXlTKyEZMeg4+zD/a6a6gi3fXCuR60HQdtxxEABBizwd4Ry/avUUxZ6jExRyBmFuhehsa9oeUIaDWi9tc8jZyvNlL271C71xXaEvY2iikXk2KH3pKnvlFQ3tpERYGnj5a933LFSNSMoyUTsMsfAXoDAfWC1XVe2ZmYFT06SxYcWl759ZFCCCHqJJsnV4sWLWLGjBksXLiQ0NBQFixYwPDhw4mIiMDX17fUx7i7uxMREVHwdWmjLSNGjOCbbwqrRTk4OJQ45noR4KK+Q5qcU3J0ytFeT0igB/ujktkblVSt5Gp7pNo8uLQpgRaLhZuX3UxOXg5/jfuLRu5SHrtOs3csefMaFAqZCZBwUi2UERkGq2fB4NnQb0btxWZwho4Tau96QnuK9oNLC2GU2xH0RdsVXI0r/84UXX9VWzEIIYTQPJuvxH333XeZNm0aU6dOJSQkhIULF+Ls7MzXX39d5mMURcHf37/gw8/Pr8QxDg4OxY7x8rp+57c3cmvE5gmbWXfbulIT0c5FpgZerTyTmV1n1PVWpfW3SslJwWwxY8ZcYmqiqINKa2YctR063AHTd6vrtYL7q+tQgkILHxe5Ef64Dw78rk41tLYrRxfE9adoP7h+zwCo/w58Ud0e9vb1EYMQQgibsOnIVW5uLrt372bWrMIS0zqdjiFDhhAeHl7m49LT02ncuDFms5kuXbrwxhtv0LZt22LHbNiwAV9fX7y8vBg0aBCvvfYa3t4lR1QAcnJyyMnJKfg6NTUVAKPRiNFonf5PVyv/+tWNw1nnXOY5OjRwA2DPucQyj6kojkMXUknPycPN0Y7mPk4ljnPRu7Dptk0kZCWgmBWM5qp/P9b6WVSXFuKwZQy6Te+g3/gWpv7Pk9PzCVi7lpyeT+CAWkDAZDKpN5LdHoDsFLVy2+U4dYeWoj/0Bxz6A4uixxLUA0vzYZhbDFfXbF3lmj+j0Yh71jn0n/XG1HUq5u4PWPE7rnwMRf+1FS3EYdPnZ14u9H8ec++nisfR+yl0JhPk5WKu4bi0EMOVrvfnhcSh3Ri0EocWYtBKHFqIQUtxVDUGxWKx3Vu90dHRNGjQgK1bt9KrV6+C7TNnziQsLIzt27eXeEx4eDgnTpygQ4cOpKSk8M4777Bx40YOHz5Mw4YNAfj1119xdnYmODiYU6dO8cILL+Dq6kp4eDh6vb7EOV955RXmzJlTYvvPP/+Ms/O1vyA+IRvm7rVDr1iY18OE/VWMZ66PVlh6Vk+Ip5kH20iD4GtZq5jFWBQdx/3HldjXMnYpisVMRMAtpT7WIzOSwOSd+Kfswz37fLF9GQZfNrZ8mVx796uKq935H2kWv4Zoz+7sDH7sqs4hhBBCCHGlzMxM7rrrLlJSUnB3L/8+pc4lV1cyGo20adOGO++8k1dffbXUY06fPk2zZs34999/GTx4cIn9pY1cBQUFcenSpQp/gDXNaDSydu1ahg4dir391ReCCI8JZ13UOjr6dGR009HF9lksFnrO20BihpHfpvWgcyPPKsfx8E97+fdYPDOHt2Ba3+CrjrM81vpZXAtxaCGGaseRfBbdibUoJ9egnN0MbgHkPbKrYPRKt+MzLI4eWJoNAZfye7AZs9LRv98OB1M6eXf8gqX50Kv9lq7aNfF/cg3FoJU4tBCDVuLQQgwSh/Zi0EocWohBK3FoIQYtxQFqbuDj41Op5Mqm0wJ9fHzQ6/XExcUV2x4XF4e/f+XW5djb29O5c2dOnjxZ5jFNmzbFx8eHkydPlppcOTg4lFrwwt7e3ub/mfmqG8up1FMsPrmYLFMWt7QqOarQpZEX/x69yIHoNHo0q1+lOMxmC7sur9fq3dy31Dg/2fcJqbmp3NriVpp7Nb/q76OsGGxBC3FoIYarjqN+c/Wj98OQkw5JZ7A3GNR9JiNsfBtyUgAFGnaHlsPVCoR+bdUEbP2bapPXATNRjv6HnSkdi1sAdq2Gw6b/Uyu5DZxVbgg1oU7/n1yDMWglDi3EoJU4tBCDxKG9GLQShxZi0EocWohBK3FU5fo2LWhhMBjo2rUr69atK9hmNptZt25dsZGs8phMJg4ePEhAQNk9Q86fP09CQkK5x1zruvt358EODzKq6ahS93dupBb82BeVXOVzR8SlkZxpxNmgp21g6dn8P5H/8NPRn0jITqjy+cV1wMEV/NsVfp2XDT0fulxO3QLnd8B/r8LCPrCgPWz9UE2sLhcH0O1TG8Ga209QE6v1r6v7hRBCCCFqkc1Lsc+YMYPJkyfTrVs3evTowYIFC8jIyCjoZXXPPffQoEED3nzzTQDmzp1Lz549ad68OcnJycyfP5+zZ89y//33A2qxizlz5jB+/Hj8/f05deoUM2fOpHnz5gwfPtxm36ettfNpRzufdmXur07FwPz+Vl0be2GvLz1fv6/dfZxOOU1zz+qNWonrhIMbDHxB/UiNhuOr4fgqOL0BUqIgNwNueF49dv3rhe8SGTNh63tqVTYpdy2EEEKIWmbz5OqOO+4gPj6el19+mdjYWDp16sSqVasKyqufO3cOna7whj0pKYlp06YRGxuLl5cXXbt2ZevWrYSEhACg1+s5cOAA3333HcnJyQQGBjJs2DBeffXV67rXVUU6BHmiKHAhOYuLqdn4ujtW+rH5/a16Ni29GiPAzS1urnaM4jrlHgjdpqofuZlwZhP4tFT3DZgJF/bA8ZVYUNDv/EwSKyGEEELYjM2TK4Dp06czffr0Uvdt2LCh2Nfvvfce7733XpnncnJyYvXq1dYM75qRY8rhfNp56jvXx91QfPqeq4MdLX3diIhLY29UMsPbVm7Nm8ViKRi56lFKfyshrMrgrK69KqrrZCwnVqNYzFj0BhRJrIQQQghhIzZvIixqzwNrHmDcX+PYemFrqfvzqwRWZWrgqfgMLqXn4mCno0NDj1KPuZB+gai0KExmU1VDFqJisQdRLGZMih2KKVcatAohhBDCZiS5uo40dGuIq70r6cb0UvcXJldJlT5n/pTAzo08cbArvYDA5wc+Z+TikXx24LOqBSxERcLehvWvY+r/PMs7fY2p//MFRS6EEEIIIWqbJqYFitoxu9dsXuvzGsrlPkJXyq8YePBCCnkmM3ZlFKcoavtpdUpgaHDZ663yzHkYdAYauze+iqiFKMPlxIqBL2Lu/RT88w/mfs+ojcLXv64eI1MEhRBCCFGLJLm6jhj0hnL3N6/vipuDHWk5eRyPSyekjLLq+YqutwptWvZ6q9f7vs7c3nMxY6560EKUxWwqLF5hNBZuz0+oZBqqEEIIIWqZJFeigE6n0DHIk80nL7E3KqnC5OpcYiaxqdnY6xU6B3mVe6xep0eP9B0SVlReg2AZsRJCCCGEDciaq+uI0Wzk1fBXeWDNA2TlZZV6TKcq9LvKnxLYsaEnTgZJnIQQQgghxPVNkqvriJ1ix8ozKwmPCed82vlSj6lKUYvtlZgSuCFqA4+ue5TfIn6rcrxCCCGEEELUJTIt8DqiKAqPdX4MJzsnfJx8Sj0mf+TqVHwGKZlGPJztyzxffqXAHuUUszh46SAbz2/E19n36gMXQgghhBCiDpDk6jpzZ+s7y93v7epAY29nziZksv98Mv1b1i/1uAvJWZxPykKvU+jauOz1VsObDMfXyZdgj+BqxS2EEEIIIYTWSXIlSugc5MnZhEz2nis7udpxedSqXQMPXB3Kfhq19GpJS6+WNRKnEEIIIYQQWiJrrq4zRrOR0ymnORB/oMxj8vtd7Y0qe91VYX+rstdbCSGEEEIIcT2R5Oo6s//ifsYuHctzG58r85iiFQMtFkupxxQUsygnuUrLTSM8OpzYjNirD1gIIYQQQog6QpKr60wj90Y42znj7uCO2VJ6U982Ae4Y7HSkZBmJvJRRYv/F1GwiL2WgKNCtSdnJ1aFLh3hg7QNMWzPNavELIYQQQgihVbLm6jpT36k+2+7ahqIoZR5jsNPRvoEHu88msfdcMk3ruxbbnz9q1cbfHQ+nsqsJGs1Gmrg3oYVXC+sEL4QQQgghhIZJcnWdKS+pKqpzkCe7zyaxLyqZ8V0bFtu3oxL9rQD6N+xP/4b9y5xaKIQQQgghxLVEpgWKUpVX1CK/v1VoOf2tiqpsQieEEEIIIURdJsnVdWjd2XU8tPYhvjz4ZZnHdG7kCcDRmDSyck0F2xMzcjkelw5AD6kUKIQQQgghRAFJrq5Dl7IusSV6C/sv7i/zmAAPR3zdHDCZLRy8kFKwfddZdSSrpZ8r9VwMZT4+x5TDzX/dzBP/PUF2Xrb1ghdCCCGEEEKjZM3VdSg0IJQ5veeU29xXURQ6N/Jk9eE49p5LonNDNwB2nFGTq4pGraJSoziZfJK4jDgc9A7WC14IIYQQQgiNkuTqOtTEowlNPJpUeFznRl6Xk6tk6N0IgB2RanJV0XqrQNdAPhvyGam5qbLmSgghhBBCXBckuRJl6ny5mfC+qGQAMvPgWFwaUH7zYABne2d6N+hdk+EJIYQQQgihKbLm6jp1Pu08m85vIjYjtsxj2jf0QK9TiE3NJiYlm9NpChYLBPu44OvuWIvRCiGEEEIIoX2SXF2nXtv2Go+se4QtF7aUeYyzwY5Wfupaq31RyZxKUaf3VTRqBWpFwh0xO8g0ZlonYCGEEEIIITROkqvrVEuvlrTwaoG93r7c4/JLsu8/n8KptMvJVQXNgwFmh8/mvjX3EZUWVe1YhRBCCCGEqAtkzdV1aka3GcxgRoXHdW7kxU/bz7HlVCJRansrelRQzCLHlEMHnw6cTT1LkFuQNcIVQgghhBBC8yS5EuXKH7k6FpsGKPi42ONfwXorB70Dnwz5pOaDE0IIIYQQQkNkWqAoV0RMGkULqV/KMNJ33n+sOhRjs5iEEEIIIYTQIkmurlNmi5lH1z3KqCWjSMhKKPWYVYdiePTnPViu2B6bks3DP+6RBEsIIYQQQogiJLm6TukUHceTjnM29WypRSdMZgtz/j5SIrECCrbN+fsIJnPJI57f9Dy3LLuFjec3WjdoIYQQQgghNEzWXF3H/hf6PxztHGnh1aLEvh2RicSkZJf5WAsQk5LNjshEejUrXuAiIjGCk8kn0St6a4cshBBCCCGEZklydR0bEDSgzH0X08pOrCo67oOBHxCZGkk7n3ZXHZsQQgghhBB1jSRXolS+buVXBCzvuCD3IILcpQS7EEIIIYS4vsiaq+tYhjGDLRe2sObMmhL7egTXI8DDsVilwKIUIMDDkR7BFTcUFkIIIYQQ4nogydV17FzqOR769yFe2/ZaiX16ncLs0SEAJRKs/K9njw5Bryu+d0/cHhafWMyp5FM1ELEQQgghhBDapYnk6uOPP6ZJkyY4OjoSGhrKjh07yjz222+/RVGUYh+OjsWnplksFl5++WUCAgJwcnJiyJAhnDhxoqa/jTonyC2IZh7N6OjbEaPZWGL/iHYBfDqpC/4exX++/h6OfDqpCyPaBZR4zD+R/zB762yWn15eY3ELIYQQQgihRTZfc7Vo0SJmzJjBwoULCQ0NZcGCBQwfPpyIiAh8fX1LfYy7uzsREREFXytK8dGTt99+mw8++IDvvvuO4OBgXnrpJYYPH86RI0dKJGLXM1eDK0vHLS33mBHtAhga4k/4yYus2bSdYf1C6dXct8SIVb5mns3oHdibtt5tayBiIYQQQgghtMvmI1fvvvsu06ZNY+rUqYSEhLBw4UKcnZ35+uuvy3yMoij4+/sXfPj5+RXss1gsLFiwgP/973+MHTuWDh068P333xMdHc3SpUtr4Tu69uh1CqHB9ejqYyE0uF6ZiRXAna3v5LOhnzGk8ZBajFAIIYQQQgjbs+nIVW5uLrt372bWrFkF23Q6HUOGDCE8PLzMx6Wnp9O4cWPMZjNdunThjTfeoG1bdaQkMjKS2NhYhgwpvLn38PAgNDSU8PBwJkyYUOJ8OTk55OTkFHydmpoKgNFoxGgsOV2uNuVfX+LQRgxaiUMLMUgc2otBK3FoIQatxKGFGLQShxZikDi0F4NW4tBCDFqJQwsxaCmOqsagWCwWSw3GUq7o6GgaNGjA1q1b6dWrV8H2mTNnEhYWxvbt20s8Jjw8nBMnTtChQwdSUlJ455132LhxI4cPH6Zhw4Zs3bqVPn36EB0dTUBA4Zqg22+/HUVRWLRoUYlzvvLKK8yZM6fE9p9//hlnZ2crfbfatD93PxuyN9DUrimjnUdX61wmiwkduhLTNIUQQgghhKirMjMzueuuu0hJScHd3b3cY22+5qqqevXqVSwR6927N23atOGzzz7j1Vdfvapzzpo1ixkzZhR8nZqaSlBQEMOGDavwB1jTjEYja9euZejQodjb21v9/JZIC7+H/05jz8aMHDKyWnGsPruaudvnMqTREOb0LJmsVldN/yzqUhxaiEHi0F4MWolDCzFoJQ4txKCVOLQQg8ShvRi0EocWYtBKHFqIQUtxQOGstsqwaXLl4+ODXq8nLi6u2Pa4uDj8/f0rdQ57e3s6d+7MyZMnAQoeFxcXV2zkKi4ujk6dOpV6DgcHBxwcHEo9t63/M/PVVCx9g/ryuevnNHFvUqnzlxdHVEYUWXlZ6BRdjf7ctPL/ooU4tBCDxKG9GLQShxZi0EocWohBK3FoIQaJQ3sxaCUOLcSglTi0EINW4qjK9W1a0MJgMNC1a1fWrVtXsM1sNrNu3bpio1PlMZlMHDx4sCCRCg4Oxt/fv9g5U1NT2b59e6XPeT3xcfKhV2AvAlxLllWvqvvb3c+ycct4oMMDVohMCCGEEEKIusXm0wJnzJjB5MmT6datGz169GDBggVkZGQwdepUAO655x4aNGjAm2++CcDcuXPp2bMnzZs3Jzk5mfnz53P27Fnuv/9+QK0k+OSTT/Laa6/RokWLglLsgYGBjBs3zlbf5nXBXm9PsEewrcMQQgghhBDCJmyeXN1xxx3Ex8fz8ssvExsbS6dOnVi1alVBefVz586h0xUOsCUlJTFt2jRiY2Px8vKia9eubN26lZCQkIJjZs6cSUZGBg888ADJycn07duXVatWSY+rMhyIP8DRhKN09etKc6/mtg5HCCGEEEKIOsnmyRXA9OnTmT59eqn7NmzYUOzr9957j/fee6/c8ymKwty5c5k7d661QrymfXf4O9acXcOz3Z696uQqOTuZ7458R1OPpoxuVr2qg0IIIYQQQtRFmkiuhG119u1MjimnWuuuTiaf5MuDX9LQtaEkV0IIIYQQ4rokyZVgUsgkJoVMqtY5PBw8uKPVHbjau1opKiGEEEIIIeoWSa6EVbTwasH/ev7P1mEIIYQQQghhMzYtxS60xWwxY7FYbB2GEEIIIYQQdZIkVwKLxcLtf99O9x+7cz79/FWdIyk7SRIzIYQQQghxXZPkSqAoCrmmXHLNuUSlRVX58UazkUG/DaLPL31IyEqogQiFEEIIIYTQPllzJQB4s9+buNq7XlXFwNiMWEwWE3mWPLwcvWogOiGEEEIIIbRPkisBQBvvNlf92CC3IHZO2klcRhw6RQZDhRBCCCHE9UnuhIVVOOgdaOTeyNZhCCGEEEIIYTMyciUASM5OZu25tWTkZjCl3RRbhyOEEEIIIUSdI8mVACA1N5W54XNx1Dsyue1kFEWp9GM/3fcpJouJcc3H0dCtYQ1GKYQQQgghhHZJciUACHANoH/D/gS5BZFjysHRzrHSj/3t+G9cyrrEDUE3SHIlhBBCCCGuW5JcCQDsdfZ8PPjjKj/OYrEwOWQyZ1LP0MS9ifUDE0IIIYQQoo6Q5EpUi6IoskZLCCGEEEIIpFqguILFYiHTmGnrMIQQQgghhKhzJLkSBZaeXEqPn3owe+vsSj8mNiOW5OzkmgtKCCGEEEKIOkKSK1HA3eBOtimb82nnK/2Y/9v1f/Rb1I+fjv5Ug5EJIYQQQgihfbLmShQIDQhlxc0rCHANqPRj0oxpADRwbVBTYQkhhBBCCFEnSHIlCrjYu+Bi71KlxywcspBMYyZ2OnkqCSGEEEKI65vcEYtqc7Z3tnUIQgghhBBC2JysuRLFbDy/kQW7F7Anbo+tQxFCCCGEEKJOkZErUczas2tZenIpjnaOdPHrUu6x/579l3/P/csNDW9gRPCIWopQCCGEEEIIbZLkShTTJ7APjnpH2vu0r/DY3XG7WXF6BT6OPpJcCSGEEEKI654kV6KYEcEjKp0oDW8yHG8nbzrW71jDUQkhhBBCCKF9klyJq9bJtxOdfDvZOgwhhBBCCCE0QQpaiBIsFguXsi5hNBttHYoQQgghhBB1hiRXooQRf45g4G8DOZ18usxjUnJSOHTpEGm5abUYmRBCCCGEENolfjj/bQAAJmxJREFUyZUowdvJG52iIy4zrsxjdsXu4s4Vd3L/mvtrMTIhhBBCCCG0S9ZciRI+GPQB7gZ3DHpDmcdkmbKo71SfYI/gWoxMCCGEEEII7ZLkSpTg4+RT4TGjmo5iVNNR5JnzaiEiIYQQQgghtE+mBYpqsdNJfi6EEEIIIQTIyJUoRWJ2Ij8e+ZHU3FT+1/N/tg5HCCGEEEKIOkFGrkQJZouZLw5+we/HfyfXlFtif0pOChP/mcj/Nv8Ps8VsgwiFEEIIIYTQHhm5EiV4O3pzV+u7CHQNJM+cV6KwRWRKJAfiDxCbEYtOkfxcCCGEEEII0MjI1ccff0yTJk1wdHQkNDSUHTt2VOpxv/76K4qiMG7cuGLbp0yZgqIoxT5GjBhRA5FfmxRFYVboLCa3nYyzvXOJ/U3cm/DOgHd4ssuTtR+cEEIIIYQQGmXzkatFixYxY8YMFi5cSGhoKAsWLGD48OFERETg6+tb5uPOnDnDM888Q79+/UrdP2LECL755puCrx0cHKwe+/XK09GT4U2G2zoMIYQQQgghNMXmI1fvvvsu06ZNY+rUqYSEhLBw4UKcnZ35+uuvy3yMyWRi4sSJzJkzh6ZNm5Z6jIODA/7+/gUfXl5eNfUtXJMsFgsJWQlEp0fbOhQhhBBCCCHqBJuOXOXm5rJ7925mzZpVsE2n0zFkyBDCw8PLfNzcuXPx9fXlvvvuY9OmTaUes2HDBnx9ffHy8mLQoEG89tpreHt7l3psTk4OOTk5BV+npqYCYDQaMRqNV/OtWU3+9Ws7jqWnljJ3+1z6Bvblgxs+KBbH5gub8XHyoZlHM+z19rUWk61+FlqMQwsxSBzai0ErcWghBq3EoYUYtBKHFmKQOLQXg1bi0EIMWolDCzFoKY6qxqBYLBZLDcZSrujoaBo0aMDWrVvp1atXwfaZM2cSFhbG9u3bSzxm8+bNTJgwgX379uHj48OUKVNITk5m6dKlBcf8+uuvODs7ExwczKlTp3jhhRdwdXUlPDwcvV5f4pyvvPIKc+bMKbH9559/xtm55Jqj68Ep4ym+zfiWJnZNuM/1voLtZouZuSlzySOPGW4zqKevZ8MohRBCCCGEqFmZmZncddddpKSk4O7uXu6xNl9zVRVpaWncfffdfPHFF/j4+JR53IQJEwo+b9++PR06dKBZs2Zs2LCBwYMHlzh+1qxZzJgxo+Dr1NRUgoKCGDZsWIU/wJpmNBpZu3YtQ4cOxd6+FkeJzEYesDyAg96hWBw9b+hJu63tiE6P5s6b7kSvK5ms1lhMNvpZaDEOLcQgcWgvBq3EoYUYtBKHFmLQShxaiEHi0F4MWolDCzFoJQ4txKClOKBwVltl2DS58vHxQa/XExcXV2x7XFwc/v7+JY4/deoUZ86cYfTo0QXbzGa1z5KdnR0RERE0a9asxOOaNm2Kj48PJ0+eLDW5cnBwKLXghb29vc3/M/PVdiz2lH4tHxcffhj5Q63FURqt/L9oIQ4txCBxaC8GrcShhRi0EocWYtBKHFqIQeLQXgxaiUMLMWglDi3EoJU4qnJ9mxa0MBgMdO3alXXr1hVsM5vNrFu3rtg0wXytW7fm4MGD7Nu3r+BjzJgxDBw4kH379hEUFFTqdc6fP09CQgIBAQE19r0IIYQQQgghrm82nxY4Y8YMJk+eTLdu3ejRowcLFiwgIyODqVOnAnDPPffQoEED3nzzTRwdHWnXrl2xx3t6egIUbE9PT2fOnDmMHz8ef39/Tp06xcyZM2nevDnDh0v58KpYfno5G89vZHiT4fQP6G/rcIQQQgghhNA0mydXd9xxB/Hx8bz88svExsbSqVMnVq1ahZ+fHwDnzp1Dp6v8AJter+fAgQN89913JCcnExgYyLBhw3j11Vel11UVHbp0iJWRK/F39i9IrmZtmUV8VjxPdHmCLn5dbByhEEIIIYQQ2mHz5Apg+vTpTJ8+vdR9GzZsKPex3377bbGvnZycWL16tZUiu74NChqEv7N/sSRqf/x+YjNjURTFhpEJIYQQQgihPZpIroQ29QjoQY+AHkBhff93+79LVEYULTxb2DI0IYQQQgghNEeSK1Elreu1pr1fe1uHIYQQQgghhObYtFqg0L7k7GQOxB8gKy/L1qEIIYQQQgihaZJciXLdsfwOJv4zkYikCM7mneXfc/8SnR5t67CEEEIIIYTQHEmuRLkauTfC19mXDGMGO3J2MHPzTP6J/MfWYQkhhBBCCKE5suZKlGvhkIXodXqMRiNL9Eto596Oll4tbR2WEEIIIYQQmiPJlSiXXqcv+HyQ4yBGDh+Jvb29DSMSQgghhBBCm2RaoBBCCCGEEEJYgYxciXIlZCUwf9d8EjITGMUoW4cjhBBCCCGEZklyJcrlZOfEitMrANjNbo7vPc6zPZ61cVRCCCGEEEJoj0wLFGWKSY/hTOoZJodMxtfJFyNGYjNiOZJwhCMJR4hJj7F1iEIIIYQQQmiGjFyJUsWkxzBq6ShyTbnFtq85t4Y159YAYNAbWD5uOQGuAbYIUQghhBBCCE2RkStRqqScpBKJ1ZVyTbkk5STVUkRCCCGEEEJomyRXQgghhBBCCGEFklwJIYQQQgghhBVIciWEEEIIIYQQViDJlRBCCCGEEEJYgSRXQgghhBBCCGEFklwJIYQQQgghhBVIciVK5eXghUFvKPcYg96Al4NXLUUkhBBCCCGEtkkTYVGqANcAlo9bXtDHKi8vjy2bt9Cnbx/s7NSnjZeDlzQQFkIIIYQQ4jJJrkSZAlwDCpIno9FIpF0kbeq1wd7e3saRCSGEEEIIoT0yLVAIIYQQQgghrECSKyGEEEIIIYSwAkmuhBBCCCGEEMIKJLkSQgghhBBCCCuQ5EoIIYQQQgghrECSKyGEEEIIIYSwAkmuhBBCCCGEEMIKJLkSQgghhBBCCCuQ5EoIIYQQQgghrECSKyGEEEIIIYSwAjtbB6BFFosFgNTUVBtHAkajkczMTFJTU7G3t7+u49BCDFqJQwsxSBzai0ErcWghBq3EoYUYtBKHFmKQOLQXg1bi0EIMWolDCzFoKQ4ozAnyc4TySHJVirS0NACCgoJsHIkQQgghhBBCC9LS0vDw8Cj3GMVSmRTsOmM2m4mOjsbNzQ1FUWwaS2pqKkFBQURFReHu7n5dx6GFGLQShxZikDi0F4NW4tBCDFqJQwsxaCUOLcQgcWgvBq3EoYUYtBKHFmLQUhygjlilpaURGBiITlf+qioZuSqFTqejYcOGtg6jGHd3d5s/sbQShxZi0EocWohB4tBeDFqJQwsxaCUOLcSglTi0EIPEob0YtBKHFmLQShxaiEFLcVQ0YpVPCloIIYQQQgghhBVIciWEEEIIIYQQViDJlcY5ODgwe/ZsHBwcrvs4tBCDVuLQQgwSh/Zi0EocWohBK3FoIQatxKGFGCQO7cWglTi0EINW4tBCDFqKo6qkoIUQQgghhBBCWIGMXAkhhBBCCCGEFUhyJYQQQgghhBBWIMmVEEIIIYQQQliBJFdCCCGEEEIIYQWSXGnUxo0bGT16NIGBgSiKwtKlS2s9hjfffJPu3bvj5uaGr68v48aNIyIiotbj+PTTT+nQoUNBE7levXqxcuXKWo+jqLfeegtFUXjyySdr9bqvvPIKiqIU+2jdunWtxpDvwoULTJo0CW9vb5ycnGjfvj27du2qtes3adKkxM9CURQeffTRWosBwGQy8dJLLxEcHIyTkxPNmjXj1VdfpbZrBaWlpfHkk0/SuHFjnJyc6N27Nzt37qzRa1b0OmWxWHj55ZcJCAjAycmJIUOGcOLEiVqNYfHixQwbNgxvb28URWHfvn1WvX5l4jAajTz33HO0b98eFxcXAgMDueeee4iOjq7VOEB9DWndujUuLi54eXkxZMgQtm/fXqsxFPXQQw+hKAoLFiywagyViWPKlCklXj9GjBhRqzEAHD16lDFjxuDh4YGLiwvdu3fn3LlztRpHaa+liqIwf/78WoshPT2d6dOn07BhQ5ycnAgJCWHhwoVWu35l44iLi2PKlCkEBgbi7OzMiBEjrP66VZn7q+zsbB599FG8vb1xdXVl/PjxxMXF1WoMn3/+OTfccAPu7u4oikJycrLVrl/ZOBITE3nsscdo1aoVTk5ONGrUiMcff5yUlBSrx2ItklxpVEZGBh07duTjjz+2WQxhYWE8+uijbNu2jbVr12I0Ghk2bBgZGRm1GkfDhg1566232L17N7t27WLQoEGMHTuWw4cP12oc+Xbu3Mlnn31Ghw4dbHL9tm3bEhMTU/CxefPmWo8hKSmJPn36YG9vz8qVKzly5Aj/93//h5eXV63FsHPnzmI/h7Vr1wJw22231VoMAPPmzePTTz/lo48+4ujRo8ybN4+3336bDz/8sFbjuP/++1m7di0//PADBw8eZNiwYQwZMoQLFy7U2DUrep16++23+eCDD1i4cCHbt2/HxcWF4cOHk52dXWsxZGRk0LdvX+bNm2e1a1Y1jszMTPbs2cNLL73Enj17WLx4MREREYwZM6ZW4wBo2bIlH330EQcPHmTz5s00adKEYcOGER8fX2sx5FuyZAnbtm0jMDDQateuahwjRowo9jryyy+/1GoMp06dom/fvrRu3ZoNGzZw4MABXnrpJRwdHWs1jqI/g5iYGL7++msURWH8+PG1FsOMGTNYtWoVP/74I0ePHuXJJ59k+vTpLFu2zGoxVBSHxWJh3LhxnD59mr/++ou9e/fSuHFjhgwZYtV7n8rcXz311FP8/fff/P7774SFhREdHc0tt9xSqzFkZmYyYsQIXnjhBatdt6pxREdHEx0dzTvvvMOhQ4f49ttvWbVqFffdd1+NxVRtFqF5gGXJkiW2DsNy8eJFC2AJCwuzdSgWLy8vy5dfflnr101LS7O0aNHCsnbtWsuAAQMsTzzxRK1ef/bs2ZaOHTvW6jVL89xzz1n69u1r6zCKeeKJJyzNmjWzmM3mWr3uTTfdZLn33nuLbbvlllssEydOrLUYMjMzLXq93rJ8+fJi27t06WJ58cUXayWGK1+nzGazxd/f3zJ//vyCbcnJyRYHBwfLL7/8UisxFBUZGWkBLHv37q2Ra1c2jnw7duywAJazZ8/aNI6UlBQLYPn3339rNYbz589bGjRoYDl06JClcePGlvfee69Grl9eHJMnT7aMHTu2Rq9bUQx33HGHZdKkSbUWQ1lxXGns2LGWQYMG1WoMbdu2tcydO7fYtpp+DbsyjoiICAtgOXToUME2k8lkqV+/vuWLL76osTiuvL9KTk622NvbW37//feCY44ePWoBLOHh4bUSQ1Hr16+3AJakpKQauXZl48j322+/WQwGg8VoNNZ4PFdDRq5EpeUPwdarV89mMZhMJn799VcyMjLo1atXrV//0Ucf5aabbmLIkCG1fu18J06cIDAwkKZNmzJx4kSrTx+pjGXLltGtWzduu+02fH196dy5M1988UWtx5EvNzeXH3/8kXvvvRdFUWr12r1792bdunUcP34cgP3797N582ZuvPHGWoshLy8Pk8lU4t1uJycnm4xsAkRGRhIbG1vsd8XDw4PQ0FDCw8NtEpOWpKSkoCgKnp6eNoshNzeXzz//HA8PDzp27Fhr1zWbzdx99908++yztG3bttauW5oNGzbg6+tLq1atePjhh0lISKi1a5vNZlasWEHLli0ZPnw4vr6+hIaG2mQZQFFxcXGsWLGi1kcGevfuzbJly7hw4QIWi4X169dz/Phxhg0bVmsx5OTkABR7LdXpdDg4ONToa+mV91e7d+/GaDQWe/1s3bo1jRo1qrHXTy3c41U2jpSUFNzd3bGzs6utsKpEkitRKWazmSeffJI+ffrQrl27Wr/+wYMHcXV1xcHBgYceeoglS5YQEhJSqzH8+uuv7NmzhzfffLNWr1tUaGhowZD4p59+SmRkJP369SMtLa1W4zh9+jSffvopLVq0YPXq1Tz88MM8/vjjfPfdd7UaR76lS5eSnJzMlClTav3azz//PBMmTKB169bY29vTuXNnnnzySSZOnFhrMbi5udGrVy9effVVoqOjMZlM/Pjjj4SHhxMTE1NrcRQVGxsLgJ+fX7Htfn5+BfuuV9nZ2Tz33HPceeeduLu71/r1ly9fjqurK46Ojrz33nusXbsWHx+fWrv+vHnzsLOz4/HHH6+1a5ZmxIgRfP/996xbt4558+YRFhbGjTfeiMlkqpXrX7x4kfT0dN566y1GjBjBmjVruPnmm7nlllsICwurlRhK89133+Hm5mbVKWiV8eGHHxISEkLDhg0xGAyMGDGCjz/+mP79+9daDPkJzKxZs0hKSiI3N5d58+Zx/vz5GnstLe3+KjY2FoPBUOLNl5p6/bT1PV5V4rh06RKvvvoqD/x/e3cfFFXVxwH8u+6yLuALAavLirvKi6gECGih+I5CZAhmYcQYgm8lKChu5WOKkSg2gqJjKEWYqYk2gS8l5AuiYqKiq6KAQKaUqKESEowBe54/HO7Tyqu63FWf32dmZ3bvPfee754dDvfsvffsrFk8p2u/Z3PIR545oaGhyM/P19u34HZ2dlCr1fjrr7/w/fffIygoCNnZ2bwNsMrKyhAeHo4DBw7o/Fr4x/HvsyGOjo549dVXoVQqsXPnTl6/ZdRoNBg8eDBWrFgBAHB2dkZ+fj42btyIoKAg3nI0Sk5Ohre3d4fdu9GanTt3Ytu2bdi+fTvs7e2hVqsREREBuVzOa1t8++23CAkJQa9evSAUCuHi4oKAgADk5eXxloG0ra6uDv7+/mCMITExUS8ZxowZA7VajYqKCnz55Zfw9/dHbm4uevTo0eF15+XlISEhAWfPnuX9LPOj3nnnHe65g4MDHB0dYW1tjSNHjsDDw6PD69doNAAAX19fzJ8/HwAwaNAgnDhxAhs3bsSoUaM6PENzvv76awQGBvL+v279+vU4efIk9uzZA6VSiaNHjyI0NBRyuZy3q0UMDAzwww8/YPr06TA1NYVQKMS4cePg7e3dYZMU6fv46lnJ0J4cVVVVmDBhAgYOHIhly5bxG+4x0Jkr0qawsDDs27cPWVlZsLS01EsGsVgMGxsbuLq6YuXKlXByckJCQgJv9efl5eH27dtwcXGBSCSCSCRCdnY21q1bB5FIxNs3nY8yMTFBv379UFJSwmu9FhYWTQa2AwYM0MsliteuXcPBgwcxY8YM3usGAJVKxZ29cnBwwNSpUzF//nzez3BaW1sjOzsb1dXVKCsrw6lTp1BXVwcrKyteczSSyWQA0GR2q1u3bnHr/t80DqyuXbuGAwcO6OWsFQAYGxvDxsYGbm5uSE5OhkgkQnJyMi91Hzt2DLdv34ZCoeD60mvXriEyMhJ9+vThJUNLrKysYG5uzlt/am5uDpFI9Mz0pcDDz6eoqIj3/rS2thb/+c9/EB8fDx8fHzg6OiIsLAxTpkzB6tWrec3i6uoKtVqNyspKlJeXIyMjA3fu3OmQvrSl4yuZTIZ//vmnyex8HdF/PgvHeO3Jcf/+fbz22mvo2rUr0tLSYGBgoIeU7UODK9IixhjCwsKQlpaGw4cPo2/fvvqOxNFoNNy10Xzw8PDAxYsXoVarucfgwYMRGBgItVoNoVDIW5Z/q66uRmlpKSwsLHit193dvcmUrVeuXIFSqeQ1BwCkpKSgR48emDBhAu91Aw9nU+rUSbsrFQqF3LfSfDM2NoaFhQXu3buHzMxM+Pr66iVH3759IZPJcOjQIW5ZVVUVcnNz9XK/pL41DqyKi4tx8OBBmJmZ6TsSh8/+dOrUqbhw4YJWXyqXy6FSqZCZmclLhpb8/vvvuHPnDm/9qVgsxpAhQ56ZvhR4eBWAq6srr/fgAQ//Purq6p6pvrR79+6QSqUoLi7GmTNndNqXtnV85erqCgMDA63+s6ioCNevX9dZ//msHOO1J0dVVRU8PT0hFouxZ88evV5B1B50WeAzqrq6Wuvbs6tXr0KtVsPU1BQKhYKXDKGhodi+fTt2796Nrl27ctf5du/eHYaGhrxkAIBFixbB29sbCoUC9+/fx/bt23HkyBFe/xF37dq1yfW/xsbGMDMz4/X65IULF8LHxwdKpRI3btxAVFQUhEIhAgICeMsAPJwidtiwYVixYgX8/f1x6tQpJCUlISkpidccGo0GKSkpCAoK0tuNrT4+PoiJiYFCoYC9vT3OnTuH+Ph4hISE8JojMzMTjDHY2dmhpKQEKpUK/fv3R3BwcIfV2VY/FRERgeXLl8PW1hZ9+/bFkiVLIJfL4efnx1uGu3fv4vr169xvSjUeyMpkMp1+A9xaDgsLC7z11ls4e/Ys9u3bh4aGBq4/NTU1hVgs5iWHmZkZYmJiMHHiRFhYWKCiogIbNmzAH3/8odOfMGjrM3l0YGlgYACZTAY7OzudZWgrh6mpKT799FNMnjwZMpkMpaWl+PDDD2FjYwMvLy9eMigUCqhUKkyZMgUjR47EmDFjkJGRgb179+LIkSM6y9CeHMDDA9hdu3YhLi5Op3W3N8OoUaOgUqlgaGgIpVKJ7OxsbNmyBfHx8bzm2LVrF6RSKRQKBS5evIjw8HD4+fnpdGKNto6vunfvjunTp2PBggUwNTVFt27dMHfuXAwdOhRubm68ZAAe3vt18+ZNrr0uXryIrl27QqFQ6Gzii7ZyNA6sampqsHXrVlRVVaGqqgoAIJVK9fbldqv0N1EhaU3jtJePPoKCgnjL0Fz9AFhKSgpvGRhjLCQkhCmVSiYWi5lUKmUeHh7s559/5jVDc/QxFfuUKVOYhYUFE4vFrFevXmzKlCmspKSE1wyN9u7dy15++WXWuXNn1r9/f5aUlMR7hszMTAaAFRUV8V53o6qqKhYeHs4UCgWTSCTMysqKLV68mD148IDXHKmpqczKyoqJxWImk8lYaGgoq6ys7NA62+qnNBoNW7JkCevZsyfr3Lkz8/Dw0Pln1VaGlJSUZtdHRUXxlqNxGvjmHllZWbzlqK2tZZMmTWJyuZyJxWJmYWHBJk6cyE6dOsVbhuZ01FTsreWoqalhnp6eTCqVMgMDA6ZUKtnMmTPZzZs3ecvQKDk5mdnY2DCJRMKcnJxYenq6TjO0N8emTZuYoaFhh/UbbWUoLy9n06ZNY3K5nEkkEmZnZ8fi4uJ0/vMabeVISEhglpaWzMDAgCkUCvbJJ5/ovD9vz/FVbW0tmzNnDnvppZeYkZERmzRpEisvL+c1Q1RUVIcfB7aVo6XPCwC7evWqznLokoCxDrpDjxBCCCGEEEL+j9A9V4QQQgghhBCiAzS4IoQQQgghhBAdoMEVIYQQQgghhOgADa4IIYQQQgghRAdocEUIIYQQQgghOkCDK0IIIYQQQgjRARpcEUIIIYQQQogO0OCKEEIIIYQQQnSABleEEEJ05rfffoNAIIBardZ3FE5hYSHc3NwgkUgwaNCgDq+vT58+WLt2bbvLt6fNNm/eDBMTk6fOpit37txBjx498NtvvwEAjhw5AoFAgMrKymbLV1RUoEePHvj999/5C0kIIXpAgytCCHmBTJs2DQKBALGxsVrL09PTIRAI9JRKv6KiomBsbIyioiIcOnSo2TK6bLfTp09j1qxZT5z3eRATEwNfX1/06dOnXeXNzc3x3nvvISoqqmODEUKIntHgihBCXjASiQSrVq3CvXv39B1FZ/75558n3ra0tBTDhw+HUqmEmZlZi+V01W5SqRRGRkZPtQ++1NXVPfY2NTU1SE5OxvTp0x9ru+DgYGzbtg1379597DoJIeR5QYMrQgh5wYwbNw4ymQwrV65sscyyZcuaXCK3du1arTMR06ZNg5+fH1asWIGePXvCxMQE0dHRqK+vh0qlgqmpKSwtLZGSktJk/4WFhRg2bBgkEglefvllZGdna63Pz8+Ht7c3unTpgp49e2Lq1KmoqKjg1o8ePRphYWGIiIiAubk5vLy8mn0fGo0G0dHRsLS0ROfOnTFo0CBkZGRw6wUCAfLy8hAdHQ2BQIBly5Y9VbsBwPHjxzFixAgYGhqid+/emDdvHv7++29u/aOXBRYWFmL48OGQSCQYOHAgDh48CIFAgPT0dK39/vrrrxgzZgyMjIzg5OSEX375pUnd6enpsLW1hUQigZeXF8rKyrTWJyYmwtraGmKxGHZ2dvj222+11gsEAiQmJmLixIkwNjZGTEwM7t27h8DAQEilUhgaGsLW1rbZz7TRTz/9hM6dO8PNza3FMjU1NfD29oa7uzt3qaC9vT3kcjnS0tJa3I4QQp53NLgihJAXjFAoxIoVK7B+/fqnvsfl8OHDuHHjBo4ePYr4+HhERUXhjTfewEsvvYTc3Fy8//77mD17dpN6VCoVIiMjce7cOQwdOhQ+Pj64c+cOAKCyshJjx46Fs7Mzzpw5g4yMDNy6dQv+/v5a+/jmm28gFouRk5ODjRs3NpsvISEBcXFxWL16NS5cuAAvLy9MnDgRxcXFAIDy8nLY29sjMjIS5eXlWLhwYYvvtT3tVlpaitdeew2TJ0/GhQsXkJqaiuPHjyMsLKzZ8g0NDfDz84ORkRFyc3ORlJSExYsXN1t28eLFWLhwIdRqNfr164eAgADU19dz62tqahATE4MtW7YgJycHlZWVeOedd7j1aWlpCA8PR2RkJPLz8zF79mwEBwcjKytLq55ly5Zh0qRJuHjxIkJCQrBkyRJcvnwZ+/fvR0FBARITE2Fubt5iOx07dgyurq4trq+srMT48eOh0Whw4MABrXvFXnnlFRw7dqzFbQkh5LnHCCGEvDCCgoKYr68vY4wxNzc3FhISwhhjLC0tjf27y4+KimJOTk5a265Zs4YplUqtfSmVStbQ0MAts7OzYyNGjOBe19fXM2NjY/bdd98xxhi7evUqA8BiY2O5MnV1dczS0pKtWrWKMcbYZ599xjw9PbXqLisrYwBYUVERY4yxUaNGMWdn5zbfr1wuZzExMVrLhgwZwubMmcO9dnJyYlFRUa3up73tNn36dDZr1iytbY8dO8Y6derEamtrGWOMKZVKtmbNGsYYY/v372cikYiVl5dz5Q8cOMAAsLS0NMbY/9rsq6++4spcunSJAWAFBQWMMcZSUlIYAHby5EmuTEFBAQPAcnNzGWOMDRs2jM2cOVMr29tvv81ef/117jUAFhERoVXGx8eHBQcHt9o+/+br68u1T6OsrCwur6OjI5s8eTJ78OBBk23nz5/PRo8e3e66CCHkeUNnrggh5AW1atUqfPPNNygoKHjifdjb26NTp//9q+jZsyccHBy410KhEGZmZrh9+7bWdkOHDuWei0QiDB48mMtx/vx5ZGVloUuXLtyjf//+AB6eGWrU2tkRAKiqqsKNGzfg7u6utdzd3f2p3nNr7Xb+/Hls3rxZK7uXlxc0Gg2uXr3apHxRURF69+4NmUzGLXvllVeardfR0ZF7bmFhAQBa7SoSiTBkyBDudf/+/WFiYsLlLCgoaFdbDB48WOv1Bx98gB07dmDQoEH48MMPceLEiWbzNaqtrYVEIml23fjx42FjY4PU1FSIxeIm6w0NDVFTU9Pq/gkh5HlGgytCCHlBjRw5El5eXli0aFGTdZ06dQJjTGtZc5MbGBgYaL0WCATNLtNoNO3OVV1dDR8fH6jVaq1HcXExRo4cyZUzNjZu9z51qbV2q66uxuzZs7Vynz9/HsXFxbC2tn6qev/dro0zFD5Ou7bXo+3q7e2Na9euYf78+bhx4wY8PDxavXzS3Ny8xUk/JkyYgKNHj+Ly5cvNrr979y6kUumThyeEkGccDa4IIeQFFhsbi7179zaZHEEqleLmzZtaAyxd/jbVyZMnuef19fXIy8vDgAEDAAAuLi64dOkS+vTpAxsbG63H4wyounXrBrlcjpycHK3lOTk5GDhw4FPlb6ndXFxccPny5Sa5bWxsmj1TY2dnh7KyMty6dYtbdvr06SfKVF9fjzNnznCvi4qKUFlZybXrgAEDnrgtpFIpgoKCsHXrVqxduxZJSUktlnV2dm5x8BQbG4ugoCB4eHg0WyY/Px/Ozs5t5iGEkOcVDa4IIeQF5uDggMDAQKxbt05r+ejRo/Hnn3/i888/R2lpKTZs2ID9+/frrN4NGzYgLS0NhYWFCA0Nxb179xASEgIACA0Nxd27dxEQEIDTp0+jtLQUmZmZCA4ORkNDw2PVo1KpsGrVKqSmpqKoqAgff/wx1Go1wsPDnyp/S+320Ucf4cSJEwgLC+POtu3evbvFCS3Gjx8Pa2trBAUF4cKFC8jJycEnn3wCAI/9+1kGBgaYO3cucnNzkZeXh2nTpsHNzY27zFClUmHz5s1ITExEcXEx4uPj8cMPP7R6FgoAli5dit27d6OkpASXLl3Cvn37uAFbc7y8vHDp0qUWz16tXr0agYGBGDt2LAoLC7nlNTU1yMvLg6en52O9b0IIeZ7Q4IoQQl5w0dHRTS4vGzBgAL744gts2LABTk5OOHXqVJsH4Y8jNjYWsbGxcHJywvHjx7Fnzx5uBrrGs00NDQ3w9PSEg4MDIiIiYGJionV/V3vMmzcPCxYsQGRkJBwcHJCRkYE9e/bA1tb2qd9Dc+3m6OiI7OxsXLlyBSNGjICzszOWLl0KuVze7D6EQiHS09NRXV2NIUOGYMaMGdxsgS3dt9QSIyMjfPTRR3j33Xfh7u6OLl26IDU1lVvv5+eHhIQErF69Gvb29ti0aRNSUlIwevToVvcrFouxaNEiODo6YuTIkRAKhdixY0eL5R0cHODi4oKdO3e2WGbNmjXw9/fH2LFjceXKFQDA7t27oVAoMGLEiMd634QQ8jwRsEcvuieEEEJIh8nJycHw4cNRUlLy1Pdp6cuPP/4IlUqF/Pz8dg+I3dzcMG/ePLz77rsdnI4QQvRHpO8AhBBCyIssLS0NXbp0ga2tLUpKShAeHg53d/fndmAFPJy4ori4GH/88Qd69+7dZvmKigq8+eabCAgI4CEdIYToD525IoQQQjrQli1bsHz5cly/fh3m5uYYN24c4uLiYGZmpu9ohBBCdIwGV4QQQgghhBCiAzShBSGEEEIIIYToAA2uCCGEEEIIIUQHaHBFCCGEEEIIITpAgytCCCGEEEII0QEaXBFCCCGEEEKIDtDgihBCCCGEEEJ0gAZXhBBCCCGEEKIDNLgihBBCCCGEEB34L2IX8oBF+fSaAAAAAElFTkSuQmCC",
|
|
"text/plain": [
|
|
"<Figure size 1000x500 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"# Plot the scores among the k values\n",
|
|
"plt.figure(figsize=(10, 5))\n",
|
|
"plt.plot(K_list, k_scores, marker='o', linestyle='-', label='F1 Score')\n",
|
|
"plt.plot(K_list, score[0::2], marker='x', linestyle='--', label='Accuracy')\n",
|
|
"plt.plot(K_list, score[1::2], marker='s', linestyle=':', label='Recall')\n",
|
|
"plt.title('k-NN F1 Score vs. k')\n",
|
|
"plt.xlabel('Number of Neighbors (k)')\n",
|
|
"plt.ylabel('F1 Score')\n",
|
|
"plt.xticks(K_list)\n",
|
|
"plt.legend()\n",
|
|
"plt.grid()\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "9f53b6e9",
|
|
"metadata": {},
|
|
"source": [
|
|
"With this graphic we can clearly see that the $ f1\\_score $ is a good deal between the recall and the accuracy and why we use it as our cross-validation score. "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "5b2f376f",
|
|
"metadata": {},
|
|
"source": [
|
|
"### 4) Model performance "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 67,
|
|
"id": "064a5aa7",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Accuracy: 0.7916666666666666\n",
|
|
"F1 Score: 0.7883597883597883\n",
|
|
"Recall: 0.9166666666666666\n",
|
|
"Classification Report:\n",
|
|
" precision recall f1-score support\n",
|
|
"\n",
|
|
" 0 0.89 0.67 0.76 12\n",
|
|
" 1 0.73 0.92 0.81 12\n",
|
|
"\n",
|
|
" accuracy 0.79 24\n",
|
|
" macro avg 0.81 0.79 0.79 24\n",
|
|
"weighted avg 0.81 0.79 0.79 24\n",
|
|
"\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAmYAAAJOCAYAAAAd08vRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA8TElEQVR4nO3deXRN9/7/8deJyDyahUgQUmmNbbWhJKYaW0NrqJRQoXoR1Wpxe7UxNd/qVdP9Krd1TY1WbxVV+jMrQV1DDS2NiPEW1RpChCDZvz8s59sj0iYk8iHPx1pZq2fvffZ+n7MWnt17nxObZVmWAAAAUOicCnsAAAAA3ECYAQAAGIIwAwAAMARhBgAAYAjCDAAAwBCEGQAAgCEIMwAAAEMQZgAAAIYgzAAAAAxBmAEoMpKTk/X000/L19dXNptNixcvztf9HzlyRDabTbNnz87X/d7PIiMjFRkZWdhjAPcNwgzAPZWSkqKXX35ZVapUkZubm3x8fNSwYUNNnjxZly9fLtBjR0dHa+/evRo3bpzmzZunxx57rECPdy/16tVLNptNPj4+t30fk5OTZbPZZLPZ9Pe//z3P+z9x4oTi4uK0a9eufJgWQE6cC3sAAEXHsmXL1LlzZ7m6uqpnz5565JFHdPXqVSUmJuqNN97Qjz/+qH/+858FcuzLly9ry5YteuuttzRw4MACOUZQUJAuX76s4sWLF8j+/4yzs7PS09O1dOlSdenSxWFdQkKC3NzcdOXKlTva94kTJzRq1CgFBwerTp06uX7eypUr7+h4QFFFmAG4Jw4fPqxu3bopKChIa9euVfny5e3rBgwYoIMHD2rZsmUFdvxff/1VkuTn51dgx7DZbHJzcyuw/f8ZV1dXNWzYUJ9++mm2MJs/f77atm2rhQsX3pNZ0tPT5eHhIRcXl3tyPOBBwaVMAPfE+PHjlZaWppkzZzpE2U0hISEaPHiw/fH169c1ZswYVa1aVa6urgoODtZf//pXZWRkODwvODhY7dq1U2JiourXry83NzdVqVJFc+fOtW8TFxenoKAgSdIbb7whm82m4OBgSTcuAd7879+Li4uTzWZzWLZq1So99dRT8vPzk5eXl0JDQ/XXv/7Vvj6ne8zWrl2rRo0aydPTU35+fmrfvr32799/2+MdPHhQvXr1kp+fn3x9fdW7d2+lp6fn/Mbeonv37vrmm290/vx5+7Jt27YpOTlZ3bt3z7b92bNnNXToUNWsWVNeXl7y8fFR69attXv3bvs269ev1+OPPy5J6t27t/2S6M3XGRkZqUceeUQ7duxQ48aN5eHhYX9fbr3HLDo6Wm5ubtlef8uWLeXv768TJ07k+rUCDyLCDMA9sXTpUlWpUkUNGjTI1fYxMTF6++23Va9ePU2cOFERERGKj49Xt27dsm178OBBPf/882rRooUmTJggf39/9erVSz/++KMkqVOnTpo4caIk6YUXXtC8efM0adKkPM3/448/ql27dsrIyNDo0aM1YcIEPfvss9q0adMfPm/16tVq2bKlTp8+rbi4OL322mvavHmzGjZsqCNHjmTbvkuXLrp48aLi4+PVpUsXzZ49W6NGjcr1nJ06dZLNZtOXX35pXzZ//nw99NBDqlevXrbtDx06pMWLF6tdu3b64IMP9MYbb2jv3r2KiIiwR1KNGjU0evRoSVK/fv00b948zZs3T40bN7bv58yZM2rdurXq1KmjSZMmqUmTJredb/LkySpdurSio6OVmZkpSZoxY4ZWrlypqVOnKiAgINevFXggWQBQwFJTUy1JVvv27XO1/a5duyxJVkxMjMPyoUOHWpKstWvX2pcFBQVZkqwNGzbYl50+fdpydXW1Xn/9dfuyw4cPW5Ks999/32Gf0dHRVlBQULYZ3nnnHev3f0VOnDjRkmT9+uuvOc598xizZs2yL6tTp45VpkwZ68yZM/Zlu3fvtpycnKyePXtmO95LL73ksM+OHTtaJUuWzPGYv38dnp6elmVZ1vPPP281a9bMsizLyszMtMqVK2eNGjXqtu/BlStXrMzMzGyvw9XV1Ro9erR92bZt27K9tpsiIiIsSdb06dNvuy4iIsJh2YoVKyxJ1tixY61Dhw5ZXl5eVocOHf70NQJFAWfMABS4CxcuSJK8vb1ztf3y5cslSa+99prD8tdff12Sst2LFhYWpkaNGtkfly5dWqGhoTp06NAdz3yrm/emLVmyRFlZWbl6zsmTJ7Vr1y716tVLJUqUsC+vVauWWrRoYX+dv9e/f3+Hx40aNdKZM2fs72FudO/eXevXr9epU6e0du1anTp16raXMaUb96U5Od34pyAzM1NnzpyxX6bduXNnro/p6uqq3r1752rbp59+Wi+//LJGjx6tTp06yc3NTTNmzMj1sYAHGWEGoMD5+PhIki5evJir7Y8ePSonJyeFhIQ4LC9Xrpz8/Px09OhRh+WVKlXKtg9/f3+dO3fuDifOrmvXrmrYsKFiYmJUtmxZdevWTZ9//vkfRtrNOUNDQ7Otq1Gjhn777TddunTJYfmtr8Xf31+S8vRa2rRpI29vby1YsEAJCQl6/PHHs72XN2VlZWnixImqVq2aXF1dVapUKZUuXVp79uxRampqro9ZoUKFPN3o//e//10lSpTQrl27NGXKFJUpUybXzwUeZIQZgALn4+OjgIAA/fDDD3l63q033+ekWLFit11uWdYdH+Pm/U83ubu7a8OGDVq9erV69OihPXv2qGvXrmrRokW2be/G3byWm1xdXdWpUyfNmTNHixYtyvFsmSS9++67eu2119S4cWN98sknWrFihVatWqWHH34412cGpRvvT158//33On36tCRp7969eXou8CAjzADcE+3atVNKSoq2bNnyp9sGBQUpKytLycnJDst/+eUXnT9/3v4Jy/zg7+/v8AnGm249KydJTk5OatasmT744APt27dP48aN09q1a7Vu3brb7vvmnElJSdnW/fTTTypVqpQ8PT3v7gXkoHv37vr+++918eLF235g4qYvvvhCTZo00cyZM9WtWzc9/fTTat68ebb3JLeRnBuXLl1S7969FRYWpn79+mn8+PHatm1bvu0fuJ8RZgDuiTfffFOenp6KiYnRL7/8km19SkqKJk+eLOnGpThJ2T45+cEHH0iS2rZtm29zVa1aVampqdqzZ4992cmTJ7Vo0SKH7c6ePZvtuTe/aPXWr/C4qXz58qpTp47mzJnjEDo//PCDVq5caX+dBaFJkyYaM2aM/vGPf6hcuXI5blesWLFsZ+P+/e9/6+eff3ZYdjMgbxexeTVs2DAdO3ZMc+bM0QcffKDg4GBFR0fn+D4CRQlfMAvgnqhatarmz5+vrl27qkaNGg7f/L9582b9+9//Vq9evSRJtWvXVnR0tP75z3/q/PnzioiI0H/+8x/NmTNHHTp0yPGrGO5Et27dNGzYMHXs2FGxsbFKT0/Xhx9+qOrVqzvc/D569Ght2LBBbdu2VVBQkE6fPq1p06apYsWKeuqpp3Lc//vvv6/WrVsrPDxcffr00eXLlzV16lT5+voqLi4u317HrZycnPS3v/3tT7dr166dRo8erd69e6tBgwbau3evEhISVKVKFYftqlatKj8/P02fPl3e3t7y9PTUE088ocqVK+dprrVr12ratGl655137F/fMWvWLEVGRmrkyJEaP358nvYHPHAK+VOhAIqYAwcOWH379rWCg4MtFxcXy9vb22rYsKE1depU68qVK/btrl27Zo0aNcqqXLmyVbx4cSswMNAaMWKEwzaWdePrMtq2bZvtOLd+TUNOX5dhWZa1cuVK65FHHrFcXFys0NBQ65NPPsn2dRlr1qyx2rdvbwUEBFguLi5WQECA9cILL1gHDhzIdoxbv1Ji9erVVsOGDS13d3fLx8fHeuaZZ6x9+/Y5bHPzeLd+HcesWbMsSdbhw4dzfE8ty/HrMnKS09dlvP7661b58uUtd3d3q2HDhtaWLVtu+zUXS5YsscLCwixnZ2eH1xkREWE9/PDDtz3m7/dz4cIFKygoyKpXr5517do1h+2GDBliOTk5WVu2bPnD1wA86GyWlYc7SgEAAFBguMcMAADAEIQZAACAIQgzAAAAQxBmAAAAhiDMAAAADEGYAQAAGIIvmDVIVlaWTpw4IW9v73z99ScAAKBwWZalixcvKiAgQE5OOZ8XI8wMcuLECQUGBhb2GAAAoIAcP35cFStWzHE9YWYQb29vSVLo4Pkq5upRyNMAKGijOz1S2CMAuEfSL11Uz2Z17f/W54QwM8jNy5fFXD1UzNWzkKcBUNA8vP74L2gAD54/u1WJm/8BAAAMQZgBAAAYgjADAAAwBGEGAABgCMIMAADAEIQZAACAIQgzAAAAQxBmAAAAhiDMAAAADEGYAQAAGIIwAwAAMARhBgAAYAjCDAAAwBCEGQAAgCEIMwAAAEMQZgAAAIYgzAAAAAxBmAEAABiCMAMAADAEYQYAAGAIwgwAAMAQhBkAAIAhCDMAAABDEGYAAACGIMwAAAAMQZgBAAAYgjADAAAwBGEGAABgCMIMAADAEIQZAACAIQgzAAAAQxBmAAAAhiDMAAAADEGYAQAAGIIwAwAAMARhBgAAYAjCDAAAwBCEGQAAgCEIMwAAAEMQZgAAAIYgzAAAAAxBmAEAABiCMAMAADAEYQYAAGAIwgwAAMAQhBkAAIAhCDMAAABDEGYAAACGIMwAAAAMQZgBAAAYgjADAAAwBGEGAABgCMIMAADAEIQZAACAIQgzAAAAQxBmAAAAhiDMAAAADEGYAQAAGIIwAwAAMARhBgAAYAjCDAAAwBCEGQAAgCEIMwAAAEMQZgAAAIYgzAAAAAxBmAEAABiCMAMAADAEYQYAAGAIwgwAAMAQhBkAAIAhCDMAAABDEGYAAACGIMwAAAAMQZgBAAAYgjADAAAwBGEGAABgCMIMAADAEIQZAACAIQgzAAAAQxBmAAAAhiDMAAAADEGYAQAAGIIwAwAAMARhBgAAYAjCDAAAwBCEGQAAgCEIMwAAAEMQZgAAAIYgzAAAAAxBmAEAABiCMAMAADAEYQYAAGAIwgwAAMAQhBkAAIAhCDMAAABDEGYAAACGIMwAAAAMQZgBAAAYgjADAAAwBGEGAABgCMIMAADAEIQZAACAIQgzAAAAQxBmAAAAhiDMAAAADEGYAQAAGIIwAwAAMARhBgAAYAjCDAAAwBCEGQAAgCEIMwAAAEMQZgAAAIYgzAAAAAxBmAGFxMkmDWhaRd8Maaj/jGyiZa82UL+IyoU9FoB74POPp6jNI2U143/+VtijwDDOhT0AUFS91ChYXR6vqL8t+lEppy/p4QAfje4YprQr1zV/6/HCHg9AATmw93t98++5qlw9rLBHgYE4YwYUktqBvlr306/aeOCMTpy/olX7TmvLwbN6pKJPYY8GoIBcTr+k8cP/oti4CfLy8SvscWAgwgwoJLuPp+qJKiUUVNJDklS9rJfqBvkqMflMIU8GoKBMGztc9Rs3V93wiMIeBYbiUiZQSGZuPCJPV2ctGRSuTMtSMZtNU9ekaPmeU4U9GoAC8O3yRTq4f48mf7aisEeBwQizHMTFxWnx4sXatWtXYY+CB1TLh8uqba1yGv7FD0o5nabQ8t56s3V1/XoxQ1/tOlnY4wHIR7+e/Fkz/udvGvfR53JxdSvscWAwwkySzWbTokWL1KFDB/uyoUOHatCgQYU3FB54r7Wsppkbj+j//fCLJCn59CWV93NXn0bBhBnwgEnet1vnz/6mQV1a2JdlZWbqhx1btPTTf2nJzuMqVqxYIU4IUxBmOfDy8pKXl1dhj4EHmFtxJ1mW5bAsK8uSzVZIAwEoMHWebKxpi9Y7LJv4t1dVsXKIOvcZSJTBrlBv/o+MjFRsbKzefPNNlShRQuXKlVNcXJx9/fnz5xUTE6PSpUvLx8dHTZs21e7dux32MXbsWJUpU0be3t6KiYnR8OHDVadOHfv6bdu2qUWLFipVqpR8fX0VERGhnTt32tcHBwdLkjp27CibzWZ/HBcXZ9/PypUr5ebmpvPnzzsce/DgwWratKn9cWJioho1aiR3d3cFBgYqNjZWly5duuv3CQ+mb5N+U9/GldWoekkF+LmpaY3S6tGgktbu/7WwRwOQzzw8vRRcrYbDj5u7h3z8/BVcrUZhjweDFPqnMufMmSNPT09t3bpV48eP1+jRo7Vq1SpJUufOnXX69Gl988032rFjh+rVq6dmzZrp7NmzkqSEhASNGzdO7733nnbs2KFKlSrpww8/dNj/xYsXFR0drcTERH333XeqVq2a2rRpo4sXL0q6EW6SNGvWLJ08edL++PeaNWsmPz8/LVy40L4sMzNTCxYsUFRUlCQpJSVFrVq10nPPPac9e/ZowYIFSkxM1MCBA3N87RkZGbpw4YLDD4qO+GVJWrXvtN5q95AWDwrX6y2r6YvtP+sfa1MKezQAQCGxWbdeS7mHIiMjlZmZqY0bN9qX1a9fX02bNlW7du3Utm1bnT59Wq6urvb1ISEhevPNN9WvXz89+eSTeuyxx/SPf/zDvv6pp55SWlpajjftZ2Vlyc/PT/Pnz1e7du0k3f4es1tv/n/11Ve1d+9erVmzRtKNs2jPPvusTp06JT8/P8XExKhYsWKaMWOGfR+JiYmKiIjQpUuX5OaW/WbPuLg4jRo1KtvysDcXq5ir55+/gQDua+91rVXYIwC4R9LTLur5J0OUmpoqH5+cv6+y0M+Y1arl+BdT+fLldfr0ae3evVtpaWkqWbKk/X4vLy8vHT58WCkpN84oJCUlqX79+g7Pv/XxL7/8or59+6patWry9fWVj4+P0tLSdOzYsTzNGRUVpfXr1+vEiROSbpyta9u2rfz8/CRJu3fv1uzZsx1mbdmypbKysnT48OHb7nPEiBFKTU21/xw/zre9AwBQlBX6zf/Fixd3eGyz2ZSVlaW0tDSVL19e69evz/acmzGUG9HR0Tpz5owmT56soKAgubq6Kjw8XFevXs3TnI8//riqVq2qzz77TK+88ooWLVqk2bNn29enpaXp5ZdfVmxsbLbnVqpU6bb7dHV1dTgbCAAAirZCD7Oc1KtXT6dOnZKzs7P9hvxbhYaGatu2berZs6d92a33iG3atEnTpk1TmzZtJEnHjx/Xb7/95rBN8eLFlZmZ+aczRUVFKSEhQRUrVpSTk5Patm3rMO++ffsUEhKS25cIAADgoNAvZeakefPmCg8PV4cOHbRy5UodOXJEmzdv1ltvvaXt27dLkgYNGqSZM2dqzpw5Sk5O1tixY7Vnzx7Zfvd9A9WqVdO8efO0f/9+bd26VVFRUXJ3d3c4VnBwsNasWaNTp07p3LlzOc4UFRWlnTt3aty4cXr++ecdznYNGzZMmzdv1sCBA7Vr1y4lJydryZIlf3jzPwAAwO8ZG2Y2m03Lly9X48aN1bt3b1WvXl3dunXT0aNHVbZsWUk3QmnEiBEaOnSo6tWrp8OHD6tXr14ON9rPnDlT586dU7169dSjRw/FxsaqTJkyDseaMGGCVq1apcDAQNWtWzfHmUJCQlS/fn3t2bPH/mnMm2rVqqVvv/1WBw4cUKNGjVS3bl29/fbbCggIyMd3BQAAPMgK9VOZBaFFixYqV66c5s2bV9ij5NmFCxfk6+vLpzKBIoJPZQJFR24/lWnsPWa5kZ6erunTp6tly5YqVqyYPv30U61evdr+PWgAAAD3k/s6zG5e7hw3bpyuXLmi0NBQLVy4UM2bNy/s0QAAAPLsvg4zd3d3rV69urDHAAAAyBfG3vwPAABQ1BBmAAAAhiDMAAAADEGYAQAAGIIwAwAAMARhBgAAYAjCDAAAwBCEGQAAgCEIMwAAAEMQZgAAAIYgzAAAAAxBmAEAABiCMAMAADAEYQYAAGAIwgwAAMAQhBkAAIAhCDMAAABDEGYAAACGIMwAAAAMQZgBAAAYgjADAAAwBGEGAABgCMIMAADAEIQZAACAIQgzAAAAQxBmAAAAhiDMAAAADEGYAQAAGIIwAwAAMARhBgAAYAjCDAAAwBCEGQAAgCEIMwAAAEMQZgAAAIYgzAAAAAxBmAEAABiCMAMAADAEYQYAAGAIwgwAAMAQhBkAAIAhCDMAAABDEGYAAACGIMwAAAAMQZgBAAAYgjADAAAwBGEGAABgCMIMAADAEIQZAACAIQgzAAAAQxBmAAAAhiDMAAAADEGYAQAAGIIwAwAAMARhBgAAYAjCDAAAwBCEGQAAgCEIMwAAAEMQZgAAAIYgzAAAAAxBmAEAABiCMAMAADAEYQYAAGAIwgwAAMAQhBkAAIAhCDMAAABDEGYAAACGIMwAAAAMQZgBAAAYgjADAAAwBGEGAABgCMIMAADAEIQZAACAIQgzAAAAQxBmAAAAhiDMAAAADEGYAQAAGIIwAwAAMARhBgAAYAjCDAAAwBCEGQAAgCEIMwAAAEMQZgAAAIYgzAAAAAxBmAEAABjCOTcbffXVV7ne4bPPPnvHwwAAABRluQqzDh065GpnNptNmZmZdzMPAABAkZWrMMvKyiroOQAAAIq8u7rH7MqVK/k1BwAAQJGX5zDLzMzUmDFjVKFCBXl5eenQoUOSpJEjR2rmzJn5PiAAAEBRkecwGzdunGbPnq3x48fLxcXFvvyRRx7Rxx9/nK/DAQAAFCV5DrO5c+fqn//8p6KiolSsWDH78tq1a+unn37K1+EAAACKkjyH2c8//6yQkJBsy7OysnTt2rV8GQoAAKAoynOYhYWFaePGjdmWf/HFF6pbt26+DAUAAFAU5errMn7v7bffVnR0tH7++WdlZWXpyy+/VFJSkubOnauvv/66IGYEAAAoEvJ8xqx9+/ZaunSpVq9eLU9PT7399tvav3+/li5dqhYtWhTEjAAAAEVCns+YSVKjRo20atWq/J4FAACgSLujMJOk7du3a//+/ZJu3Hf26KOP5ttQAAAARVGew+y///2vXnjhBW3atEl+fn6SpPPnz6tBgwb67LPPVLFixfyeEQAAoEjI8z1mMTExunbtmvbv36+zZ8/q7Nmz2r9/v7KyshQTE1MQMwIAABQJeT5j9u2332rz5s0KDQ21LwsNDdXUqVPVqFGjfB0OAACgKMnzGbPAwMDbfpFsZmamAgIC8mUoAACAoijPYfb+++9r0KBB2r59u33Z9u3bNXjwYP3973/P1+EAAACKklxdyvT395fNZrM/vnTpkp544gk5O994+vXr1+Xs7KyXXnpJHTp0KJBBAQAAHnS5CrNJkyYV8BgAAADIVZhFR0cX9BwAAABF3h1/wawkXblyRVevXnVY5uPjc1cDAQAAFFV5vvn/0qVLGjhwoMqUKSNPT0/5+/s7/AAAAODO5DnM3nzzTa1du1YffvihXF1d9fHHH2vUqFEKCAjQ3LlzC2JGAACAIiHPlzKXLl2quXPnKjIyUr1791ajRo0UEhKioKAgJSQkKCoqqiDmBAAAeODl+YzZ2bNnVaVKFUk37ic7e/asJOmpp57Shg0b8nc6AACAIiTPYValShUdPnxYkvTQQw/p888/l3TjTNrNX2oOAACAvMtzmPXu3Vu7d++WJA0fPlz/+7//Kzc3Nw0ZMkRvvPFGvg8IAABQVOT5HrMhQ4bY/7t58+b66aeftGPHDoWEhKhWrVr5OhwAAEBRclffYyZJQUFBCgoKyo9ZAAAAirRchdmUKVNyvcPY2Ng7HgYAAKAoy1WYTZw4MVc7s9lshBkAAMAdylWY3fwUJu6NdcOa8KutgCLA//GBhT0CgHvEyrz65xvpDj6VCQAAgIJBmAEAABiCMAMAADAEYQYAAGAIwgwAAMAQdxRmGzdu1Isvvqjw8HD9/PPPkqR58+YpMTExX4cDAAAoSvIcZgsXLlTLli3l7u6u77//XhkZGZKk1NRUvfvuu/k+IAAAQFGR5zAbO3aspk+fro8++kjFixe3L2/YsKF27tyZr8MBAAAUJXkOs6SkJDVu3Djbcl9fX50/fz4/ZgIAACiS8hxm5cqV08GDB7MtT0xMVJUqVfJlKAAAgKIoz2HWt29fDR48WFu3bpXNZtOJEyeUkJCgoUOH6pVXXimIGQEAAIqEXP2uzN8bPny4srKy1KxZM6Wnp6tx48ZydXXV0KFDNWjQoIKYEQAAoEiwWZZl3ckTr169qoMHDyotLU1hYWHy8vLK79mKnAsXLsjX11e/nEnll5gDRQC/xBwoOqzMq8rY+5FSU//43/g8nzG7ycXFRWFhYXf6dAAAANwiz2HWpEkT2Wy2HNevXbv2rgYCAAAoqvIcZnXq1HF4fO3aNe3atUs//PCDoqOj82suAACAIifPYTZx4sTbLo+Li1NaWtpdDwQAAFBU5dsvMX/xxRf1r3/9K792BwAAUOTkW5ht2bJFbm5u+bU7AACAIifPlzI7derk8NiyLJ08eVLbt2/XyJEj820wAACAoibPYebr6+vw2MnJSaGhoRo9erSefvrpfBsMAACgqMlTmGVmZqp3796qWbOm/P39C2omAACAIilP95gVK1ZMTz/9tM6fP19A4wAAABRdeb75/5FHHtGhQ4cKYhYAAIAiLc9hNnbsWA0dOlRff/21Tp48qQsXLjj8AAAA4M7k+h6z0aNH6/XXX1ebNm0kSc8++6zDr2ayLEs2m02ZmZn5PyUAAEARkOswGzVqlPr3769169YV5DwAAABFVq7DzLIsSVJERESBDQMAAFCU5ekes99fugQAAED+ytP3mFWvXv1P4+zs2bN3NRAAAEBRlacwGzVqVLZv/gcAAED+yFOYdevWTWXKlCmoWQAAAIq0XN9jxv1lAAAABSvXYXbzU5kAAAAoGLm+lJmVlVWQcwAAABR5ef6VTAAAACgYhBkAAIAhCDMAAABDEGYAAACGIMwAAAAMQZgBAAAYgjADAAAwBGEGAABgCMIMAADAEIQZAACAIQgzAAAAQxBmAAAAhiDMAAAADEGYAQAAGIIwAwAAMARhBgAAYAjCDAAAwBCEGQAAgCEIMwAAAEMQZgAAAIYgzAAAAAxBmAEAABiCMAMAADAEYQYAAGAIwgwAAMAQhBkAAIAhCDMAAABDEGYAAACGIMwAAAAMQZgBAAAYgjADAAAwBGEGAABgCMIMAADAEIQZAACAIQgzAAAAQxBmAAAAhiDMAAAADEGYAQAAGIIwAwAAMARhBgAAYAjCDAAAwBCEGQAAgCEIMwAAAEMQZgAAAIYgzAAAAAxBmAEAABiCMAMAADAEYQYAAGAIwgwAAMAQhBkAAIAhCDMAAABDEGYAAACGIMwAAAAMQZgBAAAYgjADAAAwBGEGAABgCMIMAADAEIQZAACAIQgzAAAAQxBmAAAAhiDMAAAADEGYAQAAGIIwAwAAMARhBgAAYAjCDAAAwBCEGQAAgCEIMwAAAEMQZgAAAIYgzAAAAAxBmAEAABiCMAMAADAEYQYAAGAIwgwAAMAQhBkAAIAhCDMAAABDEGYAAACGIMwAAAAMQZgBAAAYgjADAAAwBGEGAABgCMIMAADAEIQZUEgSN27Qcx2eUeVKAXIvbtNXSxYX9kgA8knDelX1xaSXdWjlOF3+/h96JrKWw/r2TWtr6bQB+u+693T5+3+oVvUKhTQpTEOYAYXk0qVLqlmrtiZN+d/CHgVAPvN0d9XeAz/r1fgFt13v4e6izbtS9Lcpi+/tYDCec2EPABRVLVu1VstWrQt7DAAFYOWmfVq5aV+O6z9dtk2SVKl8iXs1Eu4TnDEDAAAwRJELs/Xr18tms+n8+fN/uF1wcLAmTZp0T2YCAACQimCYNWjQQCdPnpSvr68kafbs2fLz88u23bZt29SvX797PB0AACjKitw9Zi4uLipXrtyfble6dOl7MA0AAMD/MfKMWWRkpAYOHKiBAwfK19dXpUqV0siRI2VZliTp3Llz6tmzp/z9/eXh4aHWrVsrOTnZ/vyjR4/qmWeekb+/vzw9PfXwww9r+fLlkhwvZa5fv169e/dWamqqbDabbDab4uLiJDleyuzevbu6du3qMOO1a9dUqlQpzZ07V5KUlZWl+Ph4Va5cWe7u7qpdu7a++OKLAn6nAADAg8TYM2Zz5sxRnz599J///Efbt29Xv379VKlSJfXt21e9evVScnKyvvrqK/n4+GjYsGFq06aN9u3bp+LFi2vAgAG6evWqNmzYIE9PT+3bt09eXl7ZjtGgQQNNmjRJb7/9tpKSkiTptttFRUWpc+fOSktLs69fsWKF0tPT1bFjR0lSfHy8PvnkE02fPl3VqlXThg0b9OKLL6p06dKKiIgowHcK96u0tDSlHDxof3zk8GHt3rVL/iVKqFKlSoU4GYC75enuoqqB/3flJbhCSdWqXkHnLqTr+Klz8vfxUGA5f5Uvc+O2murBZSVJv5y5oF/OXCyUmWEGY8MsMDBQEydOlM1mU2hoqPbu3auJEycqMjJSX331lTZt2qQGDRpIkhISEhQYGKjFixerc+fOOnbsmJ577jnVrFlTklSlSpXbHsPFxUW+vr6y2Wx/eHmzZcuW8vT01KJFi9SjRw9J0vz58/Xss8/K29tbGRkZevfdd7V69WqFh4fbj5mYmKgZM2bkGGYZGRnKyMiwP75w4ULe3yjct3bu2K6WzZvYHw974zVJ0os9ovXRv2YX0lQA8kO9sCCt/Hiw/fH4oc9JkuZ99Z36vfOJ2kbU1Eeje9jXz3vvJUnS2OnLNW7G8ns7LIxibJg9+eSTstls9sfh4eGaMGGC9u3bJ2dnZz3xxBP2dSVLllRoaKj2798vSYqNjdUrr7yilStXqnnz5nruuedUq1atbMfILWdnZ3Xp0kUJCQnq0aOHLl26pCVLluizzz6TJB08eFDp6elq0aKFw/OuXr2qunXr5rjf+Ph4jRo16o7nwv2tcUSkLl+zCnsMAAVg445kudcdmOP6T5Zu1SdLt97DiXC/MPIes7sVExOjQ4cOqUePHtq7d68ee+wxTZ069a72GRUVpTVr1uj06dNavHix3N3d1apVK0k3LklJ0rJly7Rr1y77z759+/7wPrMRI0YoNTXV/nP8+PG7mhEAANzfjA2zrVsd/0/iu+++U7Vq1RQWFqbr1687rD9z5oySkpIUFhZmXxYYGKj+/fvryy+/1Ouvv66PPvrotsdxcXFRZmbmn87ToEEDBQYGasGCBUpISFDnzp1VvHhxSVJYWJhcXV117NgxhYSEOPwEBgbmuE9XV1f5+Pg4/AAAgKLL2EuZx44d02uvvaaXX35ZO3fu1NSpUzVhwgRVq1ZN7du3V9++fTVjxgx5e3tr+PDhqlChgtq3by9JevXVV9W6dWtVr15d586d07p161SjRo3bHic4OFhpaWlas2aNateuLQ8PD3l4eNx22+7du2v69Ok6cOCA1q1bZ1/u7e2toUOHasiQIcrKytJTTz2l1NRUbdq0ST4+PoqOjs7/NwgAADxwjD1j1rNnT12+fFn169fXgAEDNHjwYPsXvs6aNUuPPvqo2rVrp/DwcFmWpeXLl9vPYGVmZmrAgAGqUaOGWrVqperVq2vatGm3PU6DBg3Uv39/de3aVaVLl9b48eNznCkqKkr79u1ThQoV1LBhQ4d1Y8aM0ciRIxUfH28/7rJly1S5cuV8ekcAAMCDzmbd/HIwg0RGRqpOnTpF7lciXbhwQb6+vvrlTCqXNYEiwP/xnG8OB/BgsTKvKmPvR0pN/eN/4409YwYAAFDUEGYAAACGMPLm//Xr1xf2CAAAAPccZ8wAAAAMQZgBAAAYgjADAAAwBGEGAABgCMIMAADAEIQZAACAIQgzAAAAQxBmAAAAhiDMAAAADEGYAQAAGIIwAwAAMARhBgAAYAjCDAAAwBCEGQAAgCEIMwAAAEMQZgAAAIYgzAAAAAxBmAEAABiCMAMAADAEYQYAAGAIwgwAAMAQhBkAAIAhCDMAAABDEGYAAACGIMwAAAAMQZgBAAAYgjADAAAwBGEGAABgCMIMAADAEIQZAACAIQgzAAAAQxBmAAAAhiDMAAAADEGYAQAAGIIwAwAAMARhBgAAYAjCDAAAwBCEGQAAgCEIMwAAAEMQZgAAAIYgzAAAAAxBmAEAABiCMAMAADAEYQYAAGAIwgwAAMAQhBkAAIAhCDMAAABDEGYAAACGIMwAAAAMQZgBAAAYgjADAAAwBGEGAABgCMIMAADAEIQZAACAIQgzAAAAQxBmAAAAhiDMAAAADEGYAQAAGIIwAwAAMARhBgAAYAjCDAAAwBCEGQAAgCEIMwAAAEMQZgAAAIYgzAAAAAxBmAEAABiCMAMAADAEYQYAAGAIwgwAAMAQhBkAAIAhCDMAAABDEGYAAACGIMwAAAAMQZgBAAAYgjADAAAwBGEGAABgCMIMAADAEIQZAACAIQgzAAAAQxBmAAAAhiDMAAAADEGYAQAAGIIwAwAAMARhBgAAYAjCDAAAwBCEGQAAgCEIMwAAAEMQZgAAAIYgzAAAAAxBmAEAABiCMAMAADAEYQYAAGAIwgwAAMAQhBkAAIAhCDMAAABDEGYAAACGIMwAAAAMQZgBAAAYgjADAAAwBGEGAABgCMIMAADAEIQZAACAIQgzAAAAQxBmAAAAhiDMAAAADEGYAQAAGIIwAwAAMARhBgAAYAjCDAAAwBCEGQAAgCEIMwAAAEMQZgAAAIYgzAAAAAxBmAEAABiCMAMAADAEYQYAAGAI58IeAP/HsixJ0sULFwp5EgD3gpV5tbBHAHCP3PzzfvPf+pwQZga5ePGiJCmkcmAhTwIAAArCxYsX5evrm+N6m/Vn6YZ7JisrSydOnJC3t7dsNlthj4N75MKFCwoMDNTx48fl4+NT2OMAKED8eS+6LMvSxYsXFRAQICennO8k44yZQZycnFSxYsXCHgOFxMfHh7+ogSKCP+9F0x+dKbuJm/8BAAAMQZgBAAAYgjADCpmrq6veeecdubq6FvYoAAoYf97xZ7j5HwAAwBCcMQMAADAEYQYAAGAIwgy4j8TFxalOnTqFPQaAPFq/fr1sNpvOnz//h9sFBwdr0qRJ92QmmIl7zABD2Ww2LVq0SB06dLAvS0tLU0ZGhkqWLFl4gwHIs6tXr+rs2bMqW7asbDabZs+erVdffTVbqP3666/y9PSUh4dH4QyKQscXzAL3ES8vL3l5eRX2GADyyMXFReXKlfvT7UqXLn0PpoHJuJQJ3CIyMlKxsbF68803VaJECZUrV05xcXH29efPn1dMTIxKly4tHx8fNW3aVLt373bYx9ixY1WmTBl5e3srJiZGw4cPd7gEuW3bNrVo0UKlSpWSr6+vIiIitHPnTvv64OBgSVLHjh1ls9nsj39/KXPlypVyc3PL9n/cgwcPVtOmTe2PExMT1ahRI7m7uyswMFCxsbG6dOnSXb9PwIMmMjJSAwcO1MCBA+Xr66tSpUpp5MiR9l86fe7cOfXs2VP+/v7y8PBQ69atlZycbH/+0aNH9cwzz8jf31+enp56+OGHtXz5ckmOlzLXr1+v3r17KzU1VTabTTabzf53zO8vZXbv3l1du3Z1mPHatWsqVaqU5s6dK+nGr/KLj49X5cqV5e7urtq1a+uLL74o4HcKBYkwA25jzpw58vT01NatWzV+/HiNHj1aq1atkiR17txZp0+f1jfffKMdO3aoXr16atasmc6ePStJSkhI0Lhx4/Tee+9px44dqlSpkj788EOH/V+8eFHR0dFKTEzUd999p2rVqqlNmzb2X2S/bds2SdKsWbN08uRJ++Pfa9asmfz8/LRw4UL7sszMTC1YsEBRUVGSpJSUFLVq1UrPPfec9uzZowULFigxMVEDBw7M/zcNeADMmTNHzs7O+s9//qPJkyfrgw8+0McffyxJ6tWrl7Zv366vvvpKW7ZskWVZatOmja5duyZJGjBggDIyMrRhwwbt3btX77333m3PcDdo0ECTJk2Sj4+PTp48qZMnT2ro0KHZtouKitLSpUuVlpZmX7ZixQqlp6erY8eOkqT4+HjNnTtX06dP148//qghQ4boxRdf1LffflsQbw/uBQuAg4iICOupp55yWPb4449bw4YNszZu3Gj5+PhYV65ccVhftWpVa8aMGZZlWdYTTzxhDRgwwGF9w4YNrdq1a+d4zMzMTMvb29taunSpfZkka9GiRQ7bvfPOOw77GTx4sNW0aVP74xUrVliurq7WuXPnLMuyrD59+lj9+vVz2MfGjRstJycn6/LlyznOAxRFERERVo0aNaysrCz7smHDhlk1atSwDhw4YEmyNm3aZF/322+/We7u7tbnn39uWZZl1axZ04qLi7vtvtetW2dJsv/ZnDVrluXr65ttu6CgIGvixImWZVnWtWvXrFKlSllz5861r3/hhResrl27WpZlWVeuXLE8PDyszZs3O+yjT58+1gsvvJDn1w8zcMYMuI1atWo5PC5fvrxOnz6t3bt3Ky0tTSVLlrTf7+Xl5aXDhw8rJSVFkpSUlKT69es7PP/Wx7/88ov69u2ratWqydfXVz4+PkpLS9OxY8fyNGdUVJTWr1+vEydOSLpxtq5t27by8/OTJO3evVuzZ892mLVly5bKysrS4cOH83QsoCh48sknZbPZ7I/Dw8OVnJysffv2ydnZWU888YR9XcmSJRUaGqr9+/dLkmJjYzV27Fg1bNhQ77zzjvbs2XNXszg7O6tLly5KSEiQJF26dElLliyxnxE/ePCg0tPT1aJFC4c/43PnzrX/fYT7Dzf/A7dRvHhxh8c2m01ZWVlKS0tT+fLltX79+mzPuRlDuREdHa0zZ85o8uTJCgoKkqurq8LDw3X16tU8zfn444+ratWq+uyzz/TKK69o0aJFmj17tn19WlqaXn75ZcXGxmZ7bqVKlfJ0LAB/LCYmRi1bttSyZcu0cuVKxcfHa8KECRo0aNAd7zMqKkoRERE6ffq0Vq1aJXd3d7Vq1UqS7Jc4ly1bpgoVKjg8j1/5dP8izIA8qFevnk6dOiVnZ2f7Dfm3Cg0N1bZt29SzZ0/7slvvEdu0aZOmTZumNm3aSJKOHz+u3377zWGb4sWLKzMz809nioqKUkJCgipWrCgnJye1bdvWYd59+/YpJCQkty8RKNK2bt3q8PjmPaBhYWG6fv26tm7dqgYNGkiSzpw5o6SkJIWFhdm3DwwMVP/+/dW/f3+NGDFCH3300W3DzMXFJVd/vhs0aKDAwEAtWLBA33zzjTp37mz/H8ewsDC5urrq2LFjioiIuJuXDYNwKRPIg+bNmys8PFwdOnTQypUrdeTIEW3evFlvvfWWtm/fLkkaNGiQZs6cqTlz5ig5OVljx47Vnj17HC6PVKtWTfPmzdP+/fu1detWRUVFyd3d3eFYwcHBWrNmjU6dOqVz587lOFNUVJR27typcePG6fnnn3f4P+Vhw4Zp8+bNGjhwoHbt2qXk5GQtWbKEm/+BHBw7dkyvvfaakpKS9Omnn2rq1KkaPHiwqlWrpvbt26tv375KTEzU7t279eKLL6pChQpq3769JOnVV1/VihUrdPjwYe3cuVPr1q1TjRo1bnuc4OBgpaWlac2aNfrtt9+Unp6e40zdu3fX9OnTtWrVKvtlTEny9vbW0KFDNWTIEM2ZM0cpKSnauXOnpk6dqjlz5uTvG4N7hjAD8sBms2n58uVq3LixevfurerVq6tbt246evSoypYtK+lGKI0YMUJDhw5VvXr1dPjwYfXq1Utubm72/cycOVPnzp1TvXr11KNHD8XGxqpMmTIOx5owYYJWrVqlwMBA1a1bN8eZQkJCVL9+fe3Zs8fhL23pxr1y3377rQ4cOKBGjRqpbt26evvttxUQEJCP7wrw4OjZs6cuX76s+vXra8CAARo8eLD69esn6canpB999FG1a9dO4eHhsixLy5cvt5/ByszM1IABA1SjRg21atVK1atX17Rp0257nAYNGqh///7q2rWrSpcurfHjx+c4U1RUlPbt26cKFSqoYcOGDuvGjBmjkSNHKj4+3n7cZcuWqXLlyvn0juBe45v/gXugRYsWKleunObNm1fYowDIQWRkpOrUqcOvREKh4h4zIJ+lp6dr+vTpatmypYoVK6ZPP/1Uq1evtn8PGgAAOSHMgHx283LnuHHjdOXKFYWGhmrhwoVq3rx5YY8GADAclzIBAAAMwc3/AAAAhiDMAAAADEGYAQAAGIIwAwAAMARhBgAAYAjCDAD+QK9evdShQwf748jISL366qv3fI7169fLZrPp/PnzOW5js9m0ePHiXO8zLi5OderUuau5jhw5IpvNpl27dt3VfgDcQJgBuO/06tVLNptNNptNLi4uCgkJ0ejRo3X9+vUCP/aXX36pMWPG5Grb3MQUAPweXzAL4L7UqlUrzZo1SxkZGVq+fLkGDBig4sWLa8SIEdm2vXr1qlxcXPLluCVKlMiX/QDA7XDGDMB9ydXVVeXKlVNQUJBeeeUVNW/eXF999ZWk/7v8OG7cOAUEBCg0NFSSdPz4cXXp0kV+fn4qUaKE2rdvryNHjtj3mZmZqddee01+fn4qWbKk3nzzTd36Hdy3XsrMyMjQsGHDFBgYKFdXV4WEhGjmzJk6cuSImjRpIkny9/eXzWZTr169JElZWVmKj49X5cqV5e7urtq1a+uLL75wOM7y5ctVvXp1ubu7q0mTJg5z5tawYcNUvXp1eXh4qEqVKho5cqSuXbuWbbsZM2YoMDBQHh4e6tKli1JTUx3Wf/zxx6pRo4bc3Nz00EMP5fiLuQHcPcIMwAPB3d1dV69etT9es2aNkpKStGrVKn399de6du2aWrZsKW9vb23cuFGbNm2Sl5eXWrVqZX/ehAkTNHv2bP3rX/9SYmKizp49q0WLFv3hcXv27KlPP/1UU6ZM0f79+zVjxgx5eXkpMDBQCxculCQlJSXp5MmTmjx5siQpPj5ec+fO1fTp0/Xjjz9qyJAhevHFF/Xtt99KuhGQnTp10jPPPKNdu3YpJiZGw4cPz/N74u3trdmzZ2vfvn2aPHmyPvroI02cONFhm4MHD+rzzz/X0qVL9f/+3//T999/r7/85S/29QkJCXr77bc1btw47d+/X++++65GjhypOXPm5HkeALlgAcB9Jjo62mrfvr1lWZaVlZVlrVq1ynJ1dbWGDh1qX1+2bFkrIyPD/px58+ZZoaGhVlZWln1ZRkaG5e7ubq1YscKyLMsqX768NX78ePv6a9euWRUrVrQfy7IsKyIiwho8eLBlWZaVlJRkSbJWrVp12znXrVtnSbLOnTtnX3blyhXLw8PD2rx5s8O2ffr0sV544QXLsixrxIgRVlhYmMP6YcOGZdvXrSRZixYtynH9+++/bz366KP2x++8845VrFgx67///a992TfffGM5OTlZJ0+etCzLsqpWrWrNnz/fYT9jxoyxwsPDLcuyrMOHD1uSrO+//z7H4wLIPe4xA3Bf+vrrr+Xl5aVr164pKytL3bt3V1xcnH19zZo1He4r2717tw4ePChvb2+H/Vy5ckUpKSlKTU3VyZMn9cQTT9jXOTs767HHHst2OfOmXbt2qVixYoqIiMj13AcPHlR6erpatGjhsPzq1auqW7euJGn//v0Oc0hSeHh4ro9x04IFCzRlyhSlpKQoLS1N169fl4+Pj8M2lSpVUoUKFRyOk5WVpaSkJHl7eyslJUV9+vRR37597dtcv35dvr6+eZ4HwJ8jzADcl5o0aaIPP/xQLi4uCggIkLOz419nnp6eDo/T0tL06KOPKiEhIdu+SpcufUczuLu75/k5aWlpkqRly5Y5BJF04765/LJlyxZFRUVp1KhRatmypXx9ffXZZ59pwoQJeZ71o48+yhaKxYoVy7dZAfwfwgzAfcnT01MhISG53r5evXpasGCBypQpk+2s0U3ly5fX1q1b1bhxY0k3zgzt2LFD9erVu+32NWvWVFZWlr799ls1b9482/qbZ+wyMzPty8LCwuTq6qpjx47leKatRo0a9g8y3PTdd9/9+Yv8nc2bNysoKEhvvfWWfdnRo0ezbXfs2DGdOHFCAQEB9uM4OTkpNDRUZcuWVUBAgA4dOqSoqKg8HR/AneHmfwBFQlRUlEqVKqX27dtr48aNOnz4sNavX6/Y2Fj997//lSQNHjxY//M//6PFixfrp59+0l/+8pc//A6y4OBgRUdH66WXXtLixYvt+/z8888lSUFBQbLZbPr666/166+/Ki0tTd7e3ho6dKiGDBmiOXPmKCUlRTt37tTUqVPtN9T3799fycnJeuONN5SUlKT58+dr9uzZeXq91apV07Fjx/TZZ58pJSVFU6ZMue0HGdzc3BQdHa3du3dr48aNio2NVZcuXVSuXDlJ0qhRoxQfH68pU6bowIED2rt3r2bNmqUPPvggT/MAyB3CDECR4OHhoQ0bNqhSpUrq1KmTatSooT59+ujKlSv2M2ivv/66evTooejoaIWHh8vb21sdO3b8w/1++OGHev755/WXv/xFDz30kPr27atLly5JkipUqKBRo0Zp+PDhKlu2rAYOHChJGjNmjEaOHKn4+HjVqFFDrVq10rJly1S5cmVJN+77WrhwoRYvXqzatWtr+vTpevfdd/P0ep999lkNGTJEAwcOVJ06dbR582aNHDky23YhISHq1KmT2rRpo6efflq1atVy+DqMmJgYffzxx5o1a5Zq1qypiIgIzZ492z4rgPxls3K6qxUAAAD3FGfMAAAADEGYAQAAGIIwAwAAMARhBgAAYAjCDAAAwBCEGQAAgCEIMwAAAEMQZgAAAIYgzAAAAAxBmAEAABiCMAMAADAEYQYAAGCI/w8aqQEs6QrQ+AAAAABJRU5ErkJggg==",
|
|
"text/plain": [
|
|
"<Figure size 800x600 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAArMAAAIjCAYAAAAQgZNYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACQzklEQVR4nOzdd1hT1xsH8G/YIEsFRBAFt9Y9616o1Wq1VsWNu67aat0LtW7rbB2tC7UO1Fprq7WirXVXq2Ld27oHLjYEcn5/nB/RyEqQ5BL4fp6Hh9yTm3vf5CTw5twzVEIIASIiIiIiM2ShdABERERERJnFZJaIiIiIzBaTWSIiIiIyW0xmiYiIiMhsMZklIiIiIrPFZJaIiIiIzBaTWSIiIiIyW0xmiYiIiMhsMZklIiIiIrPFZJbIRHx9fdGzZ0+lw8h1GjZsiIYNGyodRoYmT54MlUqF8PBwpUPJdlQqFSZPnpwlx7p9+zZUKhWCg4Oz5HgAcOLECdjY2OC///7LsmNmtU6dOqFjx45Kh0FkFExmKUcIDg6GSqXS/lhZWcHb2xs9e/bE/fv3lQ4vW4uOjsZXX32FChUqwMHBAS4uLqhXrx7WrVsHc1nt+uLFi5g8eTJu376tdCgpJCUlYc2aNWjYsCHy5csHW1tb+Pr6olevXvjnn3+UDi9LbNy4EQsXLlQ6DB2mjGn8+PHo3LkzihQpoi1r2LChzt8ke3t7VKhQAQsXLoRGo0n1OM+ePcPIkSNRqlQp2NnZIV++fGjevDl+/fXXNM8dERGBKVOmoGLFinB0dIS9vT3KlSuH0aNH48GDB9r9Ro8ejR9//BFnz57V+3nlhvcu5QwqYS7/rYjSERwcjF69emHq1Knw8/NDXFwcjh8/juDgYPj6+uL8+fOws7NTNMb4+HhYWFjA2tpa0Tje9PjxYzRp0gSXLl1Cp06d0KBBA8TFxeHHH3/EwYMHERAQgA0bNsDS0lLpUNO1bds2dOjQAX/++WeKVtiEhAQAgI2Njcnjio2NRbt27bBnzx7Ur18frVu3Rr58+XD79m1s2bIFV69exZ07d1CoUCFMnjwZU6ZMwdOnT+Hm5mbyWN9Fq1atcP78eaN9mYiLi4OVlRWsrKzeOSYhBOLj42FtbZ0l7+uwsDBUrlwZR48eRa1atbTlDRs2xI0bNzBz5kwAQHh4ODZu3IiTJ09i3LhxmD59us5xrly5giZNmuDp06fo1asXqlWrhpcvX2LDhg0ICwvDiBEjMHfuXJ3H3Lx5E/7+/rhz5w46dOiAunXrwsbGBv/++y82bdqEfPny4erVq9r9a9asiVKlSmHdunUZPi9D3rtEihNEOcCaNWsEAHHy5Emd8tGjRwsAIiQkRKHIlBUbGyuSkpLSvL958+bCwsJC/PzzzynuGzFihAAgZs2aZcwQUxUVFWXQ/lu3bhUAxJ9//mmcgDJp8ODBAoBYsGBBivsSExPF3Llzxd27d4UQQgQFBQkA4unTp0aLR6PRiJiYmCw/7ocffiiKFCmSpcdMSkoSsbGxmX68MWJKzdChQ0XhwoWFRqPRKW/QoIF47733dMpiY2NFkSJFhJOTk0hMTNSWJyQkiHLlygkHBwdx/PhxncckJiaKgIAAAUBs3rxZW65Wq0XFihWFg4ODOHToUIq4Xr16JcaNG6dT9vXXX4s8efKIyMjIDJ+XIe/dd/Gu9UwkhBBMZilHSCuZ/fXXXwUAMWPGDJ3yS5cuiU8++UTkzZtX2NraiqpVq6aa0L148UJ88cUXokiRIsLGxkZ4e3uL7t276yQccXFxYtKkSaJYsWLCxsZGFCpUSIwcOVLExcXpHKtIkSIiMDBQCCHEyZMnBQARHByc4px79uwRAMQvv/yiLbt3757o1auX8PDwEDY2NqJs2bJi1apVOo/7888/BQCxadMmMX78eOHl5SVUKpV48eJFqq/ZsWPHBADRu3fvVO9Xq9WiRIkSIm/evNoE6NatWwKAmDt3rpg/f74oXLiwsLOzE/Xr1xfnzp1LcQx9Xufkujtw4IAYOHCgcHd3F66urkIIIW7fvi0GDhwoSpYsKezs7ES+fPlE+/btxa1bt1I8/u2f5MS2QYMGokGDBilep5CQEDFt2jTh7e0tbG1tRePGjcW1a9dSPIdvv/1W+Pn5CTs7O1G9enVx8ODBFMdMzd27d4WVlZVo2rRpuvslS05mr127JgIDA4WLi4twdnYWPXv2FNHR0Tr7rl69WjRq1Ei4u7sLGxsbUaZMGbF06dIUxyxSpIj48MMPxZ49e0TVqlWFra2tNjnR9xhCCLF7925Rv3594ejoKJycnES1atXEhg0bhBDy9X37tX8zidT38wFADB48WPzwww+ibNmywsrKSvz000/a+4KCgrT7RkREiM8//1z7uXR3dxf+/v7i1KlTGcaU/B5es2aNzvkvXbokOnToINzc3ISdnZ0oWbJkimQwNYULFxY9e/ZMUZ5aMiuEEO3btxcAxIMHD7RlmzZtEgDE1KlTUz3Hy5cvhaurqyhdurS2bPPmzQKAmD59eoYxJjt79qwAILZv357ufoa+dwMDA1P94pD8nn5TavW8ZcsWkTdv3lRfx1evXglbW1vx5Zdfasv0fU9R7qH/NRsiM5R8iTFv3rzasgsXLqBOnTrw9vbGmDFjkCdPHmzZsgVt27bFjz/+iI8//hgAEBUVhXr16uHSpUvo3bs3qlSpgvDwcOzcuRP37t2Dm5sbNBoNPvroIxw+fBj9+/dHmTJlcO7cOSxYsABXr17Fjh07Uo2rWrVqKFq0KLZs2YLAwECd+0JCQpA3b140b94cgOwK8P7770OlUmHIkCFwd3fHb7/9hj59+iAiIgJffPGFzuO/+uor2NjYYMSIEYiPj0/z8vovv/wCAOjRo0eq91tZWaFLly6YMmUKjhw5An9/f+1969atQ2RkJAYPHoy4uDgsWrQIjRs3xrlz51CgQAGDXudkgwYNgru7OyZNmoTo6GgAwMmTJ3H06FF06tQJhQoVwu3bt7Fs2TI0bNgQFy9ehIODA+rXr4+hQ4di8eLFGDduHMqUKQMA2t9pmTVrFiwsLDBixAi8evUKc+bMQdeuXfH3339r91m2bBmGDBmCevXqYdiwYbh9+zbatm2LvHnzZnh59bfffkNiYiK6d++e7n5v69ixI/z8/DBz5kycPn0aK1euhIeHB2bPnq0T13vvvYePPvoIVlZW+OWXXzBo0CBoNBoMHjxY53hXrlxB586d8emnn6Jfv34oVaqUQccIDg5G79698d5772Hs2LFwdXXFmTNnsGfPHnTp0gXjx4/Hq1evcO/ePSxYsAAA4OjoCAAGfz7++OMPbNmyBUOGDIGbmxt8fX1TfY0GDBiAbdu2YciQIShbtiyePXuGw4cP49KlS6hSpUq6MaXm33//Rb169WBtbY3+/fvD19cXN27cwC+//JKiO8Cb7t+/jzt37qBKlSpp7vO25AForq6u2rKMPosuLi5o06YN1q5di+vXr6N48eLYuXMnABj0/ipbtizs7e1x5MiRFJ+/N2X2vauvt+u5RIkS+Pjjj7F9+3Z89913On+zduzYgfj4eHTq1AmA4e8pyiWUzqaJskJy69y+ffvE06dPxd27d8W2bduEu7u7sLW11bkc1qRJE1G+fHmdb/EajUbUrl1blChRQls2adKkNFsxki8prl+/XlhYWKS4zLd8+XIBQBw5ckRb9mbLrBBCjB07VlhbW4vnz59ry+Lj44Wrq6tOa2mfPn1EwYIFRXh4uM45OnXqJFxcXLStpsktjkWLFtXrUnLbtm0FgDRbboUQYvv27QKAWLx4sRDidauWvb29uHfvnna/v//+WwAQw4YN05bp+zon113dunV1Lr0KIVJ9HsktyuvWrdOWpdfNIK2W2TJlyoj4+Hht+aJFiwQAbQtzfHy8yJ8/v6hevbpQq9Xa/YKDgwWADFtmhw0bJgCIM2fOpLtfsuRWrLdbyj/++GORP39+nbLUXpfmzZuLokWL6pQVKVJEABB79uxJsb8+x3j58qVwcnISNWvWTHEp+M3L6mld0jfk8wFAWFhYiAsXLqQ4Dt5qmXVxcRGDBw9Osd+b0ooptZbZ+vXrCycnJ/Hff/+l+RxTs2/fvhRXUZI1aNBAlC5dWjx9+lQ8ffpUXL58WYwcOVIAEB9++KHOvpUqVRIuLi7pnmv+/PkCgNi5c6cQQojKlStn+JjUlCxZUrRo0SLdfQx97xraMptaPf/++++pvpYtW7bUeU8a8p6i3IOzGVCO4u/vD3d3d/j4+KB9+/bIkycPdu7cqW1Fe/78Of744w907NgRkZGRCA8PR3h4OJ49e4bmzZvj2rVr2tkPfvzxR1SsWDHVFgyVSgUA2Lp1K8qUKYPSpUtrjxUeHo7GjRsDAP788880Yw0ICIBarcb27du1ZXv37sXLly8REBAAQA5W+fHHH9G6dWsIIXTO0bx5c7x69QqnT5/WOW5gYCDs7e0zfK0iIyMBAE5OTmnuk3xfRESETnnbtm3h7e2t3a5RowZq1qyJ3bt3AzDsdU7Wr1+/FANy3nwearUaz549Q/HixeHq6prieRuqV69eOi1A9erVAyAH1QDAP//8g2fPnqFfv346A4+6du2q09KfluTXLL3XNzUDBgzQ2a5Xrx6ePXumUwdvvi6vXr1CeHg4GjRogJs3b+LVq1c6j/fz89O28r9Jn2OEhoYiMjISY8aMSTGAMvkzkB5DPx8NGjRA2bJlMzyuq6sr/v77b53R+pn19OlTHDx4EL1790bhwoV17svoOT579gwA0nw/XL58Ge7u7nB3d0fp0qUxd+5cfPTRRymmBYuMjMzwffL2ZzEiIsLg91ZyrBlN/5bZ966+Uqvnxo0bw83NDSEhIdqyFy9eIDQ0VPv3EHi3v7mUc7GbAeUoS5YsQcmSJfHq1SusXr0aBw8ehK2trfb+69evQwiBiRMnYuLEiake48mTJ/D29saNGzfwySefpHu+a9eu4dKlS3B3d0/zWGmpWLEiSpcujZCQEPTp0weA7GLg5uam/cP89OlTvHz5Et9//z2+//57vc7h5+eXbszJkv9RRUZG6lzyfFNaCW+JEiVS7FuyZEls2bIFgGGvc3pxx8bGYubMmVizZg3u37+vM1XY20mbod5OXJITkhcvXgCAds7Q4sWL6+xnZWWV5uXvNzk7OwN4/RpmRVzJxzxy5AiCgoJw7NgxxMTE6Oz/6tUruLi4aLfTej/oc4wbN24AAMqVK2fQc0hm6OdD3/funDlzEBgYCB8fH1StWhUtW7ZEjx49ULRoUYNjTP7yktnnCCDNKex8fX2xYsUKaDQa3LhxA9OnT8fTp09TfDFwcnLKMMF8+7Po7Oysjd3QWDNK0jP73tVXavVsZWWFTz75BBs3bkR8fDxsbW2xfft2qNVqnWT2Xf7mUs7FZJZylBo1aqBatWoAZOth3bp10aVLF1y5cgWOjo7a+R1HjBiRamsVkDJ5SY9Go0H58uUxf/78VO/38fFJ9/EBAQGYPn06wsPD4eTkhJ07d6Jz587alsDkeLt165aib22yChUq6Gzr0yoLyD6lO3bswL///ov69eunus+///4LAHq1lr0pM69zanF/9tlnWLNmDb744gvUqlULLi4uUKlU6NSpU5pzdeorrWmZ0kpMDFW6dGkAwLlz51CpUiW9H5dRXDdu3ECTJk1QunRpzJ8/Hz4+PrCxscHu3buxYMGCFK9Laq+rocfILEM/H/q+dzt27Ih69erhp59+wt69ezF37lzMnj0b27dvR4sWLd45bn3lz58fwOsvQG/LkyePTl/zOnXqoEqVKhg3bhwWL16sLS9TpgzCwsJw586dFF9mkr39WSxdujTOnDmDu3fvZvh35k0vXrxI9cvomwx976aVHCclJaVanlY9d+rUCd999x1+++03tG3bFlu2bEHp0qVRsWJF7T7v+jeXciYms5RjWVpaYubMmWjUqBG+/fZbjBkzRttyY21trfNPJjXFihXD+fPnM9zn7NmzaNKkiV6XXd8WEBCAKVOm4Mcff0SBAgUQERGhHegAAO7u7nByckJSUlKG8RqqVatWmDlzJtatW5dqMpuUlISNGzcib968qFOnjs59165dS7H/1atXtS2WhrzO6dm2bRsCAwMxb948bVlcXBxevnyps19mXvuMJE+Af/36dTRq1EhbnpiYiNu3b6f4EvG2Fi1awNLSEj/88EOWDqT55ZdfEB8fj507d+okPoZcXtX3GMWKFQMAnD9/Pt0veWm9/u/6+UhPwYIFMWjQIAwaNAhPnjxBlSpVMH36dG0yq+/5kt+rGX3WU5Oc9N26dUuv/StUqIBu3brhu+++w4gRI7SvfatWrbBp0yasW7cOEyZMSPG4iIgI/PzzzyhdurS2Hlq3bo1Nmzbhhx9+wNixY/U6f2JiIu7evYuPPvoo3f0Mfe/mzZs3xWcSgMErotWvXx8FCxZESEgI6tatiz/++APjx4/X2ceY7ykyX+wzSzlaw4YNUaNGDSxcuBBxcXHw8PBAw4YN8d133+Hhw4cp9n/69Kn29ieffIKzZ8/ip59+SrFfcitZx44dcf/+faxYsSLFPrGxsdpR+WkpU6YMypcvj5CQEISEhKBgwYI6iaWlpSU++eQT/Pjjj6n+s30zXkPVrl0b/v7+WLNmTaorDI0fPx5Xr17FqFGjUrSk7NixQ6fP64kTJ/D3339rEwlDXuf0WFpapmgp/eabb1K0+OTJkwcAUv2HmlnVqlVD/vz5sWLFCiQmJmrLN2zYkGZL3Jt8fHzQr18/7N27F998802K+zUaDebNm4d79+4ZFFdyy+3bXS7WrFmT5cdo1qwZnJycMHPmTMTFxenc9+Zj8+TJk2q3j3f9fKQmKSkpxbk8PDzg5eWF+Pj4DGN6m7u7O+rXr4/Vq1fjzp07Ovdl1Erv7e0NHx8fg1bDGjVqFNRqtU7LYvv27VG2bFnMmjUrxbE0Gg0GDhyIFy9eICgoSOcx5cuXx/Tp03Hs2LEU54mMjEyRCF68eBFxcXGoXbt2ujEa+t4tVqwYXr16pW09BoCHDx+m+rczPRYWFmjfvj1++eUXrF+/HomJiTpdDADjvKfI/LFllnK8kSNHokOHDggODsaAAQOwZMkS1K1bF+XLl0e/fv1QtGhRPH78GMeOHcO9e/e0yz2OHDlSu7JU7969UbVqVTx//hw7d+7E8uXLUbFiRXTv3h1btmzBgAED8Oeff6JOnTpISkrC5cuXsWXLFvz+++/abg9pCQgIwKRJk2BnZ4c+ffrAwkL3O+asWbPw559/ombNmujXrx/Kli2L58+f4/Tp09i3bx+eP3+e6ddm3bp1aNKkCdq0aYMuXbqgXr16iI+Px/bt23HgwAEEBARg5MiRKR5XvHhx1K1bFwMHDkR8fDwWLlyI/PnzY9SoUdp99H2d09OqVSusX78eLi4uKFu2LI4dO4Z9+/ZpL+8mq1SpEiwtLTF79my8evUKtra2aNy4MTw8PDL92tjY2GDy5Mn47LPP0LhxY3Ts2BG3b99GcHAwihUrpler0Lx583Djxg0MHToU27dvR6tWrZA3b17cuXMHW7duxeXLl3Va4vXRrFkz2NjYoHXr1vj0008RFRWFFStWwMPDI9UvDu9yDGdnZyxYsAB9+/ZF9erV0aVLF+TNmxdnz55FTEwM1q5dCwCoWrUqQkJCMHz4cFSvXh2Ojo5o3bp1lnw+3hYZGYlChQqhffv22iVc9+3bh5MnT+q04KcVU2oWL16MunXrokqVKujfvz/8/Pxw+/Zt7Nq1C2FhYenG06ZNG/z000969UUFZDeBli1bYuXKlZg4cSLy588PGxsbbNu2DU2aNEHdunV1VgDbuHEjTp8+jS+//FLnvWJtbY3t27fD398f9evXR8eOHVGnTh1YW1vjwoUL2qsqb04tFhoaCgcHBzRt2jTDOA1573bq1AmjR4/Gxx9/jKFDhyImJgbLli1DyZIlDR6oGRAQgG+++QZBQUEoX758iin2jPGeohzA9BMoEGW9tBZNEEKuMFOsWDFRrFgx7dRPN27cED169BCenp7C2tpaeHt7i1atWolt27bpPPbZs2diyJAhwtvbWzs5d2BgoM40WQkJCWL27NnivffeE7a2tiJv3ryiatWqYsqUKeLVq1fa/d6emivZtWvXtBO7Hz58ONXn9/jxYzF48GDh4+MjrK2thaenp2jSpIn4/vvvtfskTzm1detWg167yMhIMXnyZPHee+8Je3t74eTkJOrUqSOCg4NTTE305qIJ8+bNEz4+PsLW1lbUq1dPnD17NsWx9Xmd06u7Fy9eiF69egk3Nzfh6OgomjdvLi5fvpzqa7lixQpRtGhRYWlpqdeiCW+/TmlNpr948WJRpEgRYWtrK2rUqCGOHDkiqlatKj744AM9Xl25WtLKlStFvXr1hIuLi7C2thZFihQRvXr10pn6KK0VwJJfnzcXiti5c6eoUKGCsLOzE76+vmL27Nli9erVKfZLXjQhNfoeI3nf2rVrC3t7e+Hs7Cxq1KghNm3apL0/KipKdOnSRbi6uqZYNEHfzwf+P5l+avDG1Fzx8fFi5MiRomLFisLJyUnkyZNHVKxYMcWCD2nFlFY9nz9/Xnz88cfC1dVV2NnZiVKlSomJEyemGs+bTp8+LQCkmCoqrUUThBDiwIEDKaYbE0KIJ0+eiOHDh4vixYsLW1tb4erqKvz9/bXTcaXmxYsXYtKkSaJ8+fLCwcFB2NnZiXLlyomxY8eKhw8f6uxbs2ZN0a1btwyfUzJ937tCCLF3715Rrlw5YWNjI0qVKiV++OGHdBdNSItGoxE+Pj4CgJg2bVqq++j7nqLcQyVEFo12IKIc7/bt2/Dz88PcuXMxYsQIpcNRhEajgbu7O9q1a5fqpU7KfZo0aQIvLy+sX79e6VDSFBYWhipVquD06dMGDUgkMgfsM0tElIa4uLgU/SbXrVuH58+fo2HDhsoERdnOjBkzEBISYvCAJ1OaNWsW2rdvz0SWciT2mSUiSsPx48cxbNgwdOjQAfnz58fp06exatUqlCtXDh06dFA6PMomatasiYSEBKXDSNfmzZuVDoHIaJjMEhGlwdfXFz4+Pli8eDGeP3+OfPnyoUePHpg1a5bO6mFERKQc9pklIiIiIrPFPrNEREREZLaYzBIRERGR2cp1fWY1Gg0ePHgAJycnLoVHRERElA0JIRAZGQkvL68Uiwm9Ldclsw8ePICPj4/SYRARERFRBu7evYtChQqlu0+uS2adnJwAyBfH2dnZ6OdTq9XYu3cvmjVrBmtra6Ofj7Ie69D8sQ7NH+vQvLH+zJ+p6zAiIgI+Pj7avC09uS6ZTe5a4OzsbLJk1sHBAc7OzvwAmynWofljHZo/1qF5Y/2ZP6XqUJ8uoRwARkRERERmi8ksEREREZktJrNEREREZLaYzBIRERGR2WIyS0RERERmi8ksEREREZktJrNEREREZLaYzBIRERGR2WIyS0RERERmi8ksEREREZktJrNEREREZLaYzBIRERGR2WIyS0RERERmi8ksEREREZktRZPZgwcPonXr1vDy8oJKpcKOHTsyfMyBAwdQpUoV2Nraonjx4ggODjZ6nERERESUPSmazEZHR6NixYpYsmSJXvvfunULH374IRo1aoSwsDB88cUX6Nu3L37//XcjR0pERERE2ZGVkidv0aIFWrRooff+y5cvh5+fH+bNmwcAKFOmDA4fPowFCxagefPmxgqTiIiIKNOiooB794D794FXr5SOJnOS4pNw6mxB1K8P5M2rdDS6FE1mDXXs2DH4+/vrlDVv3hxffPFFmo+Jj49HfHy8djsiIgIAoFaroVarjRLnm5LPYYpzkXGwDs0f69D8sQ7NW06tP40GePoUePAAuHdPhQcPVLh/H9rf9++r8OABEBGhUjrUdyDQB6swDAvQD0fQrVsiHB2Nf1ZD3itmlcw+evQIBQoU0CkrUKAAIiIiEBsbC3t7+xSPmTlzJqZMmZKifO/evXBwcDBarG8LDQ012bnIOFiH5o91aP5Yh+bNnOovIcECz5/b4dkzOzx/bo9nz+zw7Jn9/7fl7Rcv7JCYqF+PTXt7NfLnj4OjYwJUZpLbOiRFYvKjL9EqYjsAIMh9Hk6cqIsbN+KMfu6YmBi99zWrZDYzxo4di+HDh2u3IyIi4OPjg2bNmsHZ2dno51er1QgNDUXTpk1hbW1t9PNR1mMdmj/WofljHZq37FR/QgAvX8rL/g8eyJbT+/dV2lbU5N/h4fplnCqVQIECgJeXgLc34O0t4OUltwsVel3u5AQAdv//MQNhYbDq0gWqiOsQlpZQBwWhaLlyaNq8nknqMPlKuj7MKpn19PTE48ePdcoeP34MZ2fnVFtlAcDW1ha2trYpyq2trU36gTL1+SjrsQ7NH+vQ/LEOzZux6y8xEXj0SPZNTe6jmvzz5nZsrH7Hs7PD/xNU+VOoUMptT08V5FMyk+bWjAgBLF8ODBsGxMcDPj5Qbd4MVfXqwO7dJvsMGnIOs0pma9Wqhd27d+uUhYaGolatWgpFRERERKYQFZV2cpq8/fix7Meqj3z5Uk9O39zOlw9m0yUgy1y/Dnz+OaBWA61bA2vWAPnzy+1sStFkNioqCtevX9du37p1C2FhYciXLx8KFy6MsWPH4v79+1i3bh0AYMCAAfj2228xatQo9O7dG3/88Qe2bNmCXbt2KfUUiIiI6B1oNEB4ePotqYbMAmBlBRQsmHZLqrc34OUFpHFBl0qUAObPl8nrF1+YRTavaDL7zz//oFGjRtrt5L6tgYGBCA4OxsOHD3Hnzh3t/X5+fti1axeGDRuGRYsWoVChQli5ciWn5SIiIsqG4uPlSP///lPh0CFvXLlikaIbwIMH+jf6OTrqJqipJaseHoAF1zfVnxDAt98C9eoBlSrJsiFDFA3JUIomsw0bNoQQIs37U1vdq2HDhjhz5owRoyIiIqL0JA+iyuiyf3h48iOsAFRL83gqlUxCM7rsb4Jx27nLixdAnz7ATz/JFtkzZ4A8eZSOymBm1WeWiIiIjCsxUfY9zeiyv74zJ9nayhH+dnbPUL58Pvj4WKRIVgsWBDiuz8T+/hsICAD++w+wsQGGDgVMOGVpVmIyS0RElEtER6ffknr/vpwNwJBBVBmN9s+XD0hMTMTu3UfQsmVLWFuzD4CihJB9YseMkd9cihUDQkKAqlWVjizTmMwSERGZOSEyHkR1757+g6gsLWVraXqX/b28zLYhL/eKigI6dwZ+/VVud+wIrFhh9v03mMwSERFlYwkJ+P9k/mknqw8eyP304eiYfkuqt7fsv2ppadznRQpwcJCj8mxtgUWLgP79zWK2gowwmSUiIlKAELKlNKNBVE+f6n/MAgUyvuxv5o1wZCiNRk4XYWsrp3lYv172JalYUenIsgyTWSIioiyWlKTfIKroaP2OZ2OTfktq8iAqGxvjPi8yM0+eAD16AIULA99/L8sKFJA/OQiTWSIiIgPExOg3iCopSb/j5c2b8WX//PlzxNVgMqW//pL9Yx8+lCtEjB0L+PkpHZVRMJklIiLC60FUGV32f/lSv+NZWgKenulP8u/tzUFUlMWSkoAZM4DJk2UXgzJlgC1bcmwiCzCZJSKiXCAhQTZQpXfZ/8EDOTZGH3nyZNyaWqAAB1GRiT16BHTrBuzfL7d79pSre5nhQgiGYDJLRERmSwggIiLjy/5Pnuh/TA8P/QZR8bI/ZSsaDeDvD1y4IJv7ly2T/WVzASazRESULSUPorp/H/jvPxVCQ/1w5IgFHj3STVYNGUTl5ZXxICpbW+M+LyKjsLAAZs8Gxo2TiyCULq10RCbDZJaIiEwuNjb9ltT792W3gNeDqKwAVEjzeK6uGV/2d3NjayrlMA8eANevA/Xry+0PPwSaNwescld6l7ueLRERGZUQwLNnGV/2f/FCv+NZWMjWUi8vDSwtH6FKlQIoXNgyxSCqHN4lkCil338HuneXc8iGhQFFisjyXJbIAkxmiYhIT8mDqNIb7X//vv6DqBwcMp47tUAB+b9ZrU7C7t0n0bJlS1hbc1QV5WKJicDEicCsWXK7UiVZlosxmSUiIu0gqvQu+z95Ilte9eHunvFlfxcXXvYnMsjdu3Lu2CNH5PagQcC8eYCdnbJxKYzJLBFRDpaUJJPQjC77R0Xpdzxr65TzpL6drHp5cRAVUZbbtUvOTvD8uZxOY+VKoEMHpaPKFpjMEhGZqdhYOf7jzQT17WT1wQP9V6Jyccn4sr+bm+zHSkQmtmuXTGSrVZOzFRQtqnRE2QaTWSKibEYI+T8ro9bU58/1O56FhVyJKqPL/hxERZSNzZ8P+PoCn3/OSx9vYTJLRGRCarV+g6ji4vQ7nr19+i2p3t4ykc2FA5yJzNuOHcAPP8hWWEtL2S921Cilo8qW+OeNiCiLREZmPIjq8WP9B1G5uWV82d/VlYOoiHKU+HiZtC5eLLdXrQL691c2pmyOySwRUQY0Gv0GUUVG6nc8a2s5SCq9y/4cREWUC924AQQEAKdOye0RI4BevZSNyQwwmSWiXC0uLuUl/tQGUek7jaOzc8aX/d3dOYiKiN6ydSvQt6+cJy9fPmDdOrmiF2WIySwR5UhCyFWm7t8Hbt9WITS0ME6dssCjR7rJ6rNn+h1PpXo9iCq9ZNXR0bjPi4hyoJkzgXHj5O06dYBNmwAfH2VjMiNMZonI7CQm6g6iSuuy/+tBVFYAKqd5PHv79FtSCxXiICoiMqJWrYBp0+RMBVOn8o+NgfhqEVG2EhWV/gCq+/eBR4/0H0SVPz/g5SVgY/MYlSp5wMfHIkXCmjcvB1ERkYldvQqULClvly8PXL8OFCyobExmisksEZmERgM8fZrxaP+ICP2OZ2Wl3yAqOztArU7E7t1/o2XLlrC2ZmdVIlJQbKxsgV2zBjh0CHj/fVnORDbTmMwSUZaJiQF+/RW4cydlsvrwoZxjVR9OThkPovLw4CAqIjIzly4BHTsC58/Ly0EnTrxOZinTmMwSUZb5/HO5XHhaVCqgQIGMB1E5OZkuZiIik1i7Fhg0SH7rL1AA2LABaNJE6ahyBCazRJRlHj6Uv2vXlgNyUxtEZW2tbIxERCYVHQ0MHiyTWUAmsD/8IP8gUpZgMktEWa5vX87zTUQEANi8WSayFhbAlCnA2LFyeVrKMkxmiYiIiIyld2/ZN7ZLF6BBA6WjyZE4fIKIiIgoq0RGAqNGvV7fWqUCvvuOiawRsWWWiIiIKCucPStnK7h6FXj8+HU/WTIqtswSERERvQshgOXLgZo1ZSJbqBDQv7/SUeUabJklIiIiyqxXr2TiumWL3G7VCggOlssPkkkwmSUiIiLKjAsXgDZtgBs35LKEs2cDw4ZxfWwTYzJLRERElBlubkBUFFCkCBASIrsZkMkxmSUiIiLSV2wsYG8vbxcoAOzeDfj5AXnzKhtXLsYBYERERET6+PtvoEwZuRBCsipVmMgqjMksERERUXqEAObPB+rWBf77T/aN1WiUjor+j8ksERERUVqePQM++gj48ksgMRHo0AE4cEAuT0vZAmuCiIiIKDVHjwKVKwO//grY2gLLlsmBXi4uSkdGb+AAMCIiIqK33boll6BNTARKlJDzyFaqpHRUlAoms0RERERv8/MDPv8cePhQru7l5KR0RJQGJrNEREREAPDXXzKJLVxYbs+eLfvGchGEbI19ZomIiCh3S0oCvvoKaNwY6NQJUKtluaUlE1kzwJZZIiIiyr0ePwa6dgX275fbJUvKZNbaWtm4SG9MZomIiCh3+uMPoEsXmdA6OABLlwKBgUpHRQZiNwMiIiLKXZKSgKAgwN9fJrLlygEnTzKRNVNMZomIiCh3UauBHTvkyl59+8plasuWVToqyiR2MyAiIqLcxc5Ozht76pTsZkBmjcksERER5WyJicDEiUCePMCECbKsVCn5Q2aPySwRERHlXHfvAp07A0eOyDljAwLkil6UY7DPLBEREeVMu3bJJWiPHAGcnYFNm5jI5kBMZomIiChnUauBkSOBVq2A58+BqlWB06eBjh2VjoyMgN0MiIiIKOcQAmjeHPjzT7k9dCgwZw5ga6tsXGQ0bJklIiKinEOlkv1iXV2B7duBRYuYyOZwTGaJiIjIvMXHAzduvN7u3x+4fBn4+GPlYiKTYTJLRERE5uvmTaBOHaBJE+DFC1mmUgEFCigbF5kMk1kiIiIyT9u2AZUry8UPIiOBq1eVjogUwGSWiIiIzEtcHDB4MNChAxARIVtmw8KAmjWVjowUwGSWiIiIzMe1a0CtWsDSpXJ7zBg5c4GPj7JxkWI4NRcRERGZj0mTZCusmxuwfj3wwQdKR0QKYzJLRERE5uPbb+UAr7lzAW9vpaOhbIDdDIiIiCj7unQJCAqSiyEAQP78wMaNTGRJiy2zRERElD2tWwcMHAjExADFigE9eigdEWVDbJklIiKi7CU6GujVCwgMlIls48ZAs2ZKR0XZFJNZIiIiyj7OnweqVweCgwELC2DqVGDvXsDTU+nIKJtiNwMiIiLKHjZtAvr0AWJjgYIFZd/Yhg2VjoqyObbMEhERUfbg4SEXRGjWTE6/xUSW9MCWWSIiIlJOdDSQJ4+83aQJ8NdfckUvC7a3kX74TiEiIiLTEwJYvhzw8wOuX39dXq8eE1kyCN8tREREZFoREUCnTnLaradPge++UzoiMmOKJ7NLliyBr68v7OzsULNmTZw4cSLd/RcuXIhSpUrB3t4ePj4+GDZsGOLi4kwULREREb2TU6eAKlWALVsAKyvg66+B2bOVjorMmKLJbEhICIYPH46goCCcPn0aFStWRPPmzfHkyZNU99+4cSPGjBmDoKAgXLp0CatWrUJISAjGjRtn4siJiIjIIELAYskSoHZt4MYNoEgR4NAh4Msv2a2A3omi75758+ejX79+6NWrF8qWLYvly5fDwcEBq1evTnX/o0ePok6dOujSpQt8fX3RrFkzdO7cOcPWXCIiIlJW4T/+gOWwYUBCAtC2LXDmDPD++0qHRTmAYrMZJCQk4NSpUxg7dqy2zMLCAv7+/jh27Fiqj6lduzZ++OEHnDhxAjVq1MDNmzexe/dudO/ePc3zxMfHIz4+XrsdEREBAFCr1VCr1Vn0bNKWfA5TnIuMg3WoPyEsAVggKSkRarVQOhwt1qH5Yx2aN7Vajbv166PCqVNA+/bQDB4MqFQA69NsmPozaMh5FEtmw8PDkZSUhAIFCuiUFyhQAJcvX071MV26dEF4eDjq1q0LIQQSExMxYMCAdLsZzJw5E1OmTElRvnfvXjg4OLzbkzBAaGioyc5FxsE6zNiTJzUBeOLff89h9+47SoeTAuvQ/LEOzYgQKHTwIO7XqQNhZQVYW+PXESNkl4LfflM6OsokU30GY2Ji9N7XrOaZPXDgAGbMmIGlS5eiZs2auH79Oj7//HN89dVXmDhxYqqPGTt2LIYPH67djoiIgI+PD5o1awZnZ2ejx6xWqxEaGoqmTZvC2tra6OejrMc61N/331sCACpUKI+WLcspHM1rrEPzxzo0M8+fw7JPH1js2oVKVlaInzxZ1l/z5qw/M2Xqz2DylXR9KJbMurm5wdLSEo8fP9Ypf/z4MTzTWH954sSJ6N69O/r27QsAKF++PKKjo9G/f3+MHz8eFql0ILe1tYWtrW2Kcmtra5N+oEx9Psp6rMOMqVTyt6WlFbLjS8U6NH+sQzNw9KicduvuXcDGBpZ+fto6Y/2ZP1PVoSHnUGwAmI2NDapWrYr9+/dryzQaDfbv349atWql+piYmJgUCaulpWwJEiL79M8jIiLKdTQaOcVW/foykS1RAvj7bzmXLJERKdrNYPjw4QgMDES1atVQo0YNLFy4ENHR0ejVqxcAoEePHvD29sbMmTMBAK1bt8b8+fNRuXJlbTeDiRMnonXr1tqkloiIiEzs6VMgMPB1X9jOneVCCE5OysZFuYKiyWxAQACePn2KSZMm4dGjR6hUqRL27NmjHRR2584dnZbYCRMmQKVSYcKECbh//z7c3d3RunVrTJ8+XamnQERERM+fAwcPAnZ2wDffAH36vO53RGRkig8AGzJkCIYMGZLqfQcOHNDZtrKyQlBQEIKCgkwQGREREemlVClgwwagaFGgfHmlo6FchktuEBERkWEePwY++EC2xiZr04aJLClC8ZZZIiIiMiP79wNdu8qE9uZN4NIlgONWSEFsmSUiIqKMJSUBQUFA06YykX3vPWDHDiaypDi2zBIREVH6HjyQrbHJY1n69AEWLwZMuJImUVqYzBIREVHa7t4FqlaV02/lySOn3OraVemoiLSYzBIREVHaChUCGjUCrlwBtmwBSpZUOiIiHUxmiYiISNe9e4CjI+DqKueLXbkSsLIC7O2VjowoBQ4AIyIiotd27QIqVQL69gWSl4p3cmIiS9kWk1kiIiIC1Gpg5EigVSvg2TPg1i3g1SuloyLKEJNZIiKi3O6//4D69YGvv5bbn30GHD0quxkQZXPsM0tERJSb7dgB9OoFvHwJuLgAq1cD7dopHRWR3pjMEhER5VaxscDQoTKRrVED2LwZ8PNTOioig7CbARERUW5lbw9s2gR8+SVw6BATWTJLbJklIiLKTbZtA+LjXy98UKeO/CEyU0xmiYiIcoO4ONkCu3SpbJGtXp0LIFCOwGSWiIgop7t2DQgIAM6ckdtDh7JLAeUYTGaJiIhyss2bgX79gKgowM0NWLcOaNFC6aiIsgyTWSIiopxICGDQIGD5crldr54c7OXtrWxcRFmMsxkQERHlRCqVbIlVqYAJE4A//mAiSzkSW2aJiIhykqgowNFR3g4KAlq2BGrVUjYmIiNiyywREVFOEB0N9O4NNGwop94CACsrJrKU4zGZJSIiMncXLsgVvNaskTMWHDigdEREJsNkloiIyFwJAaxeLeeMvXgRKFgQ2L8faN5c6ciITIZ9ZomIiMxRZCQwcCCwYYPcbtYMWL8e8PBQNi4iE2PLLBERkTn69FOZyFpaAjNmAL/9xkSWciW2zBIREZmjadOAf/+V88jWrat0NESKYcssERGROYiIALZseb1dtKhMZpnIUi7HllkiIqLs7vRpoGNH4MYNwMXl9QAvC7ZJEfFTQERElF0JAXz7rZwr9sYNoHBhmcwSkRZbZomIiLKjly+BPn2A7dvl9kcfyXlk8+VTNCyi7IYts0RERNnNyZNAlSoykbW2BhYuBHbsYCJLlAq2zBIREWU3ly4Bt24Bfn5ASIhcFIGIUsVkloiIKDsQAlCp5O0ePYDoaKBzZ8DVVdGwiLI7djMgIiJS2tGjQJ06QHj467KBA5nIEumBySwREZFSNBpgzhygfn3g2DFgwgSlIyIyO+xmQEREpISnT4HAQLkMLQB06iQTWyIyCJNZIiIiUzt4UPaHffAAsLMDFi8G+vZ93WeWiPTGZJaIiMiUduwAPvlEdjEoVUouUVuhgtJREZktJrNERESm1KgR4OsrB3wtXQo4OiodEZFZYzJLRERkbP/+C5QvL7sRuLgAJ07IBRDYrYDonXE2AyIiImNJSgImTwYqVQKWLXtdnj8/E1miLMKWWSIiImN4+BDo2hX480+5ff68svEQ5VBMZomIiLJaaCjQrRvw5AmQJw+wfLncJqIsx24GREREWSUxUS580Ly5TGQrVAD++YeJLJERMZklIiLKKv/+C8yaBQgBfPopcPw4ULq00lER5WjsZkBERJRVqlQB5s4FvLyAgACloyHKFdgyS0RElFlqNTBuHHDp0uuyYcOYyBKZEJNZIiKizLhzB2jQAJg5E+jYUSa2RGRyTGaJ6J09fQqMGfN6BiIL/mWhnG7nTjl37LFjchGEyZMBa2uloyLKldhnlogy7ckT4Ouv5Yqc0dGyrGpVOZCbKEdKSABGjwYWLpTb1asDISGAn5+iYRHlZkxmichgT57IMS5LlwIxMbKsalUgKAho1YoLG1EO9fQp8OGHwMmTcnvYMDlzgY2NsnER5XJMZolIb48eySR22TIgNlaWVasmr7C2bMkklnK4vHkBOzv5OzgY+OgjpSMiIjCZJSI9PHwIzJkjFzGKi5NlNWrIltgWLZjEUg4WHy/f4DY2gJUVsGmTXBihSBGlIyOi/+MwDSJK08OHwBdfAEWLyi6CcXHA++8Dv/0m54JnayzlaNevA7VqyT6yyby9mcgSZTNMZokohfv3gaFD5ZiWRYtkElurFvD778DRo8AHHzCJpRwuJEQugHDmDPDDD0B4uNIREVEamMwSkda9e8CQIUCxYsA338grrHXqAHv3AkeOAM2aMYmlHC42Vi5D26kTEBkJ1KsnE1o3N6UjI6I0sM8sEeHuXTkoe+VKOfMQIP+HBwUBjRszgaVc4vJlufjBuXPyTT9unBzdaMV/lUTZGT+hRLnYnTty8aLVq18nsfXry//fDRsyiaVcJD4e8PeXfWw8PGTXgqZNlY6KiPTwTt0M4pKHNRORWfnvP2DAAKB4cTlDQUKCTF7//BP46y+gUSMmspTL2NoCCxbIN39YGBNZIjNicDKr0Wjw1VdfwdvbG46Ojrh58yYAYOLEiVi1alWWB0hEWef2baB/f6BECeC77+RS8o0bywT2zz9lQkuUa1y4ABw8+Hq7Qwdg/36gYEHlYiIigxmczE6bNg3BwcGYM2cObN5Y9aRcuXJYuXJllgZHRFnj5k2gb1+ZxK5YIZPYJk3k//H9+2XXAqJcQwhgzRq5FG379nIOumS8JEFkdgxOZtetW4fvv/8eXbt2haWlpba8YsWKuHz5cpYGR0Tv5uZNoE8foGRJYNUqOdd706bA4cPAvn1ykBdRrhIVBQQGAr17y5kLKlUC3vhfRkTmx+ABYPfv30fx4sVTlGs0GqjV6iwJiojezfXrwPTpwPr1QFKSLGveXM5OUKuWsrERKebff+VsBVeuABYWwFdfAWPGyNtEZLYM/gSXLVsWhw4dSlG+bds2VK5cOUuCIqLMuXZNNjqVLi2Xjk9KkgscHDsG7NnDRJZyKSGA778HataUiay3N3DggJx6i4kskdkzuGV20qRJCAwMxP3796HRaLB9+3ZcuXIF69atw6+//mqMGIkoA1evAtOmARs2ABqNLGvZEpg0Sf7/JsrVVCq56kdcHNCiBbBuHRdBIMpBDP5K2qZNG/zyyy/Yt28f8uTJg0mTJuHSpUv45Zdf0JRTmRCZ1OXLQLduQJkyskuBRgO0agWcOAHs2sVElnI5IV7fXrJEzkP3669MZIlymEwtmlCvXj2EhoZmdSxEpKdLl2R3v82bX/+/bt1atsRWq6ZsbESKEwJYuhT44w9g61bZlcDRUS5TS0Q5jsEts0WLFsWzZ89SlL98+RJFixbNkqCIKHUXLwKdOwPvvQds2iT/Z7dpA5w6BezcyUSWCC9fykFeQ4YA27cDP/2kdEREZGQGt8zevn0bScnDo98QHx+P+/fvZ0lQRKTr/HnZErt16+uW2I8/li2xlSopGhpR9nHyJBAQANy6BVhbA3PmAO3aKR0VERmZ3snszp07tbd///13uLi4aLeTkpKwf/9++Pr6ZmlwRLnduXPA1KnAtm2vy9q1k0lsxYrKxUWUrQgBLFoEjBolVwTx9QW2bJGLIhBRjqd3Mtu2bVsAgEqlQmBgoM591tbW8PX1xbx587I0OKLc6t9/ZRL744+vy9q3ByZOBCpUUC4uomxp6FDg22/l7Xbt5Aohrq6KhkREpqN3Mqv5/3w/fn5+OHnyJNw4GpQoy4WFySQ2uZufSiWXi584EShXTtHQiLKvHj3kxMqzZgGDBnFJWqJcxuA+s7du3TJGHES52pkzwJQpwM8/y22VSo5hmThRDvYiojdoNPLyRXKH8erVgf/+A/LlUzQsIlJGppY+iY6Oxu7du7F8+XIsXrxY58dQS5Ysga+vL+zs7FCzZk2cOHEi3f1fvnyJwYMHo2DBgrC1tUXJkiWxe/fuzDwNIsWdOiVnI6hSRSayKpWcreD8eTntFhNZoreEh8t56N5/X17KSMZElijXMrhl9syZM2jZsiViYmIQHR2NfPnyITw8HA4ODvDw8MDQoUP1PlZISAiGDx+O5cuXo2bNmli4cCGaN2+OK1euwMPDI8X+CQkJaNq0KTw8PLBt2zZ4e3vjv//+gyv7RpGZ+ecf2RKbvGiehYVMYidMkEvRElFK+S5cgNXgwcD9+4CtrVyaltN5EOV6BrfMDhs2DK1bt8aLFy9gb2+P48eP47///kPVqlXx9ddfG3Ss+fPno1+/fujVqxfKli2L5cuXw8HBAatXr051/9WrV+P58+fYsWMH6tSpA19fXzRo0AAVOaybzMSJE8CHH8qror/+KpPYbt3k/LE//MBElihVGg0sZs1CnYkTobp/HyhZUn6YAgKUjoyIsgGDW2bDwsLw3XffwcLCApaWloiPj0fRokUxZ84cBAYGop2ec/olJCTg1KlTGDt2rLbMwsIC/v7+OHbsWKqP2blzJ2rVqoXBgwfj559/hru7O7p06YLRo0fD0tIy1cfEx8cjPj5eux0REQEAUKvVUKvV+j7tTEs+hynORcaRFXV44oQK06ZZYM8e+f3RwkKgSxeBMWOSULJk8nneOVRKAz+HZuzJE1j26gXL/686mdipE8TSpXJFL9an2eBn0PyZug4NOY/Byay1tTUsLOQ/ZA8PD9y5cwdlypSBi4sL7t69q/dxwsPDkZSUhAIFCuiUFyhQAJcvX071MTdv3sQff/yBrl27Yvfu3bh+/ToGDRoEtVqNoKCgVB8zc+ZMTJkyJUX53r174eDgoHe874rL/5q/zNTh5ct5ERJSCmfOyPe5hYUGDRveQ4cOV1GwYDSuXweuX8/qSCkt/Byan2I//4xyoaFItLHBuU8/xZ3GjYGDB5UOizKJn0HzZ6o6jImJ0Xtfg5PZypUr4+TJkyhRogQaNGiASZMmITw8HOvXr0c5I88dpNFo4OHhge+//x6WlpaoWrUq7t+/j7lz56aZzI4dOxbDhw/XbkdERMDHxwfNmjWDs7OzUeMF5DeL0NBQNG3aFNbW1kY/H2W9zNTh0aOyJXbfPvnFz9JSoFs32RJbrFhBAAWNGDG9jZ9DM/bBB0iytYW6Tx/cuX+fdWim+Bk0f6auw+Qr6fowOJmdMWMGIiMjAQDTp09Hjx49MHDgQJQoUQKrVq3S+zhubm6wtLTE48ePdcofP34MT0/PVB9TsGBBWFtb63QpKFOmDB49eoSEhATY2NikeIytrS1sbW1TlFtbW5v0A2Xq81HW06cODx+WA7v27ZPbVlZAYCAwbpwKRYuqkMkJRCiL8HNoBh4+lJMtz58P2NvLsmXLYKVWA/fvsw7NHOvP/JmqDg05h8HJbLVq1bS3PTw8sGfPHkMPAQCwsbFB1apVsX//fu3qYhqNBvv378eQIUNSfUydOnWwceNGaDQabVeHq1evomDBgqkmskSmcvCgTGL/+ENuW1kBPXsC48YBfn6KhkZkPkJD5YjIJ0/kh+ibb5SOiIjMQJY1E50+fRqtWrUy6DHDhw/HihUrsHbtWly6dAkDBw5EdHQ0evXqBQDo0aOHzgCxgQMH4vnz5/j8889x9epV7Nq1CzNmzMDgwYOz6mkQGeTAAaBRI6BBA5nIWlsD/fsD164BK1YwkSXSS2KinJeueXOZyJYvD/DvOhHpyaCW2d9//x2hoaGwsbFB3759UbRoUVy+fBljxozBL7/8gubNmxt08oCAADx9+hSTJk3Co0ePUKlSJezZs0c7KOzOnTvaFlgA8PHxwe+//45hw4ahQoUK8Pb2xueff47Ro0cbdF6idyGETGKnTAH++kuWWVsDffoAY8YARYooGh6Rebl/X06yfOiQ3O7fH1i48HUXAyKiDOidzK5atQr9+vVDvnz58OLFC6xcuRLz58/HZ599hoCAAJw/fx5lypQxOIAhQ4ak2a3gwIEDKcpq1aqF48ePG3weonclBLB/v0xik//v2ti8TmILF1Y2PiKzc+QI0LatXNXL0VFezujUSemoiMjM6N3NYNGiRZg9ezbCw8OxZcsWhIeHY+nSpTh37hyWL1+eqUSWyBwIAZw9645GjSzh7y8TWRsbeRX0xg1g6VImskSZUrgwoNEAlSsDp08zkSWiTNG7ZfbGjRvo0KEDAKBdu3awsrLC3LlzUahQIaMFR6QkIeR4lMmTLXHsWG0AcgXNfv2A0aMBvvWJMuHVK8DFRd728ZGdzUuVAuzslI2LiMyW3i2zsbGx2kUGVCoVbG1tUbAg58qknEcIYM8eoHZtOR7l2DEL2NgkYciQJNy8KQdYM5ElyoRffgGKFgV27nxdVrEiE1kieicGDQBbuXIlHB0dAQCJiYkIDg6Gm5ubzj5Dhw7NuuiITCg5iZ0yBfj7b1lmZwf075+ESpVC0a1bE1hbp75sMhGlIyEBGDtWzh0LyL45H32kbExElGPoncwWLlwYK1as0G57enpi/fr1OvuoVComs2R2hAB275ZJ7MmTsszeHhgwABg1CsifX4Pdu+OVDZLIXN26JfvCnjght7/4Apg9W9GQiChn0TuZvX37thHDIDI9IYBff5WLDf3zjyyztwcGDQJGjgT+P0Mc1GrlYiQya9u3A717y36yrq5AcDDQpo3SURFRDmPwCmBE5k4I2XVvyhQ5gBoAHBzk7AQjRgAeHsrGR5QjnDkDfPKJvP3++8DmzZyEmYiMgsks5RpCAD//LFtiz5yRZXnyvE5i3d2VjY8oR6lcGRg4UM4fO326XFmEiMgImMxSjqfRADt2yCT27FlZ5ugIDBkCfPkl8NYYRiLKrG3bgLp1AU9Pub1kCaBSKRsTEeV4ek/NRWRuNBrgxx9lA9Enn8hE1tERGDcOuH0bmDmTiSxRloiNlSMmO3QAunYFkpJkORNZIjIBtsxSjpOcxE6dCpw/L8ucnIChQ4Fhw4D8+ZWNjyhHuXIF6NgR+Pdfmby+/77s00NEZCKZapm9ceMGJkyYgM6dO+PJkycAgN9++w0XLlzI0uCIDJGUBISEABUqyP+t588Dzs7AxImyJXbaNCayRFlqwwagalWZyLq7y4map08HrNhOQkSmY3Ay+9dff6F8+fL4+++/sX37dkRFRQEAzp49i6CgoCwPkCgjSUlyoHT58nI6ywsX5GqZQUEyiZ06FciXT+koiXKQmBigb1+gWzcgOhpo2BAICwOaNVM6MiLKhQxOZseMGYNp06YhNDQUNjY22vLGjRvj+PHjWRocUXqSkoCNG4Fy5YDOnYFLl+RUlpMnyyR28mQgb15lYyTKkTQa4MgR2a0gKAjYtw/w8lI6KiLKpQy+FnTu3Dls3LgxRbmHhwfCw8OzJCii9CQmypbYadNkdz1AJq3Dhsl+sS4uysZHlGMJIRNYR0dgyxbgyROgSROloyKiXM7gZNbV1RUPHz6En5+fTvmZM2fg7e2dZYERvS0xEdi0CfjqK+DaNVmWLx8wfDjw2WeyfywRGUFUlJyQuWJF+YEDZL8eIqJswOBktlOnThg9ejS2bt0KlUoFjUaDI0eOYMSIEejRo4cxYqRcLjFRjjOZNg24fl2W5csn54gdMoRJLJFRnTsnR1RevgzY2cmpt5LXeiYiygYM7jM7Y8YMlC5dGj4+PoiKikLZsmVRv3591K5dGxMmTDBGjJRLqdXAmjVA6dJAz54ykc2fX84Pe/u2nC+WiSyRkQgBrFgB1KghE1kvL+D335nIElG2Y3DLrI2NDVasWIGJEyfi/PnziIqKQuXKlVGiRAljxEe5kFoNrF8vZ/i5eVOWubkBI0cCgwbJ7npEZEQREcCnn8rO6QDwwQfAunVc85mIsiWDk9nDhw+jbt26KFy4MAoXLmyMmCiXUquBtWuBGTOAW7dkmbu7TGKTl3gnIiNTq4FatYCLFwFLS/mBHDECsOCCkUSUPRn816lx48bw8/PDuHHjcPHiRWPERLlMQgLw/fdAiRJAv34ykfXwAL7+Wt4eOZKJLJHJWFsDffoAPj7AwYPAqFFMZIkoWzP4L9SDBw/w5Zdf4q+//kK5cuVQqVIlzJ07F/fu3TNGfJSDJSQA330nk9hPPwX++092x5s/XyaxX34J5MmjdJREucCrV6+nCAHkPHfnzgG1aysXExGRngxOZt3c3DBkyBAcOXIEN27cQIcOHbB27Vr4+vqicePGxoiRcpj4eGDZMqB4cWDAAODOHcDTE1iwQPaRHTYMcHBQOkqiXOKff4DKlYFWrYDISFmmUnHCZiIyG+907cjPzw9jxozBrFmzUL58efz1119ZFRflQHFxwJIlMokdNAi4excoWBBYtEgmsV98wSSWyGSEkB++2rXlpZCEBOD+faWjIiIyWKaT2SNHjmDQoEEoWLAgunTpgnLlymHXrl1ZGRvlEHFxwLffyiR2yBDg3j3A2xv45huZxA4dCtjbKx0lUS7y4gXQrp38BqlWAx9/DJw5I+fBIyIyMwbPZjB27Fhs3rwZDx48QNOmTbFo0SK0adMGDmxSo7fExsppKmfPBh48kGXe3sDYsXJ8iZ2dsvER5UrHjwOdOslO6jY2wLx5cnUvlUrpyIiIMsXgZPbgwYMYOXIkOnbsCDc3N2PERGYuNlYO7JozB3j4UJb5+MgktndvwNZW2fiIcrWpU2UiW6wYEBICVK2qdERERO/E4GT2yJEjxoiDcoCYmNdJ7KNHsqxwYblSV8+eTGKJsoXVq4EpU+QlEy6hR0Q5gF7J7M6dO9GiRQtYW1tj586d6e770UcfZUlgZD6io4Hly4G5c4HHj2VZkSKvk1gbG0XDI8rdDh8G9u6VLbKAnDpk2TJlYyIiykJ6JbNt27bFo0eP4OHhgbZt26a5n0qlQlJSUlbFRtlcdDSwdKlc3ODJE1nm6wuMHw/06MEklkhRGo1sfZ04EUhKAqpUAdL5+01EZK70SmY1Gk2qtyl3iop6ncQ+fSrL/PyACROA7t3lAkJEpKAnT+SHce9eud2tG+Dvr2xMRERGYvDUXOvWrUN8fHyK8oSEBKxbty5LgqLsKTISmDVLJq6jR8tEtlgx2QXvyhU5uIuJLJHCDhwAKlWSiay9PbBqFbBuHdeEJqIcy+BktlevXnj16lWK8sjISPTq1StLgqLsJSICmDFDdiEYOxYID5dzxgYHA5cvA716MYklyhYWLACaNJHTiJQpA5w8Kb9lctotIsrBDJ7NQAgBVSp/GO/duwcXLn+Yo8TGAvPny5/nz2VZiRKyC17nzoCVwe8eIjKq4sVlX9mePeVKJXnyKB0REZHR6Z2OVK5cGSqVCiqVCk2aNIHVG5lMUlISbt26hQ8++MAoQZIypk6V3QoAoGRJmcR26sQklihbefkScHWVt1u3lq2x1aopGRERkUnpnZYkz2IQFhaG5s2bw/GN/lc2Njbw9fXFJ598kuUBknKSZyjo318O+LK0VDYeInpDYqKcL3b5cuDUKTmpM8BElohyHb2T2aCgIACAr68vAgICYMe1SHMNX18mskTZyv37QJcuwMGDcnvbNmD4cGVjIiJSiMEXjAMDA40RBxER6WPPHjntVni4nKFgxQrZ/4eIKJfSK5nNly8frl69Cjc3N+TNmzfVAWDJniePFCIioqyjVgOTJr3uyF6pErBlixyVSUSUi+mVzC5YsABOTk7a2+kls0REZASLFr1OZAcPlquWsLsXEZF+yeybXQt69uxprFiIiCgtgwcDO3cCQ4cC7dsrHQ0RUbZh8KIJp0+fxrlz57TbP//8M9q2bYtx48YhISEhS4MjIsq1EhLkTAVJSXLb3h746y8mskREbzE4mf30009x9epVAMDNmzcREBAABwcHbN26FaNGjcryAImIcp3bt4F69YCBA+Xye8nYxYuIKAWDk9mrV6+iUqVKAICtW7eiQYMG2LhxI4KDg/Hjjz9mdXxERLnLTz8BlSsDJ07IxRAqVFA6IiKibM3gZFYIAY1GAwDYt28fWrZsCQDw8fFBeHh41kZHRJRbxMfL/rDt2slVvd5/HwgLA9q0UToyIqJszeBktlq1apg2bRrWr1+Pv/76Cx9++CEA4NatWyhQoECWB0hElOPduAHUqQN8843cHjFCLohQpIiycRERmQGDF01YuHAhunbtih07dmD8+PEoXrw4AGDbtm2oXbt2lgdIRJTjRUUB588D+fIB69YB/28kICKijBmczFaoUEFnNoNkc+fOhSXXPCUi0o8Qrwd0VawIhIQAVaoAPj7KxkVEZGYMTmaTnTp1CpcuXQIAlC1bFlWqVMmyoIiIcrSrV4Fu3YBvvwVq1JBl7BtLRJQpBiezT548QUBAAP766y+4uroCAF6+fIlGjRph8+bNcHd3z+oYiYhyjo0bgU8/lV0LPvsMOH6cU24REb0DgweAffbZZ4iKisKFCxfw/PlzPH/+HOfPn0dERASGDh1qjBiJiMxfTAzQty/QtatMZBs2BHbsYCJLRPSODG6Z3bNnD/bt24cyZcpoy8qWLYslS5agWbNmWRocEVGOcOkS0LGjHOSlUgGTJgETJwIcZ0BE9M4MTmY1Gg2sra1TlFtbW2vnnyUiov+7cEH2i42JAQoUkN0MGjdWOioiohzD4G4GjRs3xueff44HDx5oy+7fv49hw4ahSZMmWRocEZHZK1tWJq9NmshFEJjIEhFlKYNbZr/99lt89NFH8PX1hc//p5C5e/cuypUrhx9++CHLAyQiMjsXLsgFDxwdZbeCTZsAe3t2KyAiMgKDk1kfHx+cPn0a+/fv107NVaZMGfj7+2d5cEREZkUIYNUqOUtB+/ZyAQSVSia1RERkFAYlsyEhIdi5cycSEhLQpEkTfPbZZ8aKi4jIvERGAgMGyD6xABAeDsTHA3Z2ysZFRJTD6Z3MLlu2DIMHD0aJEiVgb2+P7du348aNG5g7d64x4yMiyv7CwuRsBdeuya4EM2YAI0YAFgYPSyAiIgPp/Zf222+/RVBQEK5cuYKwsDCsXbsWS5cuNWZsRETZmxDAsmXA++/LRNbHBzh4EBg1ioksEZGJ6P3X9ubNmwgMDNRud+nSBYmJiXj48KFRAiMiyvZevAAmT5bdCVq3Bs6cAWrXVjoqIqJcRe9uBvHx8ciTJ49228LCAjY2NoiNjTVKYERE2V6+fMCGDcC5c8AXX3A1LyIiBRg0AGzixIlwcHDQbickJGD69OlwcXHRls2fPz/roiMiyk6EAL75BvDykrMVAIC/v/whIiJF6J3M1q9fH1euXNEpq127Nm7evKndVrFVgohyqhcvgN69gR07ACcnoFYtwNtb6aiIiHI9vZPZAwcOGDEMIqJs7O+/gYAA4L//ABsbOVuBl5fSURERETKxnC0RUa6h0QDz5gF168pEtlgx4OhRYMgQ9o8lIsomDF4BjIgoV0hMBNq1A375RW537AisWAE4OysbFxER6WDLLBFRaqysgOLFAVtbYPlyYPNmJrJERNkQk1kiomQaDfDy5evtWbOA06eBTz9ltwIiomyKySwREQA8fQp8+CHQqhWgVssyGxugbFll4yIionRlKpk9dOgQunXrhlq1auH+/fsAgPXr1+Pw4cNZGhwpRwg53gWQS80T5Wh//QVUqgTs2SNbYs+cUToiIiLSk8HJ7I8//ojmzZvD3t4eZ86cQXx8PADg1atXmDFjRpYHSMrYvBnYvx+wtpaNVUQ5UlIS8NVXQOPGwIMHQJkywIkTQI0aSkdGRER6MjiZnTZtGpYvX44VK1bA2tpaW16nTh2cPn06S4MjZTx8CAweLG9PnAi8956y8RAZxaNHQPPmwKRJsq9sz57AyZNAuXJKR0ZERAYweGquK1euoH79+inKXVxc8PLNgRNkloSQY11evACqVAHGjFE6IiIj6dFDXn5wcACWLZPbRERkdgxumfX09MT169dTlB8+fBhFixbNVBBLliyBr68v7OzsULNmTZw4cUKvx23evBkqlQpt27bN1HkppR9+kNNqWlsDa9fK30Q50uLFcknaU6eYyBIRmTGDk9l+/frh888/x99//w2VSoUHDx5gw4YNGDFiBAYOHGhwACEhIRg+fDiCgoJw+vRpVKxYEc2bN8eTJ0/Sfdzt27cxYsQI1KtXz+BzUuoePACGDpW3p0zh1VbKWeyeP4dq06bXBaVLA0eOyN9ERGS2DO5mMGbMGGg0GjRp0gQxMTGoX78+bG1tMWLECHz22WcGBzB//nz069cPvXr1AgAsX74cu3btwurVqzEmjWvcSUlJ6Nq1K6ZMmYJDhw6xe0MWEALo319OsVm9OjBypNIREWUd1d69aPjFF7CMigJ8fYHkrlKcO5aIyOwZnMyqVCqMHz8eI0eOxPXr1xEVFYWyZcvC0dHR4JMnJCTg1KlTGDt2rLbMwsIC/v7+OHbsWJqPmzp1Kjw8PNCnTx8cOnQo3XPEx8drZ1wAgIiICACAWq2GOnkuSSNKPocpzvUu1q1TYdcuK9jYCKxYkQghXk+1mduZSx1SKhITYREUBKu5c2EFQFOhAhLz5+eb2wzxc2jeWH/mz9R1aMh5DE5mk9nY2KDsO04mHh4ejqSkJBQoUECnvECBArh8+XKqjzl8+DBWrVqFsLAwvc4xc+ZMTJkyJUX53r174eDgYHDMmRUaGmqycxkqPNwOQ4c2BgB06nQRt29fx+3bysaUHWXnOqSU7J4+RbX585H/0iUAwK0WLXC+Vy9orl8HUun3T+aBn0Pzxvozf6aqw5iYGL33NTiZbdSoEVTpXJr7448/DD2k3iIjI9G9e3esWLECbm5uej1m7NixGD58uHY7IiICPj4+aNasGZxNsM66Wq1GaGgomjZtqjOVWXYhBNC6tSViYixQs6YG331XEpaWJZUOK1vJ7nVIKal274bl6NFQPX8O4eyMhCVL8K+TE+vQjPFzaN5Yf+bP1HWYfCVdHwYns5UqVdLZVqvVCAsLw/nz5xEYGGjQsdzc3GBpaYnHjx/rlD9+/Bienp4p9r9x4wZu376N1q1ba8s0Gg0AwMrKCleuXEGxYsV0HmNrawtbW9sUx7K2tjbpB8rU59PXypXA3r2AnR2wdq0F7Oy4wnFasmsdUioePACePweqVoUqJAQWhQsDu3ezDnMA1qF5Y/2ZP1PVoSHnMDiZXbBgQarlkydPRlRUlEHHsrGxQdWqVbF//37t9FoajQb79+/HkCFDUuxfunRpnDt3TqdswoQJiIyMxKJFi+Dj42PQ+XO7O3eA5EbradOAUqWUjYfonQjxekDXgAGAvT3QuTNga8s+skREOViWNcN169YNq1evNvhxw4cPx4oVK7B27VpcunQJAwcORHR0tHZ2gx49emgHiNnZ2aFcuXI6P66urnByckK5cuVgY2OTVU8nxxMC6NMHiIwEatcGvvhC6YiI3sGOHUC1anI6DkAmtT17ykSWiIhytEwPAHvbsWPHYGdnZ/DjAgIC8PTpU0yaNAmPHj1CpUqVsGfPHu2gsDt37sDCgpe+s9r33wP79snGqzVrAEtLpSMiyoT4eGD0aGDRIrk9bx7w1VfKxkRERCZlcDLbrl07nW0hBB4+fIh//vkHEydOzFQQQ4YMSbVbAQAcOHAg3ccGBwdn6py52e3bwIgR8vbMmUBJjvcic3TjBhAQIFfwAuSbetIkZWMiIiKTMziZdXFx0dm2sLBAqVKlMHXqVDRr1izLAiPj0Ghk94KoKKBePSAT61wQKW/rVqBvXyAiAsifX669/OGHSkdFREQKMCiZTUpKQq9evVC+fHnkzZvXWDGRES1fDvzxB+DgAKxeDbAHB5md778HPv1U3q5TB9i8GShUSNmYiIhIMQalMpaWlmjWrBmXjzVTN2++XqZ29mygeHFl4yHKlHbtAB8fYOxY4MABJrJERLmcwd0MypUrh5s3b8LPz88Y8ZCRaDRAr15ATAzQsCEwaJDSEREZ4NgxoFYtedvNDbhwAXByUjYmIiLKFgy+yDxt2jSMGDECv/76Kx4+fIiIiAidH8qevv0WOHgQyJOH3QvIjMTGAv36yfnj3hzsyUSWiIj+T++W2alTp+LLL79Ey5YtAQAfffSRzrK2QgioVCokJSVlfZT0Tq5fB8aMkbfnzgXYqE5m4dIloGNH4Px5OW/sw4dKR0RERNmQ3snslClTMGDAAPz555/GjIeyWFKSnDs+NhZo0uT1uBmibG3dOmDgQNkvpkABYMMG+QYmIiJ6i97JrBACANCgQQOjBUNZb/Fi4MgRwNERWLWK3Qsom4uOBoYMed2lwN8f+OEHmdASERGlwqDU5s1uBZT9XbkCjBsnb8+fDxQpomw8RBn65x85Z6yFhVzJa88eJrJERJQug2YzKFmyZIYJ7fPnz98pIMoaSUly9oK4OKBZMzm/PFG216AB8PXXQNWq8jYREVEGDEpmp0yZkmIFMMqeFiyQsxk5OwMrV8rxM0TZTmSkXIZ21CigWDFZNny4sjEREZFZMSiZ7dSpEzw8PIwVC2WRS5eACRPk7QUL5PzyRNnO2bNytoKrV4F//wWOHuW3LiIiMpjefWbZX9Y8JCbK2Qvi44EWLWRXA6JsRQi5rnLNmjKRLVRIdi3g3xgiIsoEg2czoOzt66+BEycAFxdgxQrmB5TNvHoF9O8PbNkit1u1kjMX5M+vaFhERGS+9E5mNRqNMeOgLHDhAhAUJG8vWgR4eysbD5GOW7eApk2BGzcAKytg9mxg2DB+4yIiondiUJ9Zyr7UaiAwEEhIkI1dPXooHRHRW7y9gbx55RxxISGymwEREdE7YjKbQ8yZA5w6JXOF775jYxdlEy9fyhU7rKwAGxtg+3a5nTev0pEREVEOwfWgcoB//wWmTJG3Fy8GvLyUjYcIgOy8Xbny674vgJxag4ksERFlISazZk6tlrMXqNVAmzZA165KR0S5nhByybk6dYDbt+Vgr+hopaMiIqIcismsmZs5EzhzBsiXT852xO4FpKjnz+W3qi+/lPPEdeggl6jNk0fpyIiIKIdiMmvGwsLk8vUAsGQJ4OmpaDiU2x09ClSqBPzyC2BrCyxbJgd6cdVAIiIyIg4AM1MJCXL2gsRE4JNPgIAApSOiXO3VK6BlS/m7RAnZtaBSJaWjIiKiXIDJrJmaNk0O/HJzA5YuZfcCUpiLi5zceO9e2d/FyUnpiIiIKJdgMmuGTp8GZsyQt5cuBTw8lI2HcqmDB+WUW7Vry+3AQDnBMb9ZERGRCbHPrJmJj5c5Q1IS0LGjHF9DZFJJSfLSQKNG8k0YHv76PiayRERkYmyZNTNTpwLnz8vW2CVLlI6Gcp3Hj4Fu3YB9++S2vz9gb69sTERElKsxmTUjJ08Cs2bJ28uWyf6yRCbzxx9Aly4yoXVwkH1cAgOVjoqIiHI5djMwE3FxcnEEjQbo3Blo107piCjX0GjkKl7+/jKRLVdOzh3LRJaIiLIBJrNmYvJk4OJFoEAB4JtvlI6GchWVSr75hAD69gX+/hsoU0bpqIiIiACwm4FZOH4cmDtX3v7uOyB/fmXjoVxCowEsLGQyu3KlnMy4fXuloyIiItLBltlsLjb2dfeC7t3lSqFERpWYCIwdC3TqJFtjATmPLBNZIiLKhtgym81NnAhcuQIULCjnpCcyqrt3ZafsI0fk9uDBQIMGysZERESUDrbMZmNHjwLz58vb338P5M2rbDyUw+3aJZegPXIEcHaWS9IykSUiomyOyWw2FRMjuxcIIX+3aqV0RJRjqdXAyJHyTfb8OVC1qlxmjityEBGRGWA3g2xq/Hjg2jXA2xtYsEDpaChH69wZ+PFHeXvoUGDOHMDWVtmYiIiI9MSW2Wzo4MHX/WNXrABcXRUNh3K6zz+XK3D89JN84zGRJSIiM8KW2WwmOhro1Ut2L+jTB2jRQumIKMeJjwfCwoCaNeV2vXrA7dtAnjxKRkVERJQpbJnNZsaOBW7eBHx8gHnzlI6GcpybN4E6dYDGjYFLl16XM5ElIiIzxWQ2Gzlw4PXqXqtWyak9ibLMtm1A5crAqVOAnR3w8KHSEREREb0zJrPZRFSU7F4AAP37A02bKhsP5SBxcXK+2A4dgIgIoHZt2c2gcWOlIyMiInpnTGaziVGjZLfFIkWAr79WOhrKMa5dA2rVApYuldtjxshLAD4+ioZFRESUVTgALBvYvx9YtkzeXrUKcHJSNh7KQX74QbbCurkB69cDH3ygdERERERZismswiIigN695e1Bg4AmTZSNh3KYiROByEjgyy/lpMVEREQ5DLsZKGzkSODOHcDPD5g9W+loyOxdvgwEBsrptwDAykquicxEloiIcii2zCpo717g++/l7dWrAUdHZeMhM7duHTBwoFwL2ccHmDZN6YiIiIiMji2zCnn1Si6KAACffQY0bKhoOGTOklfaCAyUiWyTJsCQIUpHRUREZBJMZhXy5ZfAvXtAsWLAzJlKR0Nm68IFoEYNIDgYsLAApk4Ffv8d8PRUOjIiIiKTYDcDBfz2m5y1QKUC1qzh4kuUST//DHTuDMTGAgULAps2AQ0aKB0VERGRSTGZNbEXL4C+feXtzz8H6tVTNh4yY+XKAdbWQP36sr+sh4fSEREREZkck1kTGzYMePAAKFECmD5d6WjI7Dx58jppLVYMOH4cKFVKdjEgIiLKhfgf0IR+/RVYu1Z2LwgOBhwclI6IzIYQwPLlgK8vEBr6urxMGSayRESUq/G/oIk8fw707y9vf/klULu2svGQGXn1CujUSU67FRsLbNyodERERETZBpNZExk+3BIPH8orwlOnKh0NmY1Tp4CqVYEtW+QCCF9/LUcPEhEREQD2mTWJ48c9sXGjBSwsZPcCe3ulI6JsTwjg22+BESOAhASgSBFg82bg/feVjoyIiChbYcuskT17BixfXhGAXLqWuQjp5Y8/gKFDZSLbti1w5gzfPERERKlgy6yRLVligZcvrVGmjMDkySqlwyFz0aQJ0K+fnH7rs8/kqEEiIiJKgcmskYWHy9/t2mlgZ2epbDCUfQkBLFsGdOwIuLnJsu+/VzYmIiIiM8BuBibChjVK07NnwEcfAYMHAz17AhqN0hERERGZDbbMEinp6FE57dbdu4CtLfDhh/zmQ0REZAC2zBIpQaMBZs+WS9HevSuXhDt+XM4ly2SWiIhIb2yZJTK1Z8+Abt2APXvkdufOwHffAU5OysZFRERkhtgyS2RqlpbAlSuAnR2wYgWwYQMTWSIiokxiyyyRKWg0svuASgW4ugLbtgHW1kD58kpHRkREZNbYMktkbI8fA82bA8uXvy6rUoWJLBERURZgMktkTH/8AVSsCOzbB0yYAERGKh0RERFRjsJklsgYkpKAoCDA31+2zL73HnDoEPvGEhERZTH2mSXKag8eAF27AgcOyO0+fYDFiwEHB0XDIiIiyomYzBJlpagooFo14OFDIE8eOeVW165KR0VERJRjsZsBUVZydJTL0lasCJw+zUSWiIjIyJjMEr2re/eAa9deb48ZI1fzKllSuZiIiIhyCSazRO9i1y6gUiXgk0+A2FhZZmkpF0QgIiIio2MyS5QZajUwciTQqpVcntbaGnj+XOmoiIiIch0ms0SG+u8/oH594Ouv5fZnnwFHjwLe3srGRURElAtli2R2yZIl8PX1hZ2dHWrWrIkTJ06kue+KFStQr1495M2bF3nz5oW/v3+6+xNlqZ9/lt0Kjh8HXFyAH3+U027Z2iodGRERUa6keDIbEhKC4cOHIygoCKdPn0bFihXRvHlzPHnyJNX9Dxw4gM6dO+PPP//EsWPH4OPjg2bNmuH+/fsmjpxyHY1Gtsa+fAlUrw6cOQO0a6d0VERERLma4sns/Pnz0a9fP/Tq1Qtly5bF8uXL4eDggNWrV6e6/4YNGzBo0CBUqlQJpUuXxsqVK6HRaLB//34TR065joUFsHEjMG4ccPgw4OendERERES5nqKLJiQkJODUqVMYO3astszCwgL+/v44duyYXseIiYmBWq1Gvnz5Ur0/Pj4e8fHx2u2IiAgAgFqthlqtfofo9aPRAIAlNBoN1GqN0c9HWUv144/A2bPA++/L94unJzB5srzTBO8fyhrJn3VTfObJOFiH5o31Z/5MXYeGnEfRZDY8PBxJSUkoUKCATnmBAgVw+fJlvY4xevRoeHl5wd/fP9X7Z86ciSlTpqQo37t3LxxMsLzo3bsVAPjhxo0b2L37itHPR1nDIiEB5dasgd9vvwEA3L76CqEKx0TvLjSUtWjuWIfmjfVn/kxVhzExMXrva9bL2c6aNQubN2/GgQMHYJfGvJ5jx47F8OHDtdsRERHafrbOzs5Gj3H3bvm7WLFiaNmymNHPR1ng2jVYde0KVVgYAEA9fDielSmDpk2bwtraWtnYKFPUajVCQ0NZh2aMdWjeWH/mz9R1mHwlXR+KJrNubm6wtLTE48ePdcofP34MT0/PdB/79ddfY9asWdi3bx8qVKiQ5n62trawTWWkubW1tUkqw8Ii6f+/LWBtbWn089E72rQJ6N8fiIoC3NyA9euBJk0gdu822XuGjId1aP5Yh+aN9Wf+TFWHhpxD0QFgNjY2qFq1qs7greTBXLVq1UrzcXPmzMFXX32FPXv2oFq1aqYIlXKDL78EunSRiWz9+kBYGPDBB0pHRUREROlQfDaD4cOHY8WKFVi7di0uXbqEgQMHIjo6Gr169QIA9OjRQ2eA2OzZszFx4kSsXr0avr6+ePToER49eoSoqCilngLlFDVrAioVMGECsH8/F0EgIiIyA4r3mQ0ICMDTp08xadIkPHr0CJUqVcKePXu0g8Lu3LkDC4vXOfeyZcuQkJCA9u3b6xwnKCgIk5NHmRPp6/FjIHkAYseOQIUKQOnSysZEREREelM8mQWAIUOGYMiQIaned+DAAZ3t27dvGz8gyvmio4EhQ4DffpPdCZL7aDORJSIiMiuKdzMgMrkLF4AaNYDgYODpU9mlgIiIiMwSk1nKPYQAVq+WS9FevAgULCgT2a5dlY6MiIiIMilbdDMgMrqoKGDAAGDDBrndrJmcdsvDQ9m4iIiI6J2wZZZyh2nTZCJraQnMmCH7yjKRJSIiMntsmaXcYcIE4NQpICgIqFtX6WiIiIgoi7BllnKmiAhg3jzZTxYAHB2B0FAmskRERDkMW2Yp5zl9GggIAK5fl9tffqlsPERERGQ0bJmlnEMI4NtvgVq1ZCJbuDBQp47SUREREZERsWWWcoaXL4E+fYDt2+V2mzZyGq58+RQNi4iIiIyLLbNk/v75B6hcWSay1tbAwoXATz8xkSUiIsoF2DJL5k+jAe7dA/z8gJAQuSgCERER5QpMZsk8JSXJOWMBuTTtTz/JmQpcXRUNi4iIiEyL3QzI/Bw9CpQtC5w9+7qsVSsmskRERLkQk1kyHxoNMGcOUL8+cPUqMG6c0hERERGRwtjNgMzD06dAYKBchhYAOnUCvvtO2ZiIiIhIcUxmKfs7dEgmrw8eAHZ2wOLFQN++gEqldGRERESkMCazlL0dPgw0bCi7GJQqBWzZAlSooHRURERElE0wmaXsrVYtoFEjwMsLWLoUcHRUOiIiIiLKRpjMUvZz5AhQpQpgby+n3/rlF3mbiIiI6C2czYCyj6QkYPJkoF49YNiw1+VMZImIiCgNbJml7OHhQ6BLF+DAAbmtVusujEBERESUCrbMkvL27gUqVpSJbJ48wPr1wKpVTGSJiIgoQ0xmSTmJicD48cAHH8h5ZCtUAP75B+jWTenIiIiIyEwwmSXlPHkCLF8OCAF8+ilw/DhQurTSUREREZEZYZ9ZUo6XF7BuHRAZKRdFICIiIjIQk1kyHbUamDABqFsXaN1aln34obIxERERkVljNwMyjTt3gAYNgDlzgJ49gZcvlY6IiIiIcgAms2R8O3cClSoBx44BLi7AihWAq6vSUREREVEOwGSWjCchQS5+0KYN8OIFUL06cOYM0K6d0pERERFRDsE+s2QcMTFAw4bAyZNye9gwYNYswMZG0bCIiIgoZ2EyS8bh4ABUrgxcvw4EBwMffaR0RERERJQDsZsBZZ24OOD589fbCxcCYWFMZImIiMhomMxS1rh+HahdG+jYEUhKkmX29kDhwsrGRURERDkak1l6d5s3A1WqyMFdYWHAjRtKR0RERES5BJNZyrzYWLkMbefOchWvunVlMluypNKRERERUS7BZJYy58oV4P33ge+/B1QqYPx44M8/gUKFlI6MiIiIchHOZkCGEwLo2hX491/A3R3YsAFo2lTpqIiIiCgXYsssGU6lAlatAlq0AM6eZSJLREREimEyS/q5cAH44YfX2xUrArt3AwULKhcTERER5XrsZkDpE0IuejB4MJCYKAd31aihdFREREREANgyS+mJigICA4HeveXMBQ0bAr6+SkdFREREpMVkllL3779AtWrA+vWAhQUwfTqwZw/g4aF0ZERERERa7GZAKa1cCQwZAsTHA97ewKZNQL16SkdFRERElAJbZimlV69kItuihVwEgYksERERZVNsmSUpMRGw+v/bYfhwoHBh4JNPZBcDIiIiomyKmUpuJwSwZInsHxsVJctUKqBDByayRERElO0xW8nNXr6USeuQIXLxg1WrlI6IiIiIyCDsZpBbnTwJBAQAt24B1tbAnDnA0KFKR0VERERkECazuY0QwKJFwKhRgFot543dsgWoXl3pyIiIiIgMxm4Guc20acCwYTKRbdcOOHOGiSwRERGZLSazuU2/fnKmgm+/BbZtA1xdlY6IiIiIKNPYzSCn02iA/fuBpk3ltqcncOUKYGenbFxEREREWYAtszlZeDjQujXQrJnsF5uMiSwRERHlEGyZzakOHQI6dwbu3wdsbYGYGKUjIiIiIspybJnNaTQaYMYMoFEjmciWLAmcOAH07Kl0ZERERERZji2zOcmTJ0C3bkBoqNzu1g1YtgxwdFQ2LiIiIiIjYctsTnLihExk7e2B1auBdeuYyBIREVGOxpbZnKRVK2DePKB5c+C995SOhoiIiMjo2DJrzh4+BNq3B+7efV02fDgTWSIiIso12DJrrkJDZZ/YJ0+AqChgzx6lIyIiIiIyObbMmpvERGDCBNmV4MkToHx5YOFCpaMiIiIiUgRbZs3JvXtAly5yDlkA6N9fJrL29oqGRURERKQUJrPmIiwM8PcHnj2TMxSsWAF06qR0VERERESKYjJrLkqWBAoWBAoXBkJCgBIllI6IiIiISHFMZrOzhw+BAgUACwvAwQHYvRtwdwfs7JSOjIiIiChbYDKbXe3cKZeg/fJLYPx4Webjo2hIRES5gRACiYmJSEpKUjqUHEOtVsPKygpxcXF8Xc2UMerQ2toalpaW73wcJrPZTUICMGYMsGCB3P71V2D0aMCKVUVEZGwJCQl4+PAhYmJilA4lRxFCwNPTE3fv3oVKpVI6HMoEY9ShSqVCoUKF4PiOq5UyQ8pObt2Sg7pOnJDbX3wBzJ7NRJaIyAQ0Gg1u3boFS0tLeHl5wcbGholXFtFoNIiKioKjoyMsLDgrqDnK6joUQuDp06e4d+8eSpQo8U4ttMySsovt24HevYFXrwBXVyA4GGjTRumoiIhyjYSEBGg0Gvj4+MDBwUHpcHIUjUaDhIQE2NnZMZk1U8aoQ3d3d9y+fRtqtZrJrNl78EDOHxsfD7z/PrB5M1CkiNJRERHlSky2iEwjq658MJnNDry85OIHN24AM2YA1tZKR0RERERkFpjMKmXLFsDPD6heXW4PGKBsPERERERmiNdSTC02ViauAQHy59UrpSMiIiLKta5cuQJPT09ERkYqHUqOkpCQAF9fX/zzzz9GP1e2SGaXLFkCX19f2NnZoWbNmjiRPJo/DVu3bkXp0qVhZ2eH8uXLY/fu3SaK9B1duSL7xH73HaBSAZ07A3nyKB0VERGZuZ49e0KlUkGlUsHa2hp+fn4YNWoU4uLiUuz766+/okGDBnBycoKDgwOqV6+O4ODgVI/7448/omHDhnBxcYGjoyMqVKiAqVOn4vnz50Z+RqYzduxYfPbZZ3ByclI6FKMxNM9q2LCh9v2U/GNpaYmOHTtq93n8+DF69uwJLy8vODg44IMPPsC1a9e099vY2GDEiBEYPXq00Z5XMsWT2ZCQEAwfPhxBQUE4ffo0KlasiObNm+PJkyep7n/06FF07twZffr0wZkzZ9C2bVu0bdsW58+fN3Hkhql4bgNQtSrw779yFa89e4Dp0zntFhERZYkPPvgADx8+xM2bN7FgwQJ89913CAoK0tnnm2++QZs2bVCnTh38/fff+Pfff9GpUycMGDAAI0aM0Nl3/PjxCAgIQPXq1fHbb7/h/PnzmDdvHs6ePYv169eb7HklJCQY7dh37tzBr7/+ip49e77TcYwZ47syNM8CgO3bt+Phw4fan/Pnz8PS0hJt27YFIKfVatu2LW7evImff/4ZZ86cQZEiReDv74/o6Gjtcbp27YrDhw/jwoULxn2SQmE1atQQgwcP1m4nJSUJLy8vMXPmzFT379ixo/jwww91ymrWrCk+/fRTvc736tUrAUC8evUq80EbYEi/aLESvYUA5E/DhkI8eGCSc1PWSEhIEDt27BAJCQlKh0KZxDo0f6aow9jYWHHx4kURGxurLdNohIiKUuZHo9E/9sDAQNGmTRudsnbt2onKlStrt+/cuSOsra3F8OHDUzx+8eLFAoA4fvy4EEKIv//+WwAQCxcuTPV8L168SDOWu3fvik6dOom8efMKBwcHUbVqVXH06FHx4sUL0aNHjxRxfv7556JBgwba7QYNGojBgweLzz//XOTPn180bNhQdO7cWXTs2FHncQkJCSJ//vxi7dq1QgiZP8yYMUP4+voKOzs7UaFCBbF169Y04xRCiLlz54pq1arplIWHh4tOnToJLy8vYW9vL8qVKyc2btyos09qMQohxLlz58QHH3wg8uTJIzw8PES3bt3E06dPtY/77bffRJ06dYSLi4vIly+f+PDDD8X169fTjfFdGZpnpWbBggXCyclJ3Lt3TyQlJYkrV64IAOL8+fM6x3V3dxcrVqzQeWyjRo3EhAkTUj1uap+5ZIbka4o2CyYkJODUqVMYO3astszCwgL+/v44duxYqo85duwYhg8frlPWvHlz7NixI9X94+PjER8fr92OiIgAIJdlU6vV7/gMMqaGJTzxCBqoICaMh2b8eMDSEjDBuSlrJL9PTPF+IeNgHZo/U9ShWq2GEAIajQYajQYAEB0NODsrcxEzIkKjd080IYQ2dgA4f/48jh49iiJFimjLtm7dCrVajeHDh2vLkvXr1w/jxo3Dxo0bUb16dfzwww9wdHTEgAEDUuwLAM7OzqmWR0VFoUGDBvD29saOHTvg6emJ06dP6yx/+macydsAdMrWrl2LAQMG4NChQwCA69evIyAgABEREdrVon777TfExMSgTZs20Gg0mDFjBjZs2IClS5eiRIkSOHjwILp164b8+fOjQYMGqb5uBw8eRNWqVXXOHRMTgypVqmDkyJFwdnbG7t270b17d/j5+aFGjRppxvj8+XM0btwYffr0wbx58xAbG4sxY8agY8eO2LdvHwAgMjISX3zxBSpUqICoqCgEBQXh448/xunTp9OcEm7mzJmYOXNmqvclO3/+PAoXLpyiPDnPGj16tM5zbNKkCY4ePZpqHaZm1apVCAgIQJ48eSCEQGxsLADZleDNY9ja2uLQoUPo3bu3tqx69eo4dOhQqufSaDQQQqQ6z6whn3VFk9nw8HAkJSWhQIECOuUFChTA5cuXU33Mo0ePUt3/0aNHqe4/c+ZMTJkyJUX53r17TTIpdry6GKaXWIDr77WFbzUP4PffjX5OMo7Q0FClQ6B3xDo0f8asQysrK3h6eiIqKkp72VheMXU12jnTExERgTdywHSp1Wrs2rULzs7OSExMRHx8PCwsLDB79mxtI8758+fh7OyMPHnyaMveVKRIEVy8eBERERG4dOkSihQpgtjYWG3ioo/g4GA8ffoU+/btQ968eQHI7g9vxpmYmKhz/oSEBJ2yxMREFC1aFOPHj9fu4+7uDgcHB2zcuBGdOnUCAKxbtw4ffPCBdiWpmTNn4qefftImnO3atcOBAwewZMkSVK5cOdV4b926hfLly+vE4+TkhH79+mm3e/TogV27dmHDhg0oXbp0mjF+/fXXKF++vE4f0YULF6JcuXI4ffo0ihcvjqZNm2rv8/DwwMKFC1G8eHGcOHECZcuWTTXGLl26oEWLFqnel8zR0THVOn348CGSkpJS3O/q6qqt64ycOnUK58+fx8KFCwHIhNzLywuFChXCqFGjsGDBAjg4OGDp0qW4d+8e7t27p3PcfPny4datW6meKyEhAbGxsTh48CASExN17jNkSekc32Fz7NixOi25ERER8PHxQbNmzeDs7Gz08zdtqkZoaCiaNu0Ka84fa5bU6uQ6bMo6NFOsQ/NnijqMi4vD3bt34ejoCDs7OwCAk5NsIVWCg4Mz9J1T3traGg0bNsTSpUsRHR2NhQsXwsrKCt26ddPuk7w8b1r/+ywtLWFlZQVnZ2dYWlrC0tLS4P+TV65cQeXKlVHkrYV/hBCIjIyEtbW19hxvxvVmmZWVFapXr57i3B07dsRPP/2E/v37Izo6Gr/99hs2btwIZ2dnXLhwATExMWjXrp3OYxISElC5cuU0n0dCQgJcXFx07k9KSsLMmTOxdetW3L9/HwkJCYiPj4ezs3O6MV6+fBmHDh1CoUKFUpzn8ePHqFKlCq5du4agoCCcOHEC4eHh2tbK58+fpxmjs7NzitdTX1FRUQCAPHny6Bzf1tZW7/oNCQlB+fLl0bBhQ0RGRsLJyQkqlQrbt29Hv3794OfnB0tLSzRp0kT75eLN47q6uiIuLi7Vc8XFxcHe3h7169fXfuaS6ZNoJ1M0mXVzc4OlpSUeP36sU/748WN4enqm+hhPT0+D9re1tYWtrW2Kcmtra5P+UzP1+SjrsQ7NH+vQ/BmzDpOSkqBSqWBhYaFzydccBrmrVCo4OjqiZMmSAIA1a9agYsWKWLNmDfr06QMAKFWqFF69eoVHjx7By8tL5/EJCQm4ceMGGjVqBAsLC5QqVQpHjhxBUlKSQa938hXPty+ZJydtyeVv3p/cIvdmmaOjY4pjdOvWDQ0aNEB4eDhCQ0Nhb2+Pli1bwsLCQtuKt2vXLnh7e+s8ztbWNs1L+G5ubnj58qXO/XPmzMHixYuxcOFClC9fHnny5MEXX3wBtVqdbozR0dFo3bo1Zs+eneI8BQsWhIWFBdq0aYMiRYpgxYoV8PLygkajQbly5ZCYmJhmjDNmzMCMGTNSvS/ZxYsXU+1m4OHhAUtLSzx9+lTn+E+ePIGnp2eGq91FR0cjJCQEU6dO1a7WlfwZqV69OsLCwvDq1SskJCTA3d0dNWvWRLVq1XSO+/LlS7i7u6d6LgsLC+0MHG+/zwx53yk6m4GNjQ2qVq2K/fv3a8s0Gg3279+PWrVqpfqYWrVq6ewPyMtOae1PRESU21hYWGDcuHGYMGGCtpvAJ598Amtra8ybNy/F/suXL0d0dDQ6d+4MQF7ajoqKwtKlS1M9/suXL1Mtr1ChAsLCwtKcusvd3R0PHz7UKQsLC9PrOdWuXRs+Pj4ICQnBhg0b0KFDB23CU7ZsWdja2uLOnTsoXry4zo+Pj0+ax6xcuTIuXryoU3bkyBG0adMG3bp1Q8WKFVG0aFFcvXo1w/iqVKmCCxcuwNfXN0UMefLkwbNnz3DlyhVMmDABTZo0QZkyZfDixYsMjztgwACEhYWl+/P2l5Nkmcmz3rR161bEx8frtPC/zcXFBe7u7rh27Rr++ecftGnTRuf+8+fPp9nNI8voNYzNiDZv3ixsbW1FcHCwuHjxoujfv79wdXUVjx49EkII0b17dzFmzBjt/keOHBFWVlbi66+/FpcuXRJBQUHC2tpanDt3Tq/zmXo2A46iNn+sQ/PHOjR/Ss1mYC5Sm81ArVYLb29vMXfuXG3ZggULhIWFhRg3bpy4dOmSuH79upg3b56wtbUVX375pc7jR40aJSwtLcXIkSPF0aNHxe3bt8W+fftE+/bt05zlID4+XpQsWVLUq1dPHD58WNy4cUNs27ZNHD58WLx48ULs3r1bqFQqsXbtWnH16lUxadIk4ezsnGI2g88//zzV448fP16ULVtWWFlZiUOHDqW4L3/+/CI4OFhcv35dnDp1SixevFgEBwen+brt3LlTeHh4iMTERG3ZsGHDhI+Pjzhy5Ii4ePGi6Nu3r3B2dtZ5fVOL8f79+8Ld3V20b99enDhxQly/fl3s2bNH9OzZUyQmJoqkpCSRP39+0a1bN3Ht2jWxf/9+Ub16dQFA/PTTT2nG+K4yyrOESJlrJatbt64ICAgQQsjZCl68eCGSkpKEEEJs2bJF/Pnnn+LGjRtix44dokiRIqJdu3YpjlGkSBGxbt26VGPLqtkMFE9mhRDim2++EYULFxY2NjaiRo0a2qlBhJBvmMDAQJ39t2zZIkqWLClsbGzEe++9J3bt2qX3uZjMkqFYh+aPdWj+mMymL7VkVgghZs6cKdzd3UVUVJS27Oeffxb16tUTefLkEXZ2dqJq1api9erVqR43JCRE1K9fXzg5OYk8efKIChUqiKlTp6Y7Ndft27fFJ598IpydnYWDg4OoVq2aOHbsmDYRmjRpkihQoIBwcXERw4YNE0OGDNE7mb148aIAIIoUKSI0b81dptFoxMKFC0WpUqWEtbW1cHd3F82bNxd//fVXmrGq1Wrh5eUl9uzZoy179uyZaNOmjXB0dBQeHh5iwoQJKaYUSyvGq1evio8//li4uroKe3t7Ubp0afHFF19oYw0NDRVlypQRtra2okKFCuLAgQNGT2aFSD/PSn4+b+daly9fFgDE3r17hRApk9lFixaJQoUKCWtra1G4cGExYcIEER8fr3OMo0ePCldXVxETE5NqXFmVzKqE+P+cGLlEREQEXFxc8OrVK5MMAFOr1di9ezdatmzJvnpminVo/liH5s8UdRgXF4dbt27Bz88vxWAUejcajQYRERFwdnbOsJ+mqS1ZsgQ7d+7E75xtKF2ZqcOAgABUrFgR48aNS/X+9D5zhuRrOX42AyIiIqK0fPrpp3j58qV2pD5ljYSEBJQvXx7Dhg0z+rmYzBIREVGuZWVlpTNfLGUNGxsbTJgwwSTnyl5t/UREREREBmAyS0RERERmi8ksERHRG3LZuGgixWTVZ43JLBEREV6vOGTImvBElHkJCQkA5FLK74IDwIiIiCD/obq6uuLJkycA5NKsyUt40rvRaDRISEhAXFxctpuai/ST1XWo0Wjw9OlTODg4wMrq3dJRJrNERET/5+npCQDahJayhhACsbGxsLe35xcEM2WMOrSwsEDhwoXf+XhMZomIiP5PpVKhYMGC8PDwgFqtVjqcHEOtVuPgwYOoX78+Fy4xU8aoQxsbmyxp5WUyS0RE9BZLS8t37sdHr1laWiIxMRF2dnZMZs1Udq5DdlwhIiIiIrPFZJaIiIiIzBaTWSIiIiIyW7muz2zyBL0REREmOZ9arUZMTAwiIiKyXR8T0g/r0PyxDs0f69C8sf7Mn6nrMDlP02dhhVyXzEZGRgIAfHx8FI6EiIiIiNITGRkJFxeXdPdRiVy2bp9Go8GDBw/g5ORkkrnuIiIi4OPjg7t378LZ2dno56Osxzo0f6xD88c6NG+sP/Nn6joUQiAyMhJeXl4ZTt+V61pmLSwsUKhQIZOf19nZmR9gM8c6NH+sQ/PHOjRvrD/zZ8o6zKhFNhkHgBERERGR2WIyS0RERERmi8mskdna2iIoKAi2trZKh0KZxDo0f6xD88c6NG+sP/OXnesw1w0AIyIiIqKcgy2zRERERGS2mMwSERERkdliMktEREREZovJLBERERGZLSazWWDJkiXw9fWFnZ0datasiRMnTqS7/9atW1G6dGnY2dmhfPny2L17t4kipbQYUocrVqxAvXr1kDdvXuTNmxf+/v4Z1jkZn6Gfw2SbN2+GSqVC27ZtjRsgZcjQOnz58iUGDx6MggULwtbWFiVLluTfUwUZWn8LFy5EqVKlYG9vDx8fHwwbNgxxcXEmipbedvDgQbRu3RpeXl5QqVTYsWNHho85cOAAqlSpAltbWxQvXhzBwcFGjzNVgt7J5s2bhY2NjVi9erW4cOGC6Nevn3B1dRWPHz9Odf8jR44IS0tLMWfOHHHx4kUxYcIEYW1tLc6dO2fiyCmZoXXYpUsXsWTJEnHmzBlx6dIl0bNnT+Hi4iLu3btn4sgpmaF1mOzWrVvC29tb1KtXT7Rp08Y0wVKqDK3D+Ph4Ua1aNdGyZUtx+PBhcevWLXHgwAERFhZm4shJCMPrb8OGDcLW1lZs2LBB3Lp1S/z++++iYMGCYtiwYSaOnJLt3r1bjB8/Xmzfvl0AED/99FO6+9+8eVM4ODiI4cOHi4sXL4pvvvlGWFpaij179pgm4DcwmX1HNWrUEIMHD9ZuJyUlCS8vLzFz5sxU9+/YsaP48MMPdcpq1qwpPv30U6PGSWkztA7flpiYKJycnMTatWuNFSJlIDN1mJiYKGrXri1WrlwpAgMDmcwqzNA6XLZsmShatKhISEgwVYiUDkPrb/DgwaJx48Y6ZcOHDxd16tQxapykH32S2VGjRon33ntPpywgIEA0b97ciJGljt0M3kFCQgJOnToFf39/bZmFhQX8/f1x7NixVB9z7Ngxnf0BoHnz5mnuT8aVmTp8W0xMDNRqNfLly2esMCkdma3DqVOnwsPDA3369DFFmJSOzNThzp07UatWLQwePBgFChRAuXLlMGPGDCQlJZkqbPq/zNRf7dq1cerUKW1XhJs3b2L37t1o2bKlSWKmd5ed8hkrk58xBwkPD0dSUhIKFCigU16gQAFcvnw51cc8evQo1f0fPXpktDgpbZmpw7eNHj0aXl5eKT7UZBqZqcPDhw9j1apVCAsLM0GElJHM1OHNmzfxxx9/oGvXrti9ezeuX7+OQYMGQa1WIygoyBRh0/9lpv66dOmC8PBw1K1bF0IIJCYmYsCAARg3bpwpQqYskFY+ExERgdjYWNjb25ssFrbMEr2DWbNmYfPmzfjpp59gZ2endDikh8jISHTv3h0rVqyAm5ub0uFQJmk0Gnh4eOD7779H1apVERAQgPHjx2P58uVKh0Z6OHDgAGbMmIGlS5fi9OnT2L59O3bt2oWvvvpK6dDIDLFl9h24ubnB0tISjx8/1il//PgxPD09U32Mp6enQfuTcWWmDpN9/fXXmDVrFvbt24cKFSoYM0xKh6F1eOPGDdy+fRutW7fWlmk0GgCAlZUVrly5gmLFihk3aNKRmc9hwYIFYW1tDUtLS21ZmTJl8OjRIyQkJMDGxsaoMdNrmam/iRMnonv37ujbty8AoHz58oiOjkb//v0xfvx4WFiwrS27SyufcXZ2NmmrLMCW2XdiY2ODqlWrYv/+/doyjUaD/fv3o1atWqk+platWjr7A0BoaGia+5NxZaYOAWDOnDn46quvsGfPHlSrVs0UoVIaDK3D0qVL49y5cwgLC9P+fPTRR2jUqBHCwsLg4+NjyvAJmfsc1qlTB9evX9d+EQGAq1evomDBgkxkTSwz9RcTE5MiYU3+YiKEMF6wlGWyVT5j8iFnOczmzZuFra2tCA4OFhcvXhT9+/cXrq6u4tGjR0IIIbp37y7GjBmj3f/IkSPCyspKfP311+LSpUsiKCiIU3MpzNA6nDVrlrCxsRHbtm0TDx8+1P5ERkYq9RRyPUPr8G2czUB5htbhnTt3hJOTkxgyZIi4cuWK+PXXX4WHh4eYNm2aUk8hVzO0/oKCgoSTk5PYtGmTuHnzpti7d68oVqyY6Nixo1JPIdeLjIwUZ86cEWfOnBEAxPz588WZM2fEf//9J4QQYsyYMaJ79+7a/ZOn5ho5cqS4dOmSWLJkCafmMmfffPONKFy4sLCxsRE1atQQx48f197XoEEDERgYqLP/li1bRMmSJYWNjY147733xK5du0wcMb3NkDosUqSIAJDiJygoyPSBk5ahn8M3MZnNHgytw6NHj4qaNWsKW1tbUbRoUTF9+nSRmJho4qgpmSH1p1arxeTJk0WxYsWEnZ2d8PHxEYMGDRIvXrwwfeAkhBDizz//TPV/W3K9BQYGigYNGqR4TKVKlYSNjY0oWrSoWLNmjcnjFkIIlRBszyciIiIi88Q+s0RERERktpjMEhEREZHZYjJLRERERGaLySwRERERmS0ms0RERERktpjMEhEREZHZYjJLRERERGaLySwRERERmS0ms0REAIKDg+Hq6qp0GJmmUqmwY8eOdPfp2bMn2rZta5J4iIhMhcksEeUYPXv2hEqlSvFz/fp1pUNDcHCwNh4LCwsUKlQIvXr1wpMnT7Lk+A8fPkSLFi0AALdv34ZKpUJYWJjOPosWLUJwcHCWnC8tkydP1j5PS0tL+Pj4oH///nj+/LlBx2HiTUT6slI6ACKirPTBBx9gzZo1OmXu7u4KRaPL2dkZV65cgUajwdmzZ9GrVy88ePAAv//++zsf29PTM8N9XFxc3vk8+njvvfewb98+JCUl4dKlS+jduzdevXqFkJAQk5yfiHIXtswSUY5ia2sLT09PnR9LS0vMnz8f5cuXR548eeDj44NBgwYhKioqzeOcPXsWjRo1gpOTE5ydnVG1alX8888/2vsPHz6MevXqwd7eHj4+Phg6dCiio6PTjU2lUsHT0xNeXl5o0aIFhg4din379iE2NhYajQZTp05FoUKFYGtri0qVKmHPnj3axyYkJGDIkCEoWLAg7OzsUKRIEcycOVPn2MndDPz8/AAAlStXhkqlQsOGDQHotnZ+//338PLygkaj0YmxTZs26N27t3b7559/RpUqVWBnZ4eiRYtiypQpSExMTPd5WllZwdPTE97e3vD390eHDh0QGhqqvT8pKQl9+vSBn58f7O3tUapUKSxatEh7/+TJk7F27Vr8/PPP2lbeAwcOAADu3r2Ljh07wtXVFfny/a+9uw9pumvjAP69Z5lzzsBKcogJ2YZQVstVahHZi4vbGk7TcqCQmWi+oFlJmDZCy0oloxdB1LKRL1EkmRpS1lxQZulAc1PbeiEJUlAkly87zx/RuJcv3XbD8zx6Xx/YH+f8rnN+1/n5z+Xx/JwTZDIZjEbjtPkQQuY2KmYJIf8KHA4HBQUFaG9vx/Xr1/Ho0SMcO3ZsyniFQgFXV1c0NzejpaUFaWlpmD9/PgCgp6cHUqkUwcHB0Gq1qKioQFNTE+Lj42eUE5fLhdlsxtjYGC5evIjc3FxcuHABWq0WAQEB2LNnD7q6ugAABQUFqK6uRmVlJXQ6HVQqFdzd3Sed98WLFwCAhoYG9Pb24s6dOxNi9u7di76+Pjx+/NjS19/fj7q6OigUCgCAWq1GREQEkpKS0NHRgcLCQpSWliIrK+tvr9FoNKK+vh62traWPrPZDFdXV1RVVaGjowMZGRk4ceIEKisrAQCpqakIDQ2FVCpFb28vent74evri9HRUQQEBIDP50OtVkOj0cDBwQFSqRQjIyN/OydCyBzDCCFkjoiMjGQ2NjaMx+NZPiEhIZPGVlVVsUWLFlnaJSUlbOHChZY2n89npaWlk46Niopihw4dsupTq9WMw+Gw4eHhScf8PL9er2dCoZB5e3szxhgTCAQsKyvLaoxEImFxcXGMMcYSEhKYv78/M5vNk84PgN29e5cxxpjBYGAA2OvXr61iIiMjmUwms7RlMhk7cOCApV1YWMgEAgEbHx9njDG2bds2lp2dbTVHWVkZc3FxmTQHxhjLzMxkHA6H8Xg8ZmdnxwAwACwvL2/KMYwxdvjwYRYcHDxlrj/uLRKJrJ7Bt2/fGJfLZfX19dPOTwiZu+jMLCFkTtm6dSuuXr1qafN4PADfdynPnDmDzs5ODA4OYmxsDCaTCV+/foW9vf2EeVJSUnDw4EGUlZVZ/lS+fPlyAN+PIGi1WqhUKks8YwxmsxkGgwGenp6T5jYwMAAHBweYzWaYTCZs2rQJRUVFGBwcxKdPn+Dn52cV7+fnh7a2NgDfjwjs2LEDIpEIUqkUgYGB2Llz5z96VgqFAtHR0bhy5QoWLFgAlUqFffv2gcPhWNap0WisdmLHx8enfW4AIBKJUF1dDZPJhJs3b6K1tRUJCQlWMZcvX0ZxcTHev3+P4eFhjIyMYM2aNdPm29bWhu7ubvD5fKt+k8mEnp6e33gChJC5gIpZQsicwuPx4OHhYdVnNBoRGBiI2NhYZGVlwcnJCU1NTYiKisLIyMikRdmpU6cQHh6Ompoa1NbWIjMzE+Xl5QgKCsLQ0BBiYmKQmJg4YZybm9uUufH5fLx69QocDgcuLi7gcrkAgMHBwV+uSywWw2AwoLa2Fg0NDQgNDcX27dtx+/btX46dyu7du8EYQ01NDSQSCdRqNfLz8y3Xh4aGoFQqIZfLJ4y1s7Obcl5bW1vLz+Ds2bP4888/oVQqcfr0aQBAeXk5UlNTkZubCx8fH/D5fJw/fx7Pnz+fNt+hoSGsW7fO6peIH/5fXvIjhPz3UTFLCJnzWlpaYDabkZuba9l1/HE+czpCoRBCoRDJycnYv38/SkpKEBQUBLFYjI6OjglF869wOJxJxzg6OkIgEECj0WDLli2Wfo1Gg/Xr11vFhYWFISwsDCEhIZBKpejv74eTk5PVfD/Op46Pj0+bj52dHeRyOVQqFbq7uyESiSAWiy3XxWIxdDrdjNf5s/T0dPj7+yM2NtayTl9fX8TFxVlift5ZtbW1nZC/WCxGRUUFnJ2d4ejo+I9yIoTMHfQCGCFkzvPw8MDo6CguXbqEt2/foqysDNeuXZsyfnh4GPHx8WhsbMS7d++g0WjQ3NxsOT5w/PhxPHv2DPHx8WhtbUVXVxfu3bs34xfA/uro0aPIyclBRUUFdDod0tLS0NraiqSkJABAXl4ebt26hc7OTuj1elRVVWHp0qWTftGDs7MzuFwu6urq8PnzZwwMDEx5X4VCgZqaGhQXF1te/PohIyMDN27cgFKpRHt7O968eYPy8nKkp6fPaG0+Pj7w8vJCdnY2AGDFihV4+fIl6uvrodfrcfLkSTQ3N1uNcXd3h1arhU6nw5cvXzA6OgqFQoHFixdDJpNBrVbDYDCgsbERiYmJ+Pjx44xyIoTMHVTMEkLmvNWrVyMvLw85OTlYuXIlVCqV1b+1+pmNjQ36+voQEREBoVCI0NBQ7Nq1C0qlEgDg5eWFJ0+eQK/XY/PmzVi7di0yMjIgEAh+O8fExESkpKTgyJEjWLVqFerq6lBdXY0VK1YA+H5E4dy5c/D29oZEIoHRaMSDBw8sO81/NW/ePBQUFKCwsBACgQAymWzK+/r7+8PJyQk6nQ7h4eFW1wICAnD//n08fPgQEokEGzduRH5+PpYtWzbj9SUnJ6OoqAgfPnxATEwM5HI5wsLCsGHDBvT19Vnt0gJAdHQ0RCIRvL29sWTJEmg0Gtjb2+Pp06dwc3ODXC6Hp6cnoqKiYDKZaKeWkH+xPxhj7H+dBCGEEEIIIb+DdmYJIYQQQsisRcUsIYQQQgiZtaiYJYQQQgghsxYVs4QQQgghZNaiYpYQQgghhMxaVMwSQgghhJBZi4pZQgghhBAya1ExSwghhBBCZi0qZgkhhBBCyKxFxSwhhBBCCJm1qJglhBBCCCGz1n8AaMu36V762A4AAAAASUVORK5CYII=",
|
|
"text/plain": [
|
|
"<Figure size 800x600 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"knn = KNeighborsClassifier(n_neighbors=k_optimal) # using the best k founded earlier\n",
|
|
"knn.fit(X_train_scaled, y_train)\n",
|
|
"\n",
|
|
"y_pred = knn.predict(X_test_scaled)\n",
|
|
"\n",
|
|
"acc = accuracy_score(y_test, y_pred)\n",
|
|
"f1 = f1_score(y_test, y_pred, average='weighted')\n",
|
|
"rec = recall_score(y_test, y_pred)\n",
|
|
"class_report = classification_report(y_test, y_pred)\n",
|
|
"\n",
|
|
"# Display differents performance of the model\n",
|
|
"print(\"Accuracy:\", acc)\n",
|
|
"print(\"F1 Score:\", f1)\n",
|
|
"print(\"Recall:\", rec)\n",
|
|
"print(\"Classification Report:\\n\", class_report)\n",
|
|
"\n",
|
|
"# Plotting the confusion matrix\n",
|
|
"cm = confusion_matrix(y_test, y_pred)\n",
|
|
"plt.figure(figsize=(8, 6))\n",
|
|
"plt.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues)\n",
|
|
"plt.title('Confusion Matrix')\n",
|
|
"for i in range(cm.shape[0]):\n",
|
|
" for j in range(cm.shape[1]):\n",
|
|
" plt.text(j, i, cm[i, j], horizontalalignment='center', color='white' if cm[i, j] > cm.max() / 2 else 'black')\n",
|
|
"plt.xticks(np.arange(len(np.unique(y))),labels = [\"negative\", \"positive\"])\n",
|
|
"plt.yticks(np.arange(len(np.unique(y))),labels = [\"negative\", \"positive\"])\n",
|
|
"plt.xlabel('Predicted label')\n",
|
|
"plt.ylabel('True label')\n",
|
|
"plt.tight_layout()\n",
|
|
"plt.show()\n",
|
|
"\n",
|
|
"# Plotting ROC curve\n",
|
|
"fpr, tpr, thresholds = roc_curve(y_test, knn.predict_proba(X_test_scaled)[:, 1])\n",
|
|
"plt.figure(figsize=(8, 6))\n",
|
|
"plt.plot(fpr, tpr, color='blue', label='ROC curve (area = {:.2f})'.format(f1))\n",
|
|
"plt.plot([0, 1], [0, 1], color='red', linestyle='--')\n",
|
|
"plt.xlim([-0.05, 1.05])\n",
|
|
"plt.ylim([-0.05, 1.05])\n",
|
|
"plt.xlabel('False Positive Rate')\n",
|
|
"plt.ylabel('True Positive Rate')\n",
|
|
"plt.title('Receiver Operating Characteristic (ROC) Curve')\n",
|
|
"plt.legend(loc='lower right')\n",
|
|
"plt.grid()\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "9bf7ed62",
|
|
"metadata": {},
|
|
"source": [
|
|
"In this optimized k-NN classification, we aim to maximize recall while maintaining good accuracy, in order to minimize the number of misclassifications, particularly cases where a sick patient is incorrectly predicted as healthy. We achieve this goal with a recall of 91% and an accuracy of 79%. \n",
|
|
"\n",
|
|
"By the confusion matrix we can see that we only misclassifies 1 patient. Thus our goal to minimize this misclassification is clearly achive."
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.11.9"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|