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1 Introduction
As indicated by its title, the aim of this project is to predict credit risk given the financial informa-
tion and personal situation of the borrower and the characteristics of the loan. This score takes a
value between 0 and 100, increasing with the risk of the loan. We will compare regression models
using various scores. At the end, the descriptiveness of the variables and other observations on
the dataset will be analysed using the previously agreed upon best model.

1.1 Dataset presentation
In this project, we use a dataset provided by our supervisor Jorge OCHOA. It consists of 20,000
observations representing loan applications and includes 36 variables. However, two variables
were excluded from the analysis: ApplicationDate corresponds to a unique date providing no
predictive value, and LoanApproved represents the loan approval status that could compromise
model performance. There are 26 continuous features (Table 1). The 7 others are categorical fea-
tures (Table 2). The target variable is RiskScore, which indicates the loan’s risk profile (Table 3).
The problem can be formulated as a supervised regression task, where the goal is to approximate
the credit risk using a set of economical features and other related personal information.

Table 1: Description and modalities of the continuous features
Feature Description Domain
Age Applicant’s age [18, 80]
AnnualIncome Annual income [15000, 485341]
CreditScore Creditworthiness score [343, 712]
Experience Professional experience [0, 61]
LoanAmount Requested loan amount [3674, 184732]
LoanDuration Loan repayment duration [12, 120]
NumberOfDependents Number of dependents [0, 5]
MonthlyDebtPayments Monthly debt repayment amount [50, 2919]
CreditCardUtilizationRate Credit card utilization rate [0.000974, 0.917380]
NumberOfOpenCreditLines Number of active credit lines [0, 13]
NumberOfCreditInquiries Number of credit checks performed [0, 7]
DebtToIncomeRatio Debt-to-income ratio [0.001720, 0.902253]
PaymentHistory Past payment history [8, 45]
LengthOfCreditHistory Length of credit history [1, 29]
SavingsAccountBalance Savings account balance [73, 200089]
CheckingAccountBalance Checking account balance [24, 52572]
TotalAssets Total asset value [2098, 2619627]
TotalLiabilities Total liabilities amount [372, 1417302]
MonthlyIncome Monthly income [1250.0, 25000.0]
UtilityBillsPaymentHistory Utility bill payment history [0.259203, 0.999433]
JobTenure Current job tenure duration [0, 16]
NetWorth Total net worth [1000, 2603208]
BaseInterestRate Base interest rate [0.130101, 0.405029]
InterestRate Applied interest rate [0.113309, 0.446787]
MonthlyLoanPayment Monthly loan payment [97.03019, 10892.63]
TotalDebtToIncomeRatio Total debt-to-income ratio [0.016043, 4.647657]
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Table 2: Description and modalities of the categorical features

Feature Description Modalities
EmploymentStatus Employment status ’Employed’, ’Self-Employed’,

’Unemployed’
EducationLevel Highest education level ’Master’, ’Associate’, ’Bachelor’,

attained ’High School’, ’Doctorate’
MaritalStatus Applicant’s marital status ’Married’, ’Single’, ’Divorced’,

’Widowed’
HomeOwnershipStatus Type of home ownership ’Own’, ’Mortgage’, ’Rent’,

’Other’
BankruptcyHistory Bankruptcy history 0, 1
LoanPurpose Purpose of the loan ’Home’, ’Debt Consolidation’,

’Education’, ’Other’, ’Auto’
PreviousLoanDefaults Past loan default history 0, 1

Table 3: Description of the target variable

Feature Description Domain
RiskScore Risk evaluation score [28.8, 84]

1.2 Features analysis
Before building any model, the first step is to explore the features and understand the structure of
the dataset. In this section, we conduct a variable analysis to get an overview of the main features
and their behavior.

1.2.1 Target variable - RiskScore

Figure 1: Distribution of the response variable
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We begin our study with the target variable RiskScore, which ranges from 0 to 100, and we plot
its distribution to analyze it. The corresponding figure (Figure 1) appears at the bottom of the
previous page. The first thing that we notice is that the distribution is bimodal. It does not follow
a Gaussian distribution, and we can clearly identify two bumps : the first one - the smallest one -
is centered around 40-42, while the second one - the biggest one - is centered around 52-55. This
bimodal distribution is a sign that the data do not constitute a homogeneous group, we have to
distinguish at least two sub-populations. We state the following hypothesis: a group A (the left
peak) has a structurally lower risk profile, while a second group B (the right peak) has a higher
risk profile. A new goal of this section is to look for a categorical variable that will differentiate
this groups. Furthermore, this visualisation helps us to know that using linear models or penalised
linear models such as Ridge or Lasso will not be an efficient choice as they do not perform in this
kind of bimodal situation. Indeed, as they are based on the assumptions that the residuals follow
a normal distribution, such models will try to draw a straight line, a mean regression line which
would have no conclusive predictions for both groups.

Figure 2: Description of the target variable

To further our analysis, we look at the description of our target variable (Figure 2). First thing we
observe is that, even if in theory the domain is defined over the range 0 to 100, on our dataset it
ranges from 28.8 to 84. So the operational risk is concentrated within a narrower portion of the do-
main. It indicates that the dataset focuses on realistic, operationally relevant risk levels. Extremely
low or extremely high values are absent. As a result, the model can learn from a more stable
and meaningful portion of the risk scale, without being affected by extreme outliers. However,
this means that the operational risk is only represented within a restricted portion of its theoretical
scale, which may limit the variability captured by the model and reduce its ability to learn patterns
associated with very low or very high risk levels.
Let us look at the rest of the descriptive statistics which are fully consistent with the bimodal
shape observed in the histogram. The mean is 50.76, while the median is slightly higher at 52.0.
The fact that the mean is lower than the median confirms the influence of the left peak of the
distribution (around 40–42), which pulls the average downward. Moreover, the data is relatively
concentrated: 50% of clients have a score within a very narrow 10-point interval, between 46 and
56. This highlights the presence of a dense central region despite the overall bimodal distribution.

1.2.2 Analysis of the target’s density against modalities of categorical features

The goal of this section is to find the source of the bimodal distribution. Therefore we plot the
density of the target variables against every feature. We can distinguish two different profiles.
The first one corresponds to the Figure 3 available on the next page. One can see that the different
modalities do not cause any differences in the density distribution. In such a case, it is not possible
to deduce an impact of the categorical feature on the bimodal character of the density.
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Figure 3: Non significant density distribution

However, in the second one corresponding to this second plot (Figure 4), there is a clear gap be-
tween the different density distribution. In such case, it is clear that the modalities of the feature
are relative to the output. One witnesses such plot for the BankruptcyHistory and PreviousLoan-
Defaults features. A person which previously had a loan default or a bankruptcy is automatically
placed in a group with a higher risk.

Figure 4: Significant density distribution

Before closing this section, we introduce a last sort of density plot that does not help to find the
cause of the bimodal distribution but is nonetheless noteworthy. It corresponds to the following
plot (Figure 5) where we clearly identify the bimodal distribution but the categories still have an
impact: on the height of the two bumps. In this precise case, it could indicate that some education
groups are slightly more concentrated around certain risk ranges.
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Figure 5: Shifts in distribution peaks across categories

1.2.3 Correlation between features

For this project, we will use models that do not require variable selection. However, it is still
important to understand the dataset we are working with. Therefore we perform correlations
tests. We separate it into too different tests: one for continuous features, and one for categorical
ones.

Correlation between continuous features. Before analysing the correlation between continuous
features, let us have a look at the correlation matrix regarding this type of features:

Figure 6: Correlation matrix for continuous features
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To further our analysis we use the .corr() function from the pandas package. We choose an arbi-
trary threshold of ±0.7. The results show six high correlations between two variables respectively.

• Age and Experience are highly positively correlated as experience is accumulated through
time, that is as one gets older.

• AnnualIncome and MonthlyIncome are highly positively correlated as the first one is twelve
times the second one.

• CreditScore and BaseInterestRate are highly negatively correlated as individuals with
higher scores are usually considered less risky, thus they have a lower base interest rates.

• LoanAmount and MonthlyLoanPayment are highly positively correlated as larger loan amounts
usually require higher monthly payments.

• TotalAssets and NetWorth are highly positively correlated as the net worth is a linear trans-
formation of the total assets.

• BaseInterestRate and InterestRate are highly positively correlated as the applied interest
rate is directly built upon the base interest rate.

Correlation between categorical features. To analyse the correlation between the categorical fea-
tures, we plot the correlation matrix using the method of Cramer’s V. It measures the strength of
the association between two categorical features. It is based on the χ2 test of independence and
normalization. It returns the identity matrix meaning there is no correlation among categorical
features.

1.2.4 Analysis of the feature–target scatter plots

In this last section, we analyse the feature-target scatter plot for every continuous feature. We can
once again split our analysis into three cases that follow.

Figure 7: Significant density distribution

The first plot (Figure 7) shows several vertical stacks of points, indicating that the horizontal vari-
able takes only a restricted number of discrete values. The target appears evenly spread within
each group, and the regression line is essentially flat, suggesting no meaningful linear trend be-
tween the two features. We cannot extract any prediction for our upcoming models.
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Figure 8: Significant density distribution

This second plot (Figure 8) shows a vastly dense and wide cloud of points with no clear clusters.
The variability is high across the entire horizontal axis. This indicates a weak linear relationship
with substantial dispersion, meaning the target is influenced only marginally in a linear way. Once
again, we cannot extract any information regarding prediction at that time of our analysis.

Figure 9: Significant density distribution

The last plot (Figure 9) exhibits a triangular pattern located on a side of the figure. The dispersion
of the target widens progressively along the horizontal axis, suggesting increasing variability. This
shape typically reflects heteroscedasticity and a higher uncertainty as the explanatory variable
increases. Such plots and their associated features could have an impact on the model as on one
side there are plenty of points but on the other side the confidence interval is significantly large in
comparison to any other cases.
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2 Preprocessing
2.1 Data Sampling
To sample our dataset, we use a random 80%/20% train/test split. As the dataset has no temporal
structure and the target variable does not require stratification, a random split is therefore the most
appropriate choice.

2.2 Data Engineering
2.2.1 Missing Values

When it comes to missing values, we must decide whether to remove the affected rows or to replace
the missing entries with a mean, a median, or another deterministic value. We therefore begin by
identifying all missing values in the dataset with the following code:

1 variables_with_na = []
2

3 for col in data. columns :
4 if data[col ]. isnull ().any ():
5 variables_with_na . append (col)
6

7 print("\ nVariables with missing values :", variables_with_na )

Listing 1: Missing Values - Preprocessing Helper Function

Thankfully, we do not have to eliminate or replace any missing values as the dataset is complete.

2.2.2 Outliers

Now that we know we have no missing values, we want to take a look at the outliers. Outliers
are extreme observations that deviate from the general pattern of the data, and we use boxplots as
it provides a simple way to visualize and detect these unusual values. We plot the values of our
continuous features, we distinguish two types of outliers:

(a) Case of financial and strategic outliers (b) Case of scaling outliers

Figure 10: Outliers in continuous features

The first type of outlier corresponds to cases of extreme wealth. We do not want to eliminate these
outliers from our model because they are very financially significant for the bank, as attracting
wealthy clients can be a viable business strategy.

9



For example, let us look at the boxplot (Figure 10a) for the CheckingAccountBalance feature. The
only isolated value represents a client much wealthier than all other clients. While he is a statistical
anomaly within our dataset, the bank has to take him into account when modeling the entirety of
its loan landscape.
The second type of outliers also represents extreme values, but in this case with respects to the
amount of the loans. While we suspect that these two cases are intertwined, even if they are not
we want our model to be able to scale up accordingly as we can see with the example of the above
boxplot (Figure 10b) for the amount of the loans. The generalisation of the model has to work
independently of the dimensions of the loan applications.

Figure 11: Outliers in categorical features

While categorical features do not have numerical outliers, they may include rare or atypical cate-
gories that behave like outliers in terms of distribution. These rare levels can be identified through
countplots of the target across categories (example of Figure 11). We keep them for the same rea-
sons as numerical outliers: they likely reflect real heterogeneity and help the model generalize
properly. In the case of our dataset, only two categories fall below the 5% threshold (’Widowed’ in
MaritalStatus and ’Doctorate’ in EducationLevel). However, even these groups contain more
than 766 observations each, so rare categories are not an issue in this situation.

2.2.3 Data transformation - Automated Preprocessing Pipeline Construction

Machine learning algorithms often require specific data formatting, such as scaling for linear mod-
els or neural networks, and encoding for categorical variables. To manage these requirements
efficiently and prevent data leakage, we developed a dynamic function, create_full_pipeline.
This function encapsulates the entire modeling workflow into a single scikit-learn Pipeline
object. It integrates a ColumnTransformer that applies transformations conditionally based on the
model type:

• Numerical Features: We apply StandardScaler to normalize features when required (e.g.,
for Lasso, Ridge, and Neural Networks), or pass them through raw for tree-based models.

• Categorical Features: We use OneHotEncoder to convert categorical variables into binary
vectors, handling unknown categories gracefully to ensure robustness during inference.

By wrapping preprocessing and modeling into a single atomic object, we ensure that all transfor-
mations are fitted solely on the training folds during cross-validation, thereby strictly preventing
any information leakage from the validation sets.
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1 def create_full_pipeline (
2 model: object ,
3 quantitative_features : list[str],
4 categorical_features : list[str],
5 use_scaling =True ,
6 use_encoding =True ,
7 ) -> Pipeline :
8 """ Create a full machine learning pipeline with preprocessing and

model.
9

10 Args:
11 model: The estimator (model) to place at the end of the pipeline .
12 quantitative_features (list): List of names of quantitative

columns .
13 categorical_features (list): List of names of categorical columns .
14 use_scaling (bool): If True , apply StandardScaler to quantitative

features .
15 use_encoding (bool): If True , apply OneHotEncoder to categorical

features .
16

17 Returns :
18 sklearn . pipeline . Pipeline : The complete pipeline .
19

20 """
21 transformers = []
22 if quantitative_features :
23 num_transformer = StandardScaler () if use_scaling else "

passthrough "
24 transformers . append (("num", num_transformer , quantitative_features

))
25

26 if categorical_features :
27 cat_transformer = (
28 OneHotEncoder ( handle_unknown =" ignore ", sparse_output =False)
29 if use_encoding
30 else " passthrough "
31 )
32 transformers . append (("cat", cat_transformer , categorical_features )

)
33

34 preprocessor = ColumnTransformer ( transformers = transformers , remainder =
" passthrough ")

35

36 return Pipeline (steps =[(" preprocessor ", preprocessor ), ("model", model
)])

Listing 2: Column Transformation Pipeline - Preprocessing Helper Function

2.3 Feature Engineering
We will create several additional features using our current variables. While these will be heavily
correlated to the used values, we especially want to measure the prediction impact of certain ratios.
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In order to avoid division by 0, we will add e−6 to all of the determinants when computing ratios.

2.3.1 Cashflow Ratios

We want to observe how granting the loan changes the applicants ability to repay his current debt
as well as his newly added one. To do that we create the four following features:

TotalMonthlyDebt_AfterLoan It represents the applicant’s total monthly debt obligations after
the loan is granted, obtained by adding the new loan’s monthly payment to their existing debt
repayments.

TotalMonthlyDebt_AfterLoan = MonthlyDebtPayments + MonthlyLoanPayment

DTI_AfterLoan It measures the applicant’s debt-to-income ratio after the loan is granted. A high
value indicates that a large share of the applicant’s income would be devoted to debt repayment,
making it a critical indicator of repayment capacity.

DTI_AfterLoan = (MonthlyDebtPayments + MonthlyLoanPayment) / (MonthlyIncome +
1e-6)

Disposable_Income It represents the applicant’s available income before taking the new loan
into account. It reflects the client’s financial margin prior to any additional obligations.

Disposable_Income = MonthlyIncome - MonthlyDebtPayments

Safety_Cushion It captures the applicant’s remaining income after accounting for both existing
debt repayments and the new loan payment. It reflects how much financial buffer the applicant
has once all obligations are paid. A negative value indicates a cash deficit, signalling a very high
risk of repayment difficulty.

Safety_Cushion = MonthlyIncome - MonthlyDebtPayments - MonthlyLoanPayment

2.3.2 Financial profile of the applicant

To get a better grasp of the applicants financial situation, we add several values using previous
observations.

Leverage_Ratio It measures how indebted the applicant is relative to their total assets. A ratio
greater than 1 indicates that the applicant owes more than they own, which is a significant sign of
financial vulnerability.

Leverage_Ratio = TotalLiabilities / (TotalAssets + 1e-6)

Savings_to_Loan_Ratio It represents the extent to which the applicant’s savings can cover the
amount of the requested loan. A higher ratio suggests a stronger financial position and a greater
ability to absorb unexpected shocks.

Savings_to_Loan_Ratio = SavingsAccountBalance / (LoanAmount + 1e-6)
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Savings_to_Payment_Ratio It indicates how many monthly loan payments the applicant could
cover using their savings alone in the event of an income disruption. It provides a direct measure
of short-term financial resilience.

Savings_to_Payment_Ratio = SavingsAccountBalance / (MonthlyLoanPayment + 1e-6)

Liquid_Assets This variable measures the applicant’s immediately available financial resources.
It reflects the client’s total liquid funds.

Liquid_Assets = SavingsAccountBalance + CheckingAccountBalance

2.3.3 Credit history

These variables add context to every applicant’s credit history in order the make comparisons
easier.

Inquiries_per_History_Year It normalizes the number of credit inquiries by the length of the
applicant’s credit history. Five inquiries within a single year represent a high-risk behavior, whereas
the same number spread over twenty years is much more typical. This feature therefore contextu-
alizes inquiry frequency relative to credit experience.

Inquiries_per_History_Year = NumberOfCreditInquiries / (LengthOfCreditHistory +
1e-6)

Debt_per_Credit_Line It measures the average amount of debt associated with each open credit
line. It provides insight into how heavily each credit facility is used.

Debt_per_Credit_Line = TotalLiabilities/ (NumberOfOpenCreditLines + 1e-6)

InterestRate_Spread It captures the difference between the applied interest rate and the base
interest rate. It reflects the risk premium assigned by the bank, effectively serving as a proxy for
the applicant’s perceived risk level. A larger spread indicates a higher assessed risk and should
naturally correlate strongly with the RiskScore.

InterestRate_Spread = InterestRate - BaseInterestRate

2.3.4 Stability of the applicant

In order to get a grasp of the client’s personal situation, these variables try to measure his financial
responsibility and how erratic or calm his career has been up until now.

Income_per_Dependent It measures the applicant’s monthly income adjusted for household size.
This normalization captures the fact that a high income for a single individual does not imply the
same financial capacity as the same income supporting a household of five.

Income_per_Dependent = MonthlyIncome / (NumberOfDependents + 1e-6)
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Experience_vs_JobTenure_Ratio It represents the ratio between the applicant’s tenure in their
current job and their overall professional experience. A very low ratio (e.g., one year in the current
position despite decades of experience) may indicate recent instability, whereas a ratio close to one
suggests long-term stability in the current role.

Experience_vs_JobTenure_Ratio = JobTenure / (Experience + 1e-6)

3 Choice of Metrics
To compare the performance of the different models, we rely on several standard regression met-
rics. These metrics quantify the prediction error and the proportion of variance explained by the
model. The most commonly used are the Mean Absolute Error (MAE), the Mean Squared Error
(MSE), the Root Mean Squared Error (RMSE). We will also introduce the coefficient of determina-
tion R2.

• Mean Absolute Error (MAE): measures the average absolute difference between predictions
ŷi and true values yi.

MAE =
1
n

n

∑
i=1

|yi − ŷi|

• Mean Squared Error (MSE): penalizes larger errors by squaring the differences.

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2

• Root Mean Squared Error (RMSE): the square root of MSE, expressed in the same unit as
the target variable.

RMSE =
√

MSE =

√
1
n

n

∑
i=1

(yi − ŷi)2

• Coefficient of Determination (R2): measures the proportion of variance in y explained by
the model.

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2

4 Model evaluation
4.1 Standardized Hyperparameter Optimization Strategy
A critical aspect of benchmarking multiple models is ensuring a fair comparison. To achieve this,
we implemented a unified optimization wrapper: create_grid_search. This function standard-
izes the GridSearchCV process for all estimators. The key feature of this implementation is the
enforcement of a consistent Cross-Validation strategy. By using a KFold splitter initialized with
a fixed global RANDOM_SEED (and shuffle=True), we guarantee that every model is trained and
evaluated on the exact same data splits. This approach offers two major advantages:

• Statistical Validity: Differences in performance metrics (RMSE) can be attributed to the in-
trinsic quality of the models rather than the randomness of data partitioning.

14



• Reproducibility: The entire experiment can be replicated with identical results, satisfying
the rigorous standards of scientific research.

To facilitate hyperparameter tuning, we employ the Negative Mean Squared Error (Negative MSE)
as the optimization criterion within the grid search. This transformation is necessary because the
scikit-learn library is designed to maximize scoring functions. Thus by maximizing the Neg-
ative MSE, the algorithm effectively minimizes the actual Mean Squared Error. This approach
ensures that the tuning objective aligns perfectly with our primary performance metric. It is im-
portant to note that Negative MSE exclusively serves as an internal guide for model selection and
is not used for the final interpretation of results.

1 def create_grid_search (
2 estimator : object , param_grid : dict , num_splits : int
3 ) -> GridSearchCV :
4 """ Create a GridSearchCV object for hyperparameter optimization .
5

6 Args:
7 estimator : The estimator to optimize .
8 param_grid : The parameters to test.
9 num_splits : The number of splits for cross - validation .

10

11 Returns :
12 GridSearchCV : The configured GridSearchCV object .
13

14 """
15 return GridSearchCV (
16 estimator =estimator ,
17 param_grid =param_grid ,
18 cv=KFold( n_splits =num_splits , shuffle =True , random_state =

RANDOM_SEED ),
19 scoring =" neg_mean_squared_error ",
20 n_jobs =-1,
21 verbose =1,
22 )

Listing 3: Grid Search Helper Function

4.2 Tested models
4.2.1 Model 1: Dummy Regressor

As a first model, we take a Dummy Regressor that always predicts either the mean, the median
or a quantile of the target variable. Being a model without any underlying strategy or learning,
this is the baseline for future comparison. By tuning the hyperparameters through a grid search,
the most accurate Dummy Regressor was found to be the one predicting the mean of the target
variable for every client. From now on, we will exclude every model with a worse score than the
Dummy Regressor.

4.2.2 Models 2 and 3: Lasso and Ridge Regressors

The bimodal distribution of the target variable suggests that linear models will have difficulties
to predict accurately. However, we still decide to train and test both a Lasso and a Ridge Regres-
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sors in order to gain an extra comparative value for our future non-linear models. We are using
these modified linear regressions instead of the classical linear regression as we want to have an
automatic elimination of features through 0 or near-0 coefficients since we have not deleted many
variables. We use a Lasso Regressor with an alpha of 0.001 and a Ridge Regressor with an al-
pha of 1.0. This parameter multiplies the L1 (Lasso) respectively L2 (Ridge) terms, controlling the
regularisation.

4.2.3 Models 4 and 5: Regression Tree and Random Forest Regressor

The first non-linear models we want to test are Decision Tree and Random Forest Regressors.
Through a grid search, we tune the hyperparameters of the Decision Tree. The best performance
comes through a minimum of 67 samples split and no maximal depth limit. The Random Forest
hyperparameters are a maximal depth of 20, at least 2 samples required to be at a leaf node and
100 trees in the forest.

4.2.4 Models 6, 7 and 8: Gradient Boosting, XGBoost and CatBoost

We now want to try a recurrent learning approach. The Gradient Boosting Regression, XGBoost
Regression and Categorical Boosting Regression give us the opportunity not only to increase the
importance of learning from the mistakes, but also to further analyse how our continuous and
categorical features interact. The best Gradient Boosting performance comes with a learning rate
of 0.3 and 200 boosting stages. Interestingly, XGBoost works best with a much more meticulous
learning rate of 0.05, 500 boosting stages a maximal depth of 5 and a 0.8 subsample ratio of the
traning instance. CatBoost is a particular situation as it automatically encodes the categorical val-
ues with respect to the target variable. A great performance can be seen as an indicator for the
importance of the categorical information. We use a CatBoost Regressor with a depth of 6, 1000
iterations, an L2 leaf loss regularisation of 1 and the same learning rate as XGBoost.

4.2.5 Model 9: Neural Network

As a final model, we are looking at a Neural Network (NN). We use a "ReLu" activation function.
The alpha used is 0.01, and we get the best performance through an NN with 50 hidden layers, an
extremely low learning rate of 0.01 and 1000 iterations maximum.

4.3 Performance comparison
4.3.1 Comparison on a given seed - Seed 42

MSE, RMSE and MAE Evaluation. The Table 4 presented at the top of the next page, show-
cases the values obtained for the different metrics. The models are ranked by how low their MSE
is. These results are very telling when it comes to the target variable, the overall dataset and our
models.

The Dummy Regressor has an RMSE of 7.88. This (relatively) good performance for a model
predicting the mean showcases that our target variable is indeed very centered around its mean.
As we had seen when visualising its distribution, 50 % of the dataset can be found between 46 and
56. However, this very basic prediction algorithm has to be surpassed by our finer models.
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Table 4: Performance comparison on seed 42

Model Best hyperparameters MSE MAE RMSE R2

Neural Network model_alpha=0.01,
model_hidden_layer_sizes=(50,),
model_learning_rate_init=0.01,
model_max_iter=1000

4.77 1.56 2.18 0.923

CatBoost depth=6, iterations=1000,
l2_leaf_reg=1, learning_rate=0.05

5.05 1.47 2.25 0.919

XGBoost model_learning_rate=0.05,
model_max_depth=5,
model_n_estimators=500,
model_subsample=0.8

5.35 1.49 2.31 0.914

Gradient Boosting model_learning_rate=0.3,
model_n_estimators=200

6.06 1.68 2.46 0.902

Random Forest model_n_estimators=200,
model_min_samples_leaf=2,
model_max_depth=20

7.42 1.68 2.72 0.881

Lasso Regressor model_alpha=0.001 13.96 2.88 3.74 0.775
Ridge Regressor model_alpha=1.0 13.97 2.88 3.74 0.775
Decision Tree model_max_depth=None,

model_min_samples_split=67
14.15 2.36 3.76 0.772

Dummy Regressor model_quantile=0,
model_strategy=’mean

62.23 6.21 7.89 -0.002

The linear models substantially outperform the Dummy Regressor, with an RMSE of 3.73 for both
the Ridge and Lasso Regressors. This proves that our features have an impact on the target vari-
able and that we can recognise and explain tendencies within the target variable through different
models using our data. The fact that Ridge and Lasso have very comparable results suggests that
the correlation between our features, and thus specifically for our newly engineered variables, is
manageable. This also shows that two approaches are possible. The Ridge Regressor does not set
the coefficients of any variables to zero, so its performance reflects the fact that all features carry
a certain amount of information regarding the target variables within them. The Lasso Regressor
on the other hand favors an approach where "weaker" feature’s impact is set to 0 through null
coefficients, with the regression focusing on the most informative variables.

The performance of the Decision Tree is comparable to the linear models. The MSE is slightly
worse, however the MAE is improved. The Decision Tree is able to capture the overall tendencies
of the dataset, but the model has several large errors that are more penalised by the MSE.

On the other hand, the Random Forest drastically improves upon the linear models, reaching
an RMSE of 2.72. This confirms our hypothesis when it comes to the difficulties of linear models
when predicting a bimodal distributed target variable. The superior accuracy of the Random For-
est Regressor grants additional information when it comes to the dataset. First of all, the Random
Forest automatically studies interactions. An improved performance leads us to believe that some
interactions between features are relevant when it comes to predicting the credit risk attributed
to a client. Secondly, the bimodal distribution already suggested the presence of two clusters of
applications within the dataset. Since a Random Forest also works through identifying clusters, its
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better score also points to the presence of underlying local groupings of applicant profiles.

However, all three boosting methods present better results than the bagging methods. With an
RMSE of 2.31 XGBoost, improves on Gradient Boosting’s RMSE of 2.46. This can be expected as
XGBoost is a more precise version of Gradient Boosting, improving computation speed and per-
formance. The fact that these two models outperform the Random Forest Regressor shows that the
target variable has patterns that need to be continuously calibrated and cannot be clustered into
exiting categories.

With an RMSE of 2.24, CatBoost outperforms all models up until now. This can be explained
by the specific, target variable related encoding of categorical variables, extracting every drop of
information out of this section of our dataset while building upon the quantitative datapoints in
the same way as the XGBoost Regressor. However, CatBoost’s main strength is limited by the low
number of categorical variables, as we only have 7 of them. If the dataset had less numerical input
and more categorical variables, CatBoost’s advantage would bear even more fruits.

This leads us to the model with the best performance: the Neural Network. It sits at an RMSE
of 2.1, showcasing an extremely precise prediction ability of the credit risk. It can best use the
size of the dataset to its advantage and recognise the underlying patterns in the distribution of the
target variable.

R2 Evaluation. The R2 coefficient follows the same hierarchy as the MAE. It decreases steadily
between the Neural Network at 0.92 to the Random Forest at 0.88 before a relatively strong drop for
the linear models and the Decision Tree, set around 0.77. The Decision Tree slightly outperforms
the linear models, however this improvement is of the order of 10−3. This confirms the fact that
the models increasingly fit to the dataset, and that the Neural Network is able to recognise the
underlying patterns of the data better than all models. However, high R2 can be an indicator of
overfitting. While this performance on the unknown test should be relatively free of overfitting,
the train test split comes from one common dataset that can have coherent noise. It could be
interesting to see the evolution of the R2 values on entirely separate test datasets.

4.3.2 Generalisation of the comparison on different seeds - Robustness

The previous values and results have been obtained on the seed 42. We have executed our com-
putation with several other seeds in order to restrain the impact of randomness within this project
and to test its robustness. While the exact values of the metrics changed throughout these tests,
the overarching conclusions and the comparative performances between the models stayed the
same. This leads us to a confident conclusion when it comes to the selected model and the dataset
exploration based upon said model.

The detailed four metric results for all models tested across the three different random seeds are
provided in Appendix: Table 5 for the seed 602, Table 6 for the seed 2306 and Table 7 for the seed
2711.

The values of the RMSE and of the MAE are within the same intervals. The Dummy Regressor
has an MAE over 6 and an RMSE around 7.7, as the allocation varies only slightly because of vari-
ations between the train and the test subsets. For our more interesting models, the MAE is always
between 3.0 for the worst and 1.0 for the best model. The RMSE is equivalently always between 3.8
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and 2.0. This showcases that these values are reliable and cannot be attributed to a lucky split and
easier to find patterns. On the seed 602 and 2306, we have the exact same performance hierarchy as
on the seed 42. However, on the seed 2711, the Decision Tree’s RMSE of 3.57 is lower than the one
of linear models, set around 3.67. This is however a relatively unimportant change, as the MAE
has been lower for the Decision Tree on all seeds. The seed 2711 simply leads to less harsh errors
by the Decision Tree that cannot be penalised by the MSE and RMSE.

4.4 Variable impact
4.4.1 SHAP Values

As we have used "black box" models, that cannot be interpreted through coefficients the same way
as in linear models, we will visualise variable impact through the SHAP values. These values
calculate the impact every variable has on the final model prediction. The are based on Shapley
Values, a game theory principle to fairly distribute the gain accordingly to players decisions. We
observe these values using functions from the package SHAP in Python.

Figure 12: Largest SHAP values per variable

The features listed in the Figure 12 correspond to the variables with the highest average impact
on our models. The main conclusion is the prevalence of categorical variables. Since we encode
these categorical features, we compare numerical variables with distinct modalities of categorical
variables (for example, HomeOwnershipStatus is separated between a variable for mortgage, one
for rent etc..). The fact that the categorical variables have a higher impact on the final model
prediction explains why CatBoost is the best model amongst our bagging and boosting models. In
order to get more information about these variables, we will make a more detailed SHAP analysis.
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4.4.2 A deeper dive into the SHAP analysis

Figure 13: Detailed SHAP variable impact

This second graph (Figure 13) simplifies the interpretation of the SHAP values. A positive feature
importance means this variable influences the model output positively while a negative feature
importance means this variables influences the model output negatively. A high feature value
means this influence is felt when this variable has high values while a low feature value means
this influence is felt when this variable has low values.
Let us take a look at the numerical features. When it comes to the NetWorth, a high net worth,
visualised in pink, significantly lowers the risk level. On the contrary, a lower net worth does not
necessarily increase the risk level.
Looking at the DebtToIncomeRatio, we can observe that the influence is much more symmetrical
in both directions: a high debt to income ratio is penalised with a high risk score while a low debt
to income ratio is rewarded through a lower risk score.

For our categorical variables, the interpretation is more convoluted. Since we encode all modali-
ties, a high value reflects a binary response of 1, the presence of the described modality, while a low
value represent the absence of said modality. We can see that for all modalities, presence increases
the risk score more so than absence decreases it. This can be explained by the fact that absence
in certain categories is neither positive nor negative. For example, for the HomeOwnershipStatus,
not paying a mortgage is not equal to owning. It can encompass owning, renting and other living
situations. Nevertheless, there are several categorical features where we can see notable impact in
a certain direction.

• PreviousLoanDefaults: For a high value, which represents a previous loan default by the
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applicant, the credit risk is severely increased.

• BankruptcyHistory: Following that logic, an applicant that has already had to declare bank-
ruptcy once has an ever higher risk score.

There are also several features that are more heavily tending towards lowering the risk score.
Being employed does not increase or decrease the risk score at all on average. But not being em-
ployed, that is, being either unemployed or self employed does decrease the risk score. This can be
explained by the fact that most people are employed so this modality is not a disqualifying or sal-
vaging characteristic. However the self-employed profiles amongst the non-employed applicants
heavily draw the models towards lowering the risk score.

5 Conclusion
In this analysis, we evaluated several supervised learning models to predict credit risk based on
both the borrower’s financial and personal information and the characteristics of the loan. Model
performance was assessed using four key metrics: MAE, MSE, RMSE and R2.

Among all tested models, the Neural Network consistently achieved the best performance, fol-
lowed by boosting algorithms such as CatBoost, XGBoost and Gradient Boosting. The Random
Forest delivered solid but slightly less competitive results. However, the other tested bagging
method, a singular Decision Tree, struggled with the complex nonlinear pattern given its tendency
to average predictions. As anticipated from the bimodal distribution of the target variable, linear
models such as Lasso and Ridge Regressors and the Dummy Regressor achieved the worst perfor-
mance.

This ranking of models proved stable and reliable across multiple random seeds, confirming the
robustness of our conclusions.

The model outputs a continuous score between 0 and 100. It will ultimately be the responsibil-
ity of domain experts to interpret this score, and either by selecting a threshold to convert it into a
binary approval decision, or by leveraging the predicted value directly together with the model’s
interpretability tools. This approach offers agents not only a risk estimate but also insights into the
underlying features that mostly contribute to it.
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A Appendix
A.1 Performance comparison on seed 602

Table 5: Comparison of model performances

Model Best hyperparameters MSE MAE RMSE R2

Neural Network model_alpha=0.01,
model_hidden_layer_sizes=(50,),
model_learning_rate_init=0.01,
model_max_iter=1000

4.13 1.38 2.03 0.93

CatBoost depth=6, iterations=1000,
l2_leaf_reg=1, learning_rate=0.05

4.75 1.40 2.18 0.92

XGBoost model_learning_rate=0.05,
model_max_depth=5,
model_n_estimators=500,
model_subsample=0.8

5.02 1.44 2.24 0.92

Gradient Boosting model_learning_rate=0.3,
model_n_estimators=200

5.82 1.64 2.41 0.90

Random Forest model_max_depth=None,
model_min_samples_leaf=2,
model_n_estimators=200

6.98 1.60 2.64 0.88

Ridge Regressor model_alpha=1.0 12.44 2.80 3.53 0.79
Lasso Regressor model_alpha=0.001 12.44 2.80 3.53 0.79
Decision Tree model_max_depth=None,

model_min_samples_split=65
13.03 2.23 3.61 0.78

Dummy Regressor model_quantile=0,
model_strategy=’mean’

60.08 6.05 7.75 −2e−4
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A.2 Performance comparison on seed 2306

Table 6: Comparison of model performances

Model Best hyperparameters MSE MAE RMSE R2

Neural Network model_alpha=0.001,
model_hidden_layer_sizes=(50,),
model_learning_rate_init=0.01,
model_max_iter=1000

4.74 1.49 2.18 0.92

CatBoost depth=6, iterations=1000,
l2_leaf_reg=1, learning_rate=0.05

4.97 1.44 2.23 0.92

XGBoost model_learning_rate=0.05,
model_max_depth=5,
model_n_estimators=500,
model_subsample=0.8

5.38 1.48 2.32 0.91

Gradient Boosting model_learning_rate=0.3,
model_n_estimators=200

5.88 1.65 2.42 0.90

Random Forest model_max_depth=20,
model_min_samples_leaf=2,
model_n_estimators=200

7.63 1.68 2.76 0.87

Lasso Regressor model_alpha=0.001 12.98 2.80 3.60 0.78
Ridge Regressor model_alpha=10.0 12.98 2.80 3.60 0.78
Decision Tree model_max_depth=None,

model_min_samples_split=57
13.55 2.26 3.68 0.78

Dummy Regressor model_quantile=0,
model_strategy=’mean’

60.26 6.10 7.76 −4e−5

23



A.3 Performance comparison on seed 2711

Table 7: Comparison of model performances

Model Best hyperparameters MSE MAE RMSE R2

Neural Network model_alpha=0.0001,
model_hidden_layer_sizes=(100,),
model_learning_rate_init=0.01,
model_max_iter=1000

4.65 1.50 2.16 0.92

CatBoost depth=6, iterations=1000,
l2_leaf_reg=1, learning_rate=0.05

4.91 1.44 2.21 0.92

XGBoost model_learning_rate=0.05,
model_max_depth=5,
model_n_estimators=500,
model_subsample=0.8

5.11 1.44 2.26 0.91

Gradient Boosting model_learning_rate=0.3,
model_n_estimators=250

5.79 1.62 2.41 0.90

Random Forest model_max_depth=None,
model_min_samples_leaf=2,
model_n_estimators=200

7.45 1.64 2.73 0.87

Decision Tree model_max_depth=None,
model_min_samples_split=62

12.78 2.18 3.57 0.79

Lasso Regressor model_alpha=0.001 13.50 2.86 3.67 0.77
Ridge Regressor model_alpha=10.0 13.51 2.86 3.68 0.77
Dummy Regressor model_quantile=0,

model_strategy=’mean’
59.56 6.07 7.72 −2e−3
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