```{r} library(caret) library(dplyr) ``` # One Hot Encoding ```{r} df <- data.frame( team = c("A", "A", "B", "B", "B", "B", "C", "C"), points = c(25, 12, 15, 14, 19, 23, 25, 29) ) dummies <- dummyVars(~team + points, data = df) one_hot_data <- predict(dummies, newdata = df) one_hot_data ``` # Target Encoding ```{r} train <- data.frame( target = c(10, 20, 15), cat_col1 = c("city1", "city2", "city1"), cat_col2 = c("james", "adam", "charles") ) global_mean <- mean(train$target) alpha <- 10 target_encoding <- train |> group_by(cat_col1) |> summarise( n = n(), sum_target = sum(target), cat_col1_te = (sum_target + (alpha * global_mean)) / (n + alpha), .groups = "drop" ) |> select(cat_col1, cat_col1_te) train <- train |> left_join(target_encoding, by = "cat_col1") ``` # Frequential Encoding ```{r} df <- data.frame( color = c("blue", "red", "blue", "green"), value = c(10, 20, 10, 30) ) ```