# Exercise 9 : Estimation of Pi ## Methode 1 ```{r} n <- 15e4 pi_1 <- function(n) { U <- runif(n, 0, 1) return(4 / n * sum(sqrt(1 - U^2))) } pi_1(n) ``` ## Methode 2 ```{r} n <- 15e4 pi_2 <- function(n) { U1 <- runif(n, 0, 1) U2 <- runif(n, 0, 1) return(4 / n * sum(U1^2 + U2^2 <= 1)) } pi_2(n) ``` ## Best Estimator of pi ```{r} n <- 1000 m <- 15e4 sample_1 <- replicate(n, pi_1(m)) sample_2 <- replicate(n, pi_2(m)) cat(sprintf("[Methode 1] Mean: %s. Variance: %s \n", mean(sample_1), var(sample_1))) cat(sprintf("[Methode 2] Mean: %s. Variance: %s", mean(sample_2), var(sample_2))) ```