14 Commits

Author SHA1 Message Date
3cb05d3210 Update Python version in Jupyter notebooks to 3.13.9 across multiple files 2025-12-13 23:38:27 +01:00
d5a6bfd339 Refactor code for improved readability and consistency across multiple Jupyter notebooks
- Added missing commas in various print statements and function calls for better syntax.
- Reformatted code to enhance clarity, including breaking long lines and aligning parameters.
- Updated function signatures to use float type for sigma parameters instead of int for better precision.
- Cleaned up comments and documentation strings for clarity and consistency.
- Ensured consistent formatting in plotting functions and data handling.
2025-12-13 23:38:17 +01:00
8400c722a5 Refactor code formatting and improve readability in Jupyter notebooks for TP_4 and TP_5
- Adjusted indentation and line breaks for better clarity in function definitions and import statements.
- Standardized string quotes for consistency across the codebase.
- Enhanced readability of DataFrame creation and manipulation by breaking long lines into multiple lines.
- Cleaned up print statements and comments for improved understanding.
- Ensured consistent use of whitespace around operators and after commas.
2025-11-25 10:46:16 +01:00
ba6bea2c73 Add new Jupyter notebooks for ResNet and CNN exercises; update execution counts in existing notebooks 2025-11-05 17:09:58 +01:00
12bba2cea7 Implement feature X to enhance user experience and fix bug Y in module Z 2025-10-20 18:13:39 +02:00
cf7d23261b Add Jupyter notebook for supervised machine learning algorithms and update dependencies
- Created a new Jupyter notebook: 2025_M2_ISF_TP_4.ipynb for supervised machine learning exercises, including data preparation, model building, and performance analysis.
- Added 'imblearn' as a dependency in pyproject.toml to support handling imbalanced datasets.
- Updated uv.lock to include the 'imbalanced-learn' package and its dependencies.
2025-10-20 17:43:11 +02:00
d8b535418c Implement structural updates and optimizations across multiple modules 2025-10-14 10:45:57 +02:00
ec5e23e3d4 Ajout de la séparation des données en ensembles d'apprentissage et de test, et implémentation de la recherche de grille pour les hyperparamètres du modèle Random Forest. 2025-10-13 20:00:44 +02:00
a0b0a9f8bd Refactor code in 2025_TP_3_M2_ISF.ipynb:
- Updated execution counts for multiple code cells to maintain consistency.
- Removed redundant imports and organized import statements.
- Improved formatting for better readability in train-test split section.
- Added markdown explanations for model performance metrics (MAE, RMSE).
- Enhanced cross-validation training loop with detailed output for each fold's metrics.
2025-10-13 19:58:58 +02:00
047f30def1 Implement feature X to enhance user experience and fix bug Y in module Z 2025-10-13 19:29:48 +02:00
f3a09a5282 Implement feature X to enhance user experience and fix bug Y in module Z 2025-10-13 19:22:57 +02:00
1ccdcb3803 Ajout de l'exécution de cellules pour le One Hot Encoding, la normalisation des variables numériques et la séparation des données en ensembles d'apprentissage et de test. 2025-10-13 18:24:13 +02:00
a63b1bf94c Implement feature X to enhance user experience and fix bug Y in module Z 2025-10-13 18:12:52 +02:00
19d7d398ae Implement code changes to enhance functionality and improve performance 2025-10-13 18:10:31 +02:00