Refactor code for improved readability and consistency across notebooks

- Standardized spacing around operators and function arguments in TP7_Kmeans.ipynb and neural_network.ipynb.
- Enhanced the formatting of model building and training code in neural_network.ipynb for better clarity.
- Updated the pyproject.toml to remove a specific TensorFlow version and added linting configuration for Ruff.
- Improved comments and organization in the code to facilitate easier understanding and maintenance.
This commit is contained in:
2025-07-01 20:46:08 +02:00
parent e273cf90f7
commit f94ff07cab
34 changed files with 5713 additions and 5047 deletions

View File

@@ -308,7 +308,6 @@
}
],
"source": [
"import numpy as np\n",
"\n",
"u = lambda x: np.sqrt((6 - x) ** 2 + 4)\n",
"\n",
@@ -364,7 +363,9 @@
"# Run Newton's method\n",
"optimal_point_newton, iterations_newton = newton_method(initial_guess_newton)\n",
"print(f\"Optimal point (Newton): {optimal_point_newton}\")\n",
"print(f\"Objective function value at optimal point (Newton): {objective_function(optimal_point_newton)}\")\n",
"print(\n",
" f\"Objective function value at optimal point (Newton): {objective_function(optimal_point_newton)}\"\n",
")\n",
"print(f\"Number of iterations (Newton): {iterations_newton}\")\n",
"\n",
"# Initial interval for dichotomy method\n",
@@ -373,7 +374,9 @@
"# Run dichotomy method\n",
"optimal_point_dichotomy, iterations_dichotomy = dichotomy_method(aL, aR)\n",
"print(f\"Optimal point (Dichotomy): {optimal_point_dichotomy}\")\n",
"print(f\"Objective function value at optimal point (Dichotomy): {objective_function(optimal_point_dichotomy)}\")\n",
"print(\n",
" f\"Objective function value at optimal point (Dichotomy): {objective_function(optimal_point_dichotomy)}\"\n",
")\n",
"print(f\"Number of iterations (Dichotomy): {iterations_dichotomy}\")"
]
},
@@ -564,9 +567,7 @@
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\n"
]
"source": []
}
],
"metadata": {