mirror of
https://github.com/ArthurDanjou/ArtStudies.git
synced 2026-01-27 01:54:21 +01:00
Refactor code for improved readability and consistency across notebooks
- Standardized spacing around operators and function arguments in TP7_Kmeans.ipynb and neural_network.ipynb. - Enhanced the formatting of model building and training code in neural_network.ipynb for better clarity. - Updated the pyproject.toml to remove a specific TensorFlow version and added linting configuration for Ruff. - Improved comments and organization in the code to facilitate easier understanding and maintenance.
This commit is contained in:
@@ -28,8 +28,9 @@
|
||||
"k = np.arange(1, 12 + 1)\n",
|
||||
"m = np.power(2, k)\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def f(x):\n",
|
||||
"\treturn 1 / np.sqrt(x)"
|
||||
" return 1 / np.sqrt(x)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -39,19 +40,23 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"a, b = 1, 2\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def compute_I(f, a, b, m):\n",
|
||||
" h_list = (b - a) / m\n",
|
||||
" I = []\n",
|
||||
" errors = []\n",
|
||||
" sol_exact = quad(f, a, b)[0]\n",
|
||||
" \n",
|
||||
"\n",
|
||||
" for h in h_list:\n",
|
||||
" t = np.arange(a, b, h)\n",
|
||||
" y = np.array([3/4 * h * f(t[i] + h/3) + h/4 * f(t[i] + h) for i in range(len(t))])\n",
|
||||
" y = np.array(\n",
|
||||
" [3 / 4 * h * f(t[i] + h / 3) + h / 4 * f(t[i] + h) for i in range(len(t))]\n",
|
||||
" )\n",
|
||||
" I_approx = np.sum(y)\n",
|
||||
" I.append(I_approx)\n",
|
||||
" errors.append(np.abs(I_approx - sol_exact))\n",
|
||||
" \n",
|
||||
"\n",
|
||||
" return I, h_list, errors"
|
||||
]
|
||||
},
|
||||
@@ -84,12 +89,12 @@
|
||||
"print(f\"I1 = {I1}\")\n",
|
||||
"\n",
|
||||
"plt.figure(figsize=(10, 5))\n",
|
||||
"plt.plot(np.log(h_list), np.log(errors1), 'o-', label='Erreur numérique')\n",
|
||||
"plt.plot(np.log(h_list), 2*np.log(h_list), '--', label='Ordre 2')\n",
|
||||
"plt.plot(np.log(h_list), 4*np.log(h_list), '--', label='Ordre 4')\n",
|
||||
"plt.xlabel('log(h)')\n",
|
||||
"plt.ylabel('log(Erreur)')\n",
|
||||
"plt.title('Convergence de la méthode d\\'intégration')\n",
|
||||
"plt.plot(np.log(h_list), np.log(errors1), \"o-\", label=\"Erreur numérique\")\n",
|
||||
"plt.plot(np.log(h_list), 2 * np.log(h_list), \"--\", label=\"Ordre 2\")\n",
|
||||
"plt.plot(np.log(h_list), 4 * np.log(h_list), \"--\", label=\"Ordre 4\")\n",
|
||||
"plt.xlabel(\"log(h)\")\n",
|
||||
"plt.ylabel(\"log(Erreur)\")\n",
|
||||
"plt.title(\"Convergence de la méthode d'intégration\")\n",
|
||||
"plt.legend()\n",
|
||||
"plt.grid(True)\n",
|
||||
"plt.show()"
|
||||
@@ -116,12 +121,12 @@
|
||||
"I2, h_list, errors2 = compute_I(f, a, b, m)\n",
|
||||
"\n",
|
||||
"plt.figure(figsize=(10, 5))\n",
|
||||
"plt.plot(np.log(h_list), np.log(errors2), label='Approximation de l\\'intégrale')\n",
|
||||
"plt.plot(np.log(h_list), np.log(h_list), '--', label='h')\n",
|
||||
"plt.plot(np.log(h_list), 2*np.log(h_list), '--', label='h^2')\n",
|
||||
"plt.xlabel('h')\n",
|
||||
"plt.ylabel('Approximation de l\\'intégrale')\n",
|
||||
"plt.title('Approximation de l\\'intégrale par la méthode de Simpson')\n",
|
||||
"plt.plot(np.log(h_list), np.log(errors2), label=\"Approximation de l'intégrale\")\n",
|
||||
"plt.plot(np.log(h_list), np.log(h_list), \"--\", label=\"h\")\n",
|
||||
"plt.plot(np.log(h_list), 2 * np.log(h_list), \"--\", label=\"h^2\")\n",
|
||||
"plt.xlabel(\"h\")\n",
|
||||
"plt.ylabel(\"Approximation de l'intégrale\")\n",
|
||||
"plt.title(\"Approximation de l'intégrale par la méthode de Simpson\")\n",
|
||||
"plt.legend()\n",
|
||||
"plt.show()"
|
||||
]
|
||||
@@ -146,19 +151,19 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def RKI(f, y0, vt, tol = 1e-6, itmax = 20):\n",
|
||||
"\tN, T = len(vt), vt[-1]\n",
|
||||
"\tyn = np.zeros((len(y0), N))\n",
|
||||
"\tyn[:, 0] = y0\n",
|
||||
"\th = T / N\n",
|
||||
"def RKI(f, y0, vt, tol=1e-6, itmax=20):\n",
|
||||
" N, T = len(vt), vt[-1]\n",
|
||||
" yn = np.zeros((len(y0), N))\n",
|
||||
" yn[:, 0] = y0\n",
|
||||
" h = T / N\n",
|
||||
"\n",
|
||||
"\tfor n in range(N-1):\n",
|
||||
"\t\tp1 = f(vt[n], yn[:, n])\n",
|
||||
"\t\tF1 = lambda p2: f(vt[n] + h/3, yn[:, n] + h/6 * (p1 + p2)) - p2\n",
|
||||
"\t\tp2 = newton(F1, yn[:, n], fprime=None, tol=tol, maxiter=itmax)\n",
|
||||
"\t\tF2 = lambda yn1: yn[:, n] + h/4 * (3 * p2 + f(vt[n+1], yn1)) - yn1\n",
|
||||
"\t\tyn[:, n + 1] = newton(F2, yn[:, n], fprime=None, tol=tol, maxiter=itmax)\n",
|
||||
"\treturn yn"
|
||||
" for n in range(N - 1):\n",
|
||||
" p1 = f(vt[n], yn[:, n])\n",
|
||||
" F1 = lambda p2: f(vt[n] + h / 3, yn[:, n] + h / 6 * (p1 + p2)) - p2\n",
|
||||
" p2 = newton(F1, yn[:, n], fprime=None, tol=tol, maxiter=itmax)\n",
|
||||
" F2 = lambda yn1: yn[:, n] + h / 4 * (3 * p2 + f(vt[n + 1], yn1)) - yn1\n",
|
||||
" yn[:, n + 1] = newton(F2, yn[:, n], fprime=None, tol=tol, maxiter=itmax)\n",
|
||||
" return yn"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -194,14 +199,18 @@
|
||||
"source": [
|
||||
"a, b = [0, 2]\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def f(t, y):\n",
|
||||
" return t * np.power(y, 3) - t * y\n",
|
||||
" \n",
|
||||
"\n",
|
||||
"\n",
|
||||
"y0 = [0.5]\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def sol_exact(t):\n",
|
||||
" return 1 / np.sqrt(1 + 3 * np.exp(np.power(t, 2)))\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"x_fine = np.linspace(a, b, 1000)\n",
|
||||
"y_fine = sol_exact(x_fine)\n",
|
||||
"\n",
|
||||
@@ -212,13 +221,13 @@
|
||||
"y_exact_interp = np.interp(vt, x_fine, y_fine)\n",
|
||||
"\n",
|
||||
"plt.figure(figsize=(10, 5))\n",
|
||||
"plt.plot(x_fine, y_fine, label='Solution exacte')\n",
|
||||
"plt.scatter(vt, y, label='Solution numérique', color='red')\n",
|
||||
"plt.plot(x_fine, y_fine, label=\"Solution exacte\")\n",
|
||||
"plt.scatter(vt, y, label=\"Solution numérique\", color=\"red\")\n",
|
||||
"plt.legend()\n",
|
||||
"plt.show()\n",
|
||||
"\n",
|
||||
"error = np.max(np.abs(y - y_exact_interp))\n",
|
||||
"print(f\"Error with h={h}: {error}\")\n"
|
||||
"print(f\"Error with h={h}: {error}\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -246,7 +255,7 @@
|
||||
],
|
||||
"source": [
|
||||
"k = np.arange(1, 10 + 1)\n",
|
||||
"h_list = 1/np.power(2, k)\n",
|
||||
"h_list = 1 / np.power(2, k)\n",
|
||||
"\n",
|
||||
"errors = []\n",
|
||||
"for h in h_list:\n",
|
||||
@@ -258,14 +267,14 @@
|
||||
"log_h = np.log(h_list)\n",
|
||||
"log_errors = np.log(errors)\n",
|
||||
"order = np.polyfit(log_h, log_errors, 1)[0]\n",
|
||||
" \n",
|
||||
"\n",
|
||||
"plt.figure(figsize=(10, 5))\n",
|
||||
"plt.plot(log_h, log_errors, 'o-', label=f'Erreur (ordre {order:.2f})')\n",
|
||||
"plt.plot(log_h, log_h, '--', label='h')\n",
|
||||
"plt.plot(log_h, 2*log_h, '--', label='h^2')\n",
|
||||
"plt.plot(log_h, 4*log_h, '--', label='h^4')\n",
|
||||
"plt.xlabel('log(h)')\n",
|
||||
"plt.ylabel('log(error)')\n",
|
||||
"plt.plot(log_h, log_errors, \"o-\", label=f\"Erreur (ordre {order:.2f})\")\n",
|
||||
"plt.plot(log_h, log_h, \"--\", label=\"h\")\n",
|
||||
"plt.plot(log_h, 2 * log_h, \"--\", label=\"h^2\")\n",
|
||||
"plt.plot(log_h, 4 * log_h, \"--\", label=\"h^4\")\n",
|
||||
"plt.xlabel(\"log(h)\")\n",
|
||||
"plt.ylabel(\"log(error)\")\n",
|
||||
"plt.legend()\n",
|
||||
"plt.grid(True)\n",
|
||||
"plt.show()\n",
|
||||
@@ -306,11 +315,14 @@
|
||||
"source": [
|
||||
"def F(t, Y):\n",
|
||||
" x, y, z = Y\n",
|
||||
" return np.array([\n",
|
||||
" 1 + np.power(x, 2) * y - (z + 1) * x,\n",
|
||||
" x * z - np.power(x, 2) * y,\n",
|
||||
" - x * z + 1.45\n",
|
||||
" ])\n",
|
||||
" return np.array(\n",
|
||||
" [\n",
|
||||
" 1 + np.power(x, 2) * y - (z + 1) * x,\n",
|
||||
" x * z - np.power(x, 2) * y,\n",
|
||||
" -x * z + 1.45,\n",
|
||||
" ]\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"h = 0.025\n",
|
||||
"y0 = np.array([1, 1, 1])\n",
|
||||
@@ -320,20 +332,20 @@
|
||||
"y = RKI(F, y0, t)\n",
|
||||
"fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(15, 5))\n",
|
||||
"\n",
|
||||
"ax1.scatter(y[0], y[1], label='Solution numérique', color='red')\n",
|
||||
"ax1.plot(sol_exact[:, 0], sol_exact[:, 1], label='Solution exacte', color='blue')\n",
|
||||
"ax1.scatter(y[0], y[1], label=\"Solution numérique\", color=\"red\")\n",
|
||||
"ax1.plot(sol_exact[:, 0], sol_exact[:, 1], label=\"Solution exacte\", color=\"blue\")\n",
|
||||
"ax1.legend()\n",
|
||||
"ax1.set_title('x vs y')\n",
|
||||
"ax1.set_title(\"x vs y\")\n",
|
||||
"\n",
|
||||
"ax2.scatter(y[1], y[2], label='Solution numérique', color='red')\n",
|
||||
"ax2.plot(sol_exact[:, 1], sol_exact[:, 2], label='Solution exacte', color='blue')\n",
|
||||
"ax2.scatter(y[1], y[2], label=\"Solution numérique\", color=\"red\")\n",
|
||||
"ax2.plot(sol_exact[:, 1], sol_exact[:, 2], label=\"Solution exacte\", color=\"blue\")\n",
|
||||
"ax2.legend()\n",
|
||||
"ax2.set_title('y vs z')\n",
|
||||
"ax2.set_title(\"y vs z\")\n",
|
||||
"\n",
|
||||
"ax3.scatter(y[0], y[2], label='Solution numérique', color='red')\n",
|
||||
"ax3.plot(sol_exact[:, 0], sol_exact[:, 2], label='Solution exacte', color='blue')\n",
|
||||
"ax3.scatter(y[0], y[2], label=\"Solution numérique\", color=\"red\")\n",
|
||||
"ax3.plot(sol_exact[:, 0], sol_exact[:, 2], label=\"Solution exacte\", color=\"blue\")\n",
|
||||
"ax3.legend()\n",
|
||||
"ax3.set_title('x vs z')\n",
|
||||
"ax3.set_title(\"x vs z\")\n",
|
||||
"\n",
|
||||
"plt.tight_layout()\n",
|
||||
"plt.show()"
|
||||
@@ -357,14 +369,15 @@
|
||||
],
|
||||
"source": [
|
||||
"def R(z):\n",
|
||||
" return (1 + 3/4 * z * (1 + z/6)/(1 - z/6)) / (1 - z/4)\n",
|
||||
" return (1 + 3 / 4 * z * (1 + z / 6) / (1 - z / 6)) / (1 - z / 4)\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"x = np.linspace(-15, 5, 100)\n",
|
||||
"y = np.linspace(-7.5, 7.5, 100)\n",
|
||||
"X, Y = np.meshgrid(x, y)\n",
|
||||
"Z = R(X + 1j*Y)\n",
|
||||
"Z = R(X + 1j * Y)\n",
|
||||
"plt.figure(figsize=(10, 7))\n",
|
||||
"plt.contour(X, Y, np.abs(Z), levels=[1], cmap='rainbow')\n",
|
||||
"plt.contour(X, Y, np.abs(Z), levels=[1], cmap=\"rainbow\")\n",
|
||||
"plt.grid()\n",
|
||||
"plt.show()"
|
||||
]
|
||||
|
||||
Reference in New Issue
Block a user