mirror of
https://github.com/ArthurDanjou/ArtStudies.git
synced 2026-01-24 01:51:52 +01:00
Add new data files and update dependencies
- Added TP_ACE.pdf to the project. - Introduced perf_circle.csv containing performance circle data. - Added test_lissage.csv with test data for smoothing. - Updated pyproject.toml to include statsmodels as a dependency. - Modified uv.lock to reflect the addition of statsmodels and its dependencies.
This commit is contained in:
@@ -1,208 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "8226e658",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import pandas as pd"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"id": "7e95cb09",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"application/vnd.microsoft.datawrangler.viewer.v0+json": {
|
||||
"columns": [
|
||||
{
|
||||
"name": "index",
|
||||
"rawType": "int64",
|
||||
"type": "integer"
|
||||
},
|
||||
{
|
||||
"name": "X1",
|
||||
"rawType": "float64",
|
||||
"type": "float"
|
||||
},
|
||||
{
|
||||
"name": "X2",
|
||||
"rawType": "float64",
|
||||
"type": "float"
|
||||
},
|
||||
{
|
||||
"name": "Y",
|
||||
"rawType": "float64",
|
||||
"type": "float"
|
||||
}
|
||||
],
|
||||
"ref": "018727a2-2342-424f-8395-021f40817c5a",
|
||||
"rows": [
|
||||
[
|
||||
"0",
|
||||
"-0.8363543",
|
||||
"4.520502",
|
||||
"-19.868094121443526"
|
||||
],
|
||||
[
|
||||
"1",
|
||||
"0.4020083",
|
||||
"3.252834",
|
||||
"-10.46598545005849"
|
||||
],
|
||||
[
|
||||
"2",
|
||||
"-0.2492138",
|
||||
"3.610425",
|
||||
"-12.91499193423918"
|
||||
],
|
||||
[
|
||||
"3",
|
||||
"-0.6257167",
|
||||
"4.58877",
|
||||
"-20.67839639765537"
|
||||
],
|
||||
[
|
||||
"4",
|
||||
"-0.9899948",
|
||||
"4.893924",
|
||||
"-22.99404413854238"
|
||||
]
|
||||
],
|
||||
"shape": {
|
||||
"columns": 3,
|
||||
"rows": 5
|
||||
}
|
||||
},
|
||||
"text/html": [
|
||||
"<div>\n",
|
||||
"<style scoped>\n",
|
||||
" .dataframe tbody tr th:only-of-type {\n",
|
||||
" vertical-align: middle;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe tbody tr th {\n",
|
||||
" vertical-align: top;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe thead th {\n",
|
||||
" text-align: right;\n",
|
||||
" }\n",
|
||||
"</style>\n",
|
||||
"<table border=\"1\" class=\"dataframe\">\n",
|
||||
" <thead>\n",
|
||||
" <tr style=\"text-align: right;\">\n",
|
||||
" <th></th>\n",
|
||||
" <th>X1</th>\n",
|
||||
" <th>X2</th>\n",
|
||||
" <th>Y</th>\n",
|
||||
" </tr>\n",
|
||||
" </thead>\n",
|
||||
" <tbody>\n",
|
||||
" <tr>\n",
|
||||
" <th>0</th>\n",
|
||||
" <td>-0.836354</td>\n",
|
||||
" <td>4.520502</td>\n",
|
||||
" <td>-19.868094</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>1</th>\n",
|
||||
" <td>0.402008</td>\n",
|
||||
" <td>3.252834</td>\n",
|
||||
" <td>-10.465985</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>2</th>\n",
|
||||
" <td>-0.249214</td>\n",
|
||||
" <td>3.610425</td>\n",
|
||||
" <td>-12.914992</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>3</th>\n",
|
||||
" <td>-0.625717</td>\n",
|
||||
" <td>4.588770</td>\n",
|
||||
" <td>-20.678396</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>4</th>\n",
|
||||
" <td>-0.989995</td>\n",
|
||||
" <td>4.893924</td>\n",
|
||||
" <td>-22.994044</td>\n",
|
||||
" </tr>\n",
|
||||
" </tbody>\n",
|
||||
"</table>\n",
|
||||
"</div>"
|
||||
],
|
||||
"text/plain": [
|
||||
" X1 X2 Y\n",
|
||||
"0 -0.836354 4.520502 -19.868094\n",
|
||||
"1 0.402008 3.252834 -10.465985\n",
|
||||
"2 -0.249214 3.610425 -12.914992\n",
|
||||
"3 -0.625717 4.588770 -20.678396\n",
|
||||
"4 -0.989995 4.893924 -22.994044"
|
||||
]
|
||||
},
|
||||
"execution_count": 12,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"data = pd.read_excel(\"./data/data_pdp.xlsx\")\n",
|
||||
"data.head()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"id": "4e9a9a97",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def partial_dependant_function(data: pd.DataFrame, model: object, feature: str, grid_points: list) -> list:\n",
|
||||
" \"\"\"Compute the Partial Dependence Plot (PDP) for a given feature.\"\"\"\n",
|
||||
" pdp = []\n",
|
||||
" for val in grid_points:\n",
|
||||
" data_temp = data.copy()\n",
|
||||
" data_temp[feature] = val\n",
|
||||
" preds = model.predict(data_temp)\n",
|
||||
" pdp.append(preds.mean())\n",
|
||||
" return pdp"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "9553a1d8",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "studies",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.13.9"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
615
M2/Advanced Machine Learning/TP1/TP1.ipynb
Normal file
615
M2/Advanced Machine Learning/TP1/TP1.ipynb
Normal file
File diff suppressed because one or more lines are too long
BIN
M2/Advanced Machine Learning/TP1/question1_correlation_plots.png
Normal file
BIN
M2/Advanced Machine Learning/TP1/question1_correlation_plots.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 419 KiB |
BIN
M2/Advanced Machine Learning/TP1/question2_pdp_plots.png
Normal file
BIN
M2/Advanced Machine Learning/TP1/question2_pdp_plots.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 48 KiB |
BIN
M2/Advanced Machine Learning/TP1/question3_model_plots.png
Normal file
BIN
M2/Advanced Machine Learning/TP1/question3_model_plots.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 47 KiB |
504
M2/Advanced Machine Learning/TP2/TP2.ipynb
Normal file
504
M2/Advanced Machine Learning/TP2/TP2.ipynb
Normal file
File diff suppressed because one or more lines are too long
BIN
M2/Advanced Machine Learning/TP2/TP_ACE.pdf
Normal file
BIN
M2/Advanced Machine Learning/TP2/TP_ACE.pdf
Normal file
Binary file not shown.
101
M2/Advanced Machine Learning/TP2/perf_circle.csv
Normal file
101
M2/Advanced Machine Learning/TP2/perf_circle.csv
Normal file
@@ -0,0 +1,101 @@
|
||||
x;y
|
||||
1;0
|
||||
0.997986676;0.06342392
|
||||
0.991954813;0.126592454
|
||||
0.981928697;0.189251244
|
||||
0.967948701;0.251147987
|
||||
0.950071118;0.312033446
|
||||
0.928367933;0.371662456
|
||||
0.902926538;0.429794912
|
||||
0.873849377;0.486196736
|
||||
0.841253533;0.540640817
|
||||
0.805270258;0.592907929
|
||||
0.766044443;0.64278761
|
||||
0.723734038;0.690079011
|
||||
0.678509412;0.734591709
|
||||
0.630552667;0.776146464
|
||||
0.58005691;0.814575952
|
||||
0.527225468;0.84972543
|
||||
0.472271075;0.881453363
|
||||
0.415415013;0.909631995
|
||||
0.356886222;0.93414786
|
||||
0.296920375;0.954902241
|
||||
0.235758936;0.971811568
|
||||
0.173648178;0.984807753
|
||||
0.1108382;0.993838464
|
||||
0.047581916;0.998867339
|
||||
-0.015865964;0.999874128
|
||||
-0.079249957;0.996854776
|
||||
-0.142314838;0.989821442
|
||||
-0.204806668;0.978802446
|
||||
-0.266473814;0.963842159
|
||||
-0.327067963;0.945000819
|
||||
-0.386345126;0.922354294
|
||||
-0.444066613;0.895993774
|
||||
-0.5;0.866025404
|
||||
-0.553920064;0.832569855
|
||||
-0.605609687;0.795761841
|
||||
-0.654860734;0.755749574
|
||||
-0.701474888;0.712694171
|
||||
-0.74526445;0.666769001
|
||||
-0.786053095;0.618158986
|
||||
-0.823676581;0.567059864
|
||||
-0.857983413;0.513677392
|
||||
-0.888835449;0.458226522
|
||||
-0.916108457;0.400930535
|
||||
-0.939692621;0.342020143
|
||||
-0.959492974;0.281732557
|
||||
-0.975429787;0.220310533
|
||||
-0.987438889;0.158001396
|
||||
-0.995471923;0.095056043
|
||||
-0.999496542;0.031727933
|
||||
-0.999496542;-0.031727933
|
||||
-0.995471923;-0.095056043
|
||||
-0.987438889;-0.158001396
|
||||
-0.975429787;-0.220310533
|
||||
-0.959492974;-0.281732557
|
||||
-0.939692621;-0.342020143
|
||||
-0.916108457;-0.400930535
|
||||
-0.888835449;-0.458226522
|
||||
-0.857983413;-0.513677392
|
||||
-0.823676581;-0.567059864
|
||||
-0.786053095;-0.618158986
|
||||
-0.74526445;-0.666769001
|
||||
-0.701474888;-0.712694171
|
||||
-0.654860734;-0.755749574
|
||||
-0.605609687;-0.795761841
|
||||
-0.553920064;-0.832569855
|
||||
-0.5;-0.866025404
|
||||
-0.444066613;-0.895993774
|
||||
-0.386345126;-0.922354294
|
||||
-0.327067963;-0.945000819
|
||||
-0.266473814;-0.963842159
|
||||
-0.204806668;-0.978802446
|
||||
-0.142314838;-0.989821442
|
||||
-0.079249957;-0.996854776
|
||||
-0.015865964;-0.999874128
|
||||
0.047581916;-0.998867339
|
||||
0.1108382;-0.993838464
|
||||
0.173648178;-0.984807753
|
||||
0.235758936;-0.971811568
|
||||
0.296920375;-0.954902241
|
||||
0.356886222;-0.93414786
|
||||
0.415415013;-0.909631995
|
||||
0.472271075;-0.881453363
|
||||
0.527225468;-0.84972543
|
||||
0.58005691;-0.814575952
|
||||
0.630552667;-0.776146464
|
||||
0.678509412;-0.734591709
|
||||
0.723734038;-0.690079011
|
||||
0.766044443;-0.64278761
|
||||
0.805270258;-0.592907929
|
||||
0.841253533;-0.540640817
|
||||
0.873849377;-0.486196736
|
||||
0.902926538;-0.429794912
|
||||
0.928367933;-0.371662456
|
||||
0.950071118;-0.312033446
|
||||
0.967948701;-0.251147987
|
||||
0.981928697;-0.189251244
|
||||
0.991954813;-0.126592454
|
||||
0.997986676;-0.06342392
|
||||
1;-2.45E-16
|
||||
|
286
M2/Advanced Machine Learning/TP2/test_lissage.csv
Normal file
286
M2/Advanced Machine Learning/TP2/test_lissage.csv
Normal file
@@ -0,0 +1,286 @@
|
||||
x;y
|
||||
1;12.6
|
||||
3;11.9
|
||||
5;12.8
|
||||
6;11.8
|
||||
8;12.3
|
||||
10;12.3
|
||||
12;11.7
|
||||
14;10.5
|
||||
15;10.6
|
||||
16;10.8
|
||||
20;9.7
|
||||
21;10.2
|
||||
22;9.7
|
||||
23;10.1
|
||||
25;11.8
|
||||
26;11.5
|
||||
27;11.6
|
||||
30;11.8
|
||||
31;11.8
|
||||
33;12.4
|
||||
34;13.3
|
||||
35;12.4
|
||||
39;12.9
|
||||
40;13.1
|
||||
42;13.2
|
||||
44;13.3
|
||||
46;13.2
|
||||
48;14.7
|
||||
51;13.3
|
||||
52;13.3
|
||||
55;12.5
|
||||
57;11.8
|
||||
60;11.7
|
||||
61;11.7
|
||||
63;12.2
|
||||
65;13.6
|
||||
67;12.4
|
||||
68;12.5
|
||||
70;13.2
|
||||
71;13.2
|
||||
72;13.6
|
||||
73;13.2
|
||||
77;14.4
|
||||
79;14.3
|
||||
80;14.2
|
||||
83;12.8
|
||||
84;12.8
|
||||
85;12.8
|
||||
87;12.9
|
||||
89;13.8
|
||||
91;13.2
|
||||
92;12.5
|
||||
98;13
|
||||
99;13
|
||||
100;13.4
|
||||
101;12.7
|
||||
104;12.3
|
||||
111;11.4
|
||||
112;11.1
|
||||
115;10.6
|
||||
117;10.5
|
||||
122;10.9
|
||||
123;11.1
|
||||
125;11.2
|
||||
127;11.9
|
||||
129;11
|
||||
132;10
|
||||
133;10.9
|
||||
134;10.5
|
||||
135;10.6
|
||||
138;10.4
|
||||
139;11.1
|
||||
140;11.1
|
||||
141;11.2
|
||||
144;9.9
|
||||
145;10.6
|
||||
146;9.7
|
||||
150;10.1
|
||||
151;9.9
|
||||
152;10.1
|
||||
153;10.2
|
||||
154;11.3
|
||||
155;11.4
|
||||
157;11.3
|
||||
159;11.7
|
||||
160;11.3
|
||||
162;11.4
|
||||
164;10.8
|
||||
165;10.8
|
||||
166;10.9
|
||||
168;10.8
|
||||
170;12
|
||||
171;12.4
|
||||
175;12.7
|
||||
176;12.1
|
||||
177;12.2
|
||||
179;12.3
|
||||
180;12.3
|
||||
181;12.5
|
||||
182;12.6
|
||||
183;11.8
|
||||
185;10.9
|
||||
186;10.9
|
||||
187;11.1
|
||||
188;11.1
|
||||
189;10.6
|
||||
191;9.9
|
||||
192;9.1
|
||||
193;9.6
|
||||
196;9.7
|
||||
197;10.3
|
||||
198;10.1
|
||||
200;11.7
|
||||
201;11.5
|
||||
203;11.1
|
||||
204;11.1
|
||||
205;11.6
|
||||
206;11.8
|
||||
210;11.2
|
||||
216;9.6
|
||||
217;9.1
|
||||
218;8.2
|
||||
219;7.3
|
||||
221;9
|
||||
230;9
|
||||
231;7.2
|
||||
234;7
|
||||
237;8.5
|
||||
239;8.2
|
||||
241;7.5
|
||||
242;7.2
|
||||
244;8.3
|
||||
245;8.5
|
||||
246;8.7
|
||||
250;8.8
|
||||
252;8.4
|
||||
254;8.4
|
||||
255;8.9
|
||||
258;8.3
|
||||
259;8.5
|
||||
260;9
|
||||
265;8.2
|
||||
269;8.6
|
||||
271;8
|
||||
274;8.8
|
||||
275;8.7
|
||||
276;8.6
|
||||
282;8.8
|
||||
283;9.3
|
||||
287;8.4
|
||||
290;8.6
|
||||
291;8.8
|
||||
292;9.3
|
||||
298;9.9
|
||||
301;9.6
|
||||
304;8
|
||||
306;10.6
|
||||
309;8.9
|
||||
310;8.7
|
||||
311;8.3
|
||||
313;7.6
|
||||
315;6.9
|
||||
316;6.3
|
||||
318;9.1
|
||||
321;6.8
|
||||
322;6.4
|
||||
324;6.9
|
||||
326;6.5
|
||||
331;7.5
|
||||
335;7.1
|
||||
337;7.1
|
||||
339;6.8
|
||||
341;6.6
|
||||
342;6.1
|
||||
343;6.7
|
||||
345;6.6
|
||||
346;5.7
|
||||
347;6.7
|
||||
348;7.1
|
||||
349;6.7
|
||||
351;6.7
|
||||
352;6.4
|
||||
355;6.2
|
||||
356;6.2
|
||||
357;6.4
|
||||
359;6.8
|
||||
366;6.4
|
||||
367;7.4
|
||||
368;7.4
|
||||
369;7.5
|
||||
370;7.2
|
||||
374;6.8
|
||||
378;5.8
|
||||
379;6.4
|
||||
381;5.9
|
||||
382;5.2
|
||||
386;4.7
|
||||
389;4.8
|
||||
392;4.8
|
||||
393;4.5
|
||||
394;5
|
||||
396;4.9
|
||||
399;4.5
|
||||
400;4.6
|
||||
402;4.2
|
||||
403;4.8
|
||||
406;5
|
||||
407;4.5
|
||||
411;7
|
||||
412;3.4
|
||||
413;4.1
|
||||
415;6.1
|
||||
416;5.8
|
||||
419;6.5
|
||||
420;6.4
|
||||
425;5.7
|
||||
427;5.5
|
||||
430;5.3
|
||||
431;5.8
|
||||
432;5.6
|
||||
433;6.3
|
||||
435;5.2
|
||||
438;5.4
|
||||
439;5
|
||||
443;5.3
|
||||
445;5.3
|
||||
446;5.2
|
||||
449;4.1
|
||||
450;6.9
|
||||
451;3.7
|
||||
452;3.4
|
||||
453;3.6
|
||||
455;3.5
|
||||
456;2.9
|
||||
459;2.7
|
||||
460;3.1
|
||||
462;3.7
|
||||
463;4.2
|
||||
465;4.2
|
||||
466;4
|
||||
467;3.8
|
||||
468;4
|
||||
469;3.4
|
||||
470;3.6
|
||||
475;3.7
|
||||
478;4.2
|
||||
482;3.4
|
||||
483;3.5
|
||||
485;3.1
|
||||
486;3.6
|
||||
492;5.5
|
||||
494;3.8
|
||||
496;5.5
|
||||
498;6.4
|
||||
500;5.5
|
||||
502;6.8
|
||||
503;8.2
|
||||
506;4.9
|
||||
508;5.4
|
||||
510;5.9
|
||||
514;6.4
|
||||
522;7.1
|
||||
524;7.6
|
||||
525;7
|
||||
527;6.9
|
||||
529;7.3
|
||||
533;7
|
||||
534;7.8
|
||||
536;8
|
||||
539;8.8
|
||||
540;9.1
|
||||
541;8.2
|
||||
542;8
|
||||
544;8.8
|
||||
545;9.7
|
||||
546;12
|
||||
547;6.3
|
||||
548;5.8
|
||||
556;6.3
|
||||
558;6.4
|
||||
562;7.4
|
||||
563;7.4
|
||||
566;7.2
|
||||
567;7.4
|
||||
573;7.4
|
||||
|
Reference in New Issue
Block a user