diff --git a/M1/Statistical Learning/neural_network.ipynb b/M1/Statistical Learning/neural_network.ipynb index 43fe91b..cc0b818 100644 --- a/M1/Statistical Learning/neural_network.ipynb +++ b/M1/Statistical Learning/neural_network.ipynb @@ -2,19 +2,19 @@ "cells": [ { "cell_type": "code", - "execution_count": 1, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ + "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import pandas as pd\n", - "import tensorflow as tf\n", - "import matplotlib.pyplot as plt" + "import tensorflow as tf" ] }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -99,7 +99,7 @@ " dtype=object)" ] }, - "execution_count": 2, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" }, @@ -129,7 +129,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -152,7 +152,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -173,7 +173,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -198,14 +198,14 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "/Users/arthurdanjou/Workspace/studies/.venv/lib/python3.12/site-packages/keras/src/layers/core/dense.py:93: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n", + "/Users/arthurdanjou/Workspace/studies/.venv/lib/python3.13/site-packages/keras/src/layers/core/dense.py:92: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n", " super().__init__(activity_regularizer=activity_regularizer, **kwargs)\n" ] }, @@ -213,15 +213,15 @@ "name": "stdout", "output_type": "stream", "text": [ - "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n", - "Fold 1 - F1-score : 0.7333\n" + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 21ms/step\n", + "Fold 1 - F1-score : 0.7742\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "/Users/arthurdanjou/Workspace/studies/.venv/lib/python3.12/site-packages/keras/src/layers/core/dense.py:93: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n", + "/Users/arthurdanjou/Workspace/studies/.venv/lib/python3.13/site-packages/keras/src/layers/core/dense.py:92: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n", " super().__init__(activity_regularizer=activity_regularizer, **kwargs)\n" ] }, @@ -229,15 +229,15 @@ "name": "stdout", "output_type": "stream", "text": [ - "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 28ms/step\n", - "Fold 2 - F1-score : 0.6667\n" + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 21ms/step\n", + "Fold 2 - F1-score : 0.8000\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "/Users/arthurdanjou/Workspace/studies/.venv/lib/python3.12/site-packages/keras/src/layers/core/dense.py:93: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n", + "/Users/arthurdanjou/Workspace/studies/.venv/lib/python3.13/site-packages/keras/src/layers/core/dense.py:92: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n", " super().__init__(activity_regularizer=activity_regularizer, **kwargs)\n" ] }, @@ -245,7 +245,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 21ms/step\n", "Fold 3 - F1-score : 0.7222\n" ] }, @@ -253,7 +253,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/Users/arthurdanjou/Workspace/studies/.venv/lib/python3.12/site-packages/keras/src/layers/core/dense.py:93: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n", + "/Users/arthurdanjou/Workspace/studies/.venv/lib/python3.13/site-packages/keras/src/layers/core/dense.py:92: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n", " super().__init__(activity_regularizer=activity_regularizer, **kwargs)\n" ] }, @@ -261,15 +261,15 @@ "name": "stdout", "output_type": "stream", "text": [ - "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 28ms/step\n", - "Fold 4 - F1-score : 0.9231\n" + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 20ms/step\n", + "Fold 4 - F1-score : 0.9286\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "/Users/arthurdanjou/Workspace/studies/.venv/lib/python3.12/site-packages/keras/src/layers/core/dense.py:93: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n", + "/Users/arthurdanjou/Workspace/studies/.venv/lib/python3.13/site-packages/keras/src/layers/core/dense.py:92: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n", " super().__init__(activity_regularizer=activity_regularizer, **kwargs)\n" ] }, @@ -277,20 +277,20 @@ "name": "stdout", "output_type": "stream", "text": [ - "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step\n", - "Fold 5 - F1-score : 0.7586\n", + "WARNING:tensorflow:5 out of the last 5 calls to .one_step_on_data_distributed at 0x129cb1080> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has reduce_retracing=True option that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details.\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 22ms/step\n", + "Fold 5 - F1-score : 0.8571\n", "\n", - "F1-score moyen sur 5 folds : 0.7608\n" + "F1-score moyen sur 5 folds : 0.8164\n" ] } ], "source": [ + "from keras.callbacks import EarlyStopping\n", "from sklearn.metrics import f1_score\n", "from sklearn.model_selection import StratifiedKFold\n", - "from keras.callbacks import EarlyStopping\n", "from sklearn.preprocessing import StandardScaler\n", "\n", - "\n", "skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)\n", "f1_scores = []\n", "histories = []\n", @@ -342,12 +342,12 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 9, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAASdCAYAAACRlO+LAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Qd8W9X5//Gv9x6xE8fO3iRkEyAJYSeEVSBQSimUXfpnFQptKfxoKVAoFFpKyyilzEKhjAKFAmVvwkgghEAG2csZjuO9bf1fz7mWLTt2Yie2LFuf9+t1IunqSrq6V46Onvuc50T4fD6fAAAAAAAAgCCKDOaLAQAAAAAAAIagFAAAAAAAAIKOoBQAAAAAAACCjqAUAAAAAAAAgo6gFAAAAAAAAIKOoBQAAAAAAACCjqAUAAAAAAAAgo6gFAAAAAAAAIKOoBQAAPW++OIL3XjjjSouLu7qTQEAAAB6PIJSAABI2rx5s44//nhlZ2crJSWlqzcHAAAA6PEifD6fr6s3AgCArvbyyy+rsLBQP/jBD7p6UwAAAICwQKYUAACSjjnmmKAGpCIiInTdddd16HM+/PDD7nlXr16tUNHR73PIkCE6++yzQ/b5woUd10suuUQ93W233aZhw4YpKipKkyZNatdjDz30UNd25Z133nH70y4BAAg3BKUAAGHLH8RprX388ccKRb/73e/0/PPPd/VmAD3aa6+9piuvvFIzZszQQw895P7uAABAx4ru4OcDAKDbueGGGzR06NAdlo8YMUKhyH4cn3zyyZozZ06T5WeccYZOPfVUxcXFddm2AT3FW2+9pcjISD3wwAOKjY3t6s0BAKBHIigFAAh7Rx99tPbdd191dzbEyBqwMxUVFS7IYgEXtG7Lli1KSEggIAUAQCeiNwIAwE5UV1crIyND55xzzg73FRUVKT4+Xj//+c+b/JA977zz1LdvX3ffxIkT9cgjj+zydayukdU3as7qMdlQQj+7Xlpa6p7TP8zQXxOptZpS99xzj8aOHesyqPr166eLL75YBQUFTdax2jfjxo3TN998o8MOO0yJiYnq37+/br311jbtp8rKSl1++eXq06ePm73QZjJcv359i+tu2LBB5557rttHtk22bQ8++KB2R35+vtv/48ePV3JyslJTU12Q8csvv9TuWrlypb73ve+54277Ydq0aXrppZd2WO/OO+90227r9OrVywU2H3/88Yb7i4uL9dOf/tQdV3ufWVlZOuKII/T555/v9PXb8rjWamE1r2Pkr1f0r3/9S7/61a/cMbXttc9ua+rq6vTnP//Z7VP7DNsxPeqoozRv3rwd1rVhpPa58R/H//3vf03uX7NmjS666CLttddeLsCTmZnp9m1Ldc++/vprHX744W69AQMG6MYbb3Sfi+af6dbqlLW0T+xzbvty4MCBbhst+/H3v/+9e487Y69hQ/bsb83/d2Z/X6ampka//e1vNXz4cPec9rr/93//5/4GdsX+JizDMSkpyR1X+5tpy+MAAOipyJQCAIQ9m3UvLy+vyTL7EWo/oGNiYnTiiSfq2Wef1d/+9rcmWRP2g9x+UNqQOVNeXu4CAsuXL3dFoG1I4NNPP+1+KNuP48suu2yPt/XRRx/Vj370I+2///768Y9/7JbZj+PW2I/366+/XrNmzdKFF16opUuX6q9//as+++wzffjhh+79+W3fvt0FH0466SSdcsopeuaZZ/TLX/7SBScs0LMztk2PPfaYTjvtNB1wwAFu6NOxxx67w3qbN292QR5/oWwLeLzyyisukGeBEgsgtDeAZMfBAh22v+357TgdcsghLsBmQbj2sMfb9peVlenSSy91nwELAFqQzfaHfRbM3//+d3e/DaO042rZRwsXLtQnn3zi9oG54IIL3GPsfe69997atm2bPvjgAy1evFj77LNPq9uwu4/bGQui2GfXAnj2md1Z9o8dCwvA2DG342pBmPfff9/VWAvMKLRtsr8LCzpZIPIvf/mLvvvd72rt2rVuvxn7nH300Ufub8QCTRZcss+f/Z3Y8bEAmdm0aZMLhtprXXXVVS5oc99997kA1e6yY2ifAwuC/r//9/80aNAgty1XX321cnNzdccdd+z078xe/9NPP9X999/vltnnwtg+sc+EHfuf/exn7pjffPPN7vg899xzrT6n/f8wc+ZMt3/ss2OfTXsd+1sBACBs+QAACFMPPfSQz74KW2pxcXEN67366qtu2Ysvvtjk8cccc4xv2LBhDbfvuOMOt95jjz3WsKyqqso3ffp0X3Jysq+oqKhhua33m9/8puH2WWed5Rs8ePAO22jrNP+6TkpKcuu39n5WrVrlbm/ZssUXGxvrmz17tq+2trZhvbvuusut9+CDDzYsO+SQQ9yyf/zjHw3LKisrfdnZ2b7vfve7O92PCxYscI+96KKLmiw/7bTTdnif5513ni8nJ8eXl5fXZN1TTz3Vl5aW5isrK9vpa9k+CnzvFRUVTd6bsfdvx++GG27Y6XO19Hw//elP3Ta///77DcuKi4t9Q4cO9Q0ZMqThtU444QTf2LFjd/rc9n4uvvjiXW7D7jyu+XYHHkdrfm+//bZ7P/Y53dW+NW+99ZZb/9JLL93hvrq6uobrto59tpYvX96w7Msvv3TL77zzzoZlLb3m3Llzd/is+ff7J5980rDMPr+2LwI/0/7XDvxMtbZPfvvb37q/lWXLljVZ76qrrvJFRUX51q5du9N9Yc9lj2/ps/6jH/2oyfKf//znbrntv9aOhf//h6eeeqphWWlpqW/EiBFuuR0rAADCDcP3AABh7+6779brr7/epFn2jp8NKerdu7eefPLJJllFtt73v//9hmUvv/yysrOz9YMf/KBhmWUiWVZESUmJ3n333SC+K+mNN95QVVWVyz4KrB90/vnnu2FuzYek2fC3H/7whw23LZvGMrIsG2ln7H0be5+Bmmc9WTzh3//+t4477jh33bLT/O3II490GWu7GtrWnA2f8r+32tpal1Vk78OGi7X3ufzvxd7zgQce2LDMns+y0izLx7J7THp6uhuKZZlArbF1LItm48aN7dqG3X3czpx11lltyjqy42NZbL/5zW92uC9wGKmx7LvALL0JEya4z1Xg5yXwNW0orB0fG0Jn7zHw+Nh+tww62/d+lkV3+umna3dZluJBBx3khlYGftZsu+2z8t5777X7Of2f9SuuuKLJcsuYMi0N8wx8bE5Ojsuw8rNMMX/GIwAA4YjhewCAsGc/hHdW6Dw6OtoNS7J6QTb0yQIhNmzJfmQHBqWsfs7IkSN3KCA9ZsyYhvuDyf96FqAJZMGmYcOG7bA9NryqeeDBftDbsLRdvY695+bDCJu/7tatW90wRhsWZa0lVpOrPfz1j6xu1qpVq1ywwc8/hKw97L1MnTp1h+WBx9BqKNmwRgv62WfHgiyzZ892w/ZmzJjR8Birx2XBIKtnNGXKFB1zzDE688wz3b7fmd193M60NLtkS1asWOGGlVk9rV2x4XDN2efFAraBQ9ZsaJvVZ7JhdF6ik8eCkLva780/Q+3x7bffus+uBbc64rMW+FlvPjOnBaMt0Lazv3G7zx7X/G9sT94jAADdHZlSAAC0gdXEsQLU/gyqp556SqNHj3aFzDtC8x+qfoFBls7W2sx9gYGEPeEvLm3ZWM0z0/wtMKjTFr/73e9c1srBBx/salq9+uqr7nms6PauilnvCQtSWX0uKyBuWVWWYWSXgRlGVpfLsoasILoFem677Ta3XYFZeC1py+Pa+3nZk9pMe/J5+clPfqKbbrrJvSf7m3nttdfc8bGAYUcfn+bv3Z7fCsS39lmzQPPuam3/AwCA9iFTCgCANrCghw29sSF8Fnyw4sTXXHNNk3UGDx7sMjPsx3BgttSSJUsa7m+NZZg0nxHPtJR50dYfxP7Xs+BJYJaNDemzrCIbxtQR7HXsPVuWTWDWh71uIP/MfBY86KjXtoLgViD7gQceaLLc9qUNudyd99J8u1s7hlaM2zLlrNk+tQLxFoCxQto2a52xz4wVArdmmTlWqNzW2VXh+F09bmeflz3JqLJsNwvs2ayGbcmWasvxsayvP/7xjw3LrCh88223/WqZTc21dCxaeu+2/614efP3YsNmO+qzFvhZt231Z8/5C+TbNu3sb9zuW7RokQvaBf4Nt/QeAQAIF2RKAQDQBhZkslowL774opsxy2YJCxy6Z2yYlc0iFlh7ytazjBerS2QzgbXGfkDbcKbAoXL2I7ul2bwsGNJSQKI5+zFuQ/VsVrTA7BUL4NhrtTQ73u7wB0rsdQI1n93MMmssO8WyiuzHeXM2vK+97DmbZ3JZLSEbKrY77BjajGtz585tWFZaWuqGGw4ZMsTNhmesNlIg2892n22LDeu0wFvg8DSTlZXlMp9sCGhr2vo4+7zYbHgWjPH773//q3Xr1mlP2PGx92AzNnZExlxLx8f+HppnNdl+t/dj+z7w8/DPf/5zh+e09968HpQdn+bPadlZdhwtyNac/f3Y32Z72Xa29Nm+/fbb3eXO/qbssVYnzAJ1gTMEtjaUFQCAcECmFAAg7NmwKH8mTCCbAj4w68SCUPaD2oZojR8/vkmmhLGCxX/729909tlna/78+S6IYT9AP/zwQ/cj1rKEdjY80OoUnXjiia5guP1Y/etf/6pRo0btULDb6gxZPSP7IWzBCqsX1FI9HstMsqwdCzAcddRROv74411WhtVf2m+//ZoUNd8TkyZNcsXd7XktoGL77c0339Ty5ct3WPeWW27R22+/7bbXCq5bIMeycuw92nuy6+3xne98RzfccIPOOecc97pfffWVC2TsbrbQVVddpSeeeMIF2uw4WLbQI4884jLLLJjmz4CzGlJWR8iGG/bt21eLFy/WXXfd5YISdpwt6GE1uiyQaUM8LShp788KowdmDTVnQ0Tb8rgf/ehH7rNlx9WCL5alZsMXm9f1ai/LOjvjjDNcgNGygez5LTPo/fffd/ddcskl7T4+FsRNS0tzx9qCRPZ+mtf7uvLKK9169nqXXXaZC7xasMaffRjI3vsFF1zgAmg2PO/LL790gafmmXG/+MUv9MILL7htsL9J+7uxAKN9RmzfWeH69mbT2TGxzC/bNjvGFmi2QJp9RubMmeP2UWvs826fEasPZv8/WDacvWcrdg4AQNjq6un/AADoKg899JCbir21ZvcHqqur8w0cONDdd+ONN7b4nJs3b/adc845vt69e/tiY2N948eP3+F5WpvW/rXXXvONGzfOPW6vvfbyPfbYY26d5l/XS5Ys8R188MG+hIQEd59NXR/4flatWtVk/bvuuss3evRoX0xMjK9v376+Cy+80Ld9+/Ym69jU9WPHjt1hO+25Bw8evMt9WV5e7rv00kt9mZmZvqSkJN9xxx3nW7duXYvv0/bRxRdf7PalbVN2drZv5syZvvvuu2+Xr2Pb4n+/pqKiwvezn/3Ml5OT4/bHjBkzfHPnznXvx1p7n8+sWLHCd/LJJ/vS09N98fHxvv3339/33//+t8k6f/vb39wxsPcbFxfnGz58uO8Xv/iFr7Cw0N1fWVnpbk+cONGXkpLi9oldv+eee3a6Pe153B//+Edf//793evb+543b94O7/vtt992x+Dpp5/2tVVNTY3vtttuc58Z+yz26dPHd/TRR/vmz5/fsI49px3DXe1P+5z5/x6Sk5N9Rx55pPv8trTfFy5c6Lbd9rm9r9/+9re+Bx54YIfPdG1tre+Xv/yle87ExET3nMuXL2/xOYuLi31XX321b8SIEe692GMOOOAA3x/+8AdfVVXVTveDPZft/+aqq6t9119/vW/o0KHu82ufY3sN+ywGaukzuGbNGt/xxx/vttu25bLLLvP973//c+/RjhUAAOEmwv7p6sAYAAAA0NzDDz/ssuAsU80yDwEAQM9CTSkAAAAAAAAEHUEpAAAAAAAABB1BKQAAAAAAAAQdNaUAAAAAAAAQdGRKAQAAAAAAIOgISgEAAAAAACDoCEoBAAAAAAAg6AhKAQAAAAAAIOgISgEAAAAAACDoCEoBAAAAAAAg6AhKAQAAAAAAIOgISgEAAAAAACDoCEoBAAAAAAAg6AhKAQAAAAAAIOgISgEAAAAAACDoCEoBAAAAAAAg6AhKAQAAAAAAIOgISgEAAAAAACDoCEoBAAAAAAAg6AhKAQAAAAAAIOgISgEAAAAAACDoCEoBAAAAAAAg6AhKAQAAAAAAIOgISgEAAAAAACDoCEoBAAAAAAAg6AhKAQAAAAAAIOgISgEAAAAAACDoCEoBAAAAAAAg6AhKAQAAAAAAIOgISgEAAAAAACDoCEoBAAAAAAAg6AhKAQAAAAAAIOgISgEAAAAAACDoCEoBAAAAAAAg6AhKAQAAAAAAIOgISgEAAAAAACDoCEoBAAAAAAAg6AhKAQAAAAAAIOgISgEAAAAAACDoCEoBAAAAAAAg6AhKAQAAAAAAIOgISgEAAAAAACDoCEoBAAAAAAAg6AhKAQAAAAAAIOgISgEAAAAAACDoCEoBAAAAAAAg6AhKAQAAAAAAIOgISgEAAAAAACDoCEoBAAAAAAAg6AhKAQAAAAAAIOgISgEAAAAAACDoCEoBAAAAAAAg6AhKAQAAAAAAIOgISgEAAAAAACDoCEoBAAAAAAAg6AhKAQAAAAAAIOgISgEAAAAAACDoCEoBQBs8/PDDioiI0OrVq3e57pAhQ3T22WcHZbsAAAD2BH0cAF2JoBSAHt/JaqldddVVXb15evLJJ/XDH/5QI0eOdNt06KGHdvUmAQCAbiCU+zjbtm3TbbfdpoMPPlh9+vRRenq6pk2b5vo9ANBc9A5LAKCHueGGGzR06NAmy8aNG6eu9te//lXz58/Xfvvt5zpwAAAA3b2PM3fuXF1zzTU65phj9Ktf/UrR0dH697//rVNPPVXffPONrr/++i7dPgChhaAUgB7v6KOP1r777qtQ8+ijj6p///6KjIzs8g4kAADofkKxjzN27Fh9++23Gjx4cMOyiy66SLNmzdLvf/97XXnllUpKSurSbQQQOhi+ByDsvfXWWzrooINcB8lSzE844QQtXrx4l4/z+Xy68cYbNWDAACUmJuqwww7T119/3ebXHThwoAtIAQAA9JQ+jmVuBQakjA0rnDNnjiorK7Vy5crdfj8Aeh4ypQD0eIWFhcrLy2uyrHfv3u7yjTfecGcZhw0bpuuuu07l5eW68847NWPGDH3++eeuoGdrrr32Wtdhs/R0a7b+7NmzVVVV1envCQAAoDv1cTZt2tRk+wDAEJQC0ONZunhLZwDNL37xC2VkZLj6B3Zp7Eze5MmT9Zvf/EaPPPJIi8+5detW3XrrrTr22GP14osvujOAxmoo/O53v+vU9wMAANCd+jj5+fm6//77XdZWTk7Obj0HgJ6JoBSAHu/uu+/WqFGjdliem5urBQsWuNoG/s6amTBhgo444gi9/PLLrT6nnX20s4U/+clPGjpr5qc//SlBKQAAEBTdoY9TV1en008/XQUFBS5TCwACEZQC0OPtv//+LRYBXbNmjbvca6+9drhvzJgxevXVV1VaWtpiMU7/Y0eOHNlkuU193KtXrw7cegAAgO7bx7Hg1v/+9z/94x//0MSJE9v9eAA9GxV2AQAAAAAd7vrrr9c999yjW265RWeccUZXbw6AEERQCkDY8s8Ms3Tp0h3uW7JkiSvE2dqUxf7H2pTHzeswbN++vVO2FwAAoLv0cWxooRVYt2F/v/zlL9v5DgCEC4JSAMKWFdqcNGmSK/RpdQ78Fi1apNdee83NNrOzwqIxMTGuNoK/oKi54447On27AQAAQrmP8+STT+rSSy91taRuv/32PXgnAHo6akoBCGu33Xabmy55+vTpOu+88xqmS05LS3Nn91pjdRV+/vOf6+abb9Z3vvMd17n74osv9Morr7R5quP33nvPNf/ZR6vtYNMvm4MPPtg1AACA7tTH+fTTT3XmmWcqMzNTM2fO1D//+c8m9x9wwAEaNmxYh7xHAN0fQSkAYc3OBlrxTZsa+dprr3VnBg855BD9/ve/19ChQ3f6WAsgxcfH695779Xbb7+tqVOnurOPNoVyW7z11luu1kKgX//61+7StoegFAAA6G59nG+++cbN3mcn3M4999wd7n/ooYcISgFoEOELzMkEAAAAAAAAgoCaUgAAAAAAAAg6glIAAAAAAAAIOoJSAAAAAAAACDqCUgAAAAAAAAg6glIAAAAAAAAIOoJSAAAAAAAACDqCUgAAAAAAAAi6aIWZuro6bdy4USkpKYqIiOjqzQEAAGHM5/OpuLhY/fr1U2Tknp8rpJ8DAAC6Ux8n7IJS1lEbOHBgV28GAABAg3Xr1mnAgAF7/Dz0cwAAQHfq44RdUMrOHPp3TGpqaqe8RnV1tV577TXNnj1bMTExClfsBw/7wcN+YB/4sR887Af2gSkqKnJBJH//ZE/RzwlfHJfQwzEJTRyX0MRx6XnHpa19nLALSvlT2a2j1pmdtcTERPf84fwHxX7wsB887Af2gR/7wcN+YB8E6qihdvRzwhfHJfRwTEITxyU0cVx67nHZVR+HQucAAAAAAAAIurDLlAIAAE3V1ta6M2HBZq8ZHR2tiooKtw09WWxsbIcUMgcAAO2bAKSqqqqrN6Pbqm5DX21P+zgEpQAACONZUTZt2qSCgoIue/3s7GxX/6inzxRnnbWhQ4e6jhsAAOh8FoxatWqVC0yh8/pqe9rHISgFAECY8geksrKyXL2AYAeGrJNYUlKi5OTkHp1FZO/TZsXLzc3VoEGDenwADgCAUAim2PduVFSUK7bdk/sZXdlX64g+DkEpAADCkKVg+wNSmZmZXZpSHx8f3+M7i3369HGdtpqaGgq4AgDQyez7tqysTP369XMn3tB5fbU97eP07B4gAABokb+GFB214PCntPf02lkAAIQC//ctw+ZDv49DUAoAgDDGULLgYD8DABB8fP+G/j4mKAUAAELCpEmTXNt7771dDQj/7e9///ttfo4XXnhBl19+ebtf++yzz9Ydd9zR7scBAADsCn2c1lFTCgAAhIQFCxa4y9WrV7uOmv92IKtXYFMTt+b44493DQAAIFTQx2kdmVIAAMDNUlNZU9upzV5jdwwZMkS//OUvtf/+++uss85yswYedthhmjJlisaOHatLLrmkYbrnhx9+WHPmzHHX33nnHY0bN04XXXSRJk6c6NadN2/eLl/PZpk599xz3WOtXX/99Q333XjjjRozZkzDGc41a9aovLzcnem0s5/2OrNnz96t9wkAADoefZw96+P41++sPg6ZUgAAQFW1dbruhW869TWuO35vxUVH7dZjt23bpk8++cTVLaioqNCLL77opie2oponnHCCnnrqKZ166qk7PG7JkiV64IEHdM899+jee+/VNddco1dffXWnr/Xb3/5WlZWVWrhwoeuMHXjggRo9erTriP3hD39w0x4nJCS4WX1sJppXXnnFzWT4zTfe/svPz9+t9wgAADoefZzd7+O89NJLKiws1KJFi9ztzujjkCkFAABCntVD8BfStDOGdlbRzthNnjzZnRlsKQ3ejBgxQlOnTnXXp0+frhUrVuzytd544w2df/75rvOVlJSkM888U6+//rpSU1M1cuRI/fCHP9Tf/vY31zGzKZJtOxYvXuzOVj755JO7NR0yAAAIT2eHeB9n6dKluvjiizutj0OmFAAAUGxUpDvL19mvsbvsjKHf7bffri1btrizitZhuuKKK9yZxZbY/X5WWNTqNbSXv6Noj//444/10UcfubT5adOm6YknntBBBx3ksqTeeust19m78sorXQeyV69eu/VeAQBAx6GPs/t9nBkzZrjlFhyzfk5n9HHIlAIAAK5TYmnnndk6alrm7du3Kzs723XGrPbC008/rY40a9Yslw5v9SFKS0v16KOPurT24uJibd682QWhfv3rX7uU9y+++ELr1693782Kj1rquz1u3bp1HbpNAABg99DHCe0+DplSAACgW7nssst08sknu6Ke/fr1cx2sjmSdsUsvvVTjx493t7/3ve/plFNOcR0ze13rxFkHzdLcrSipnVW8+uqrXUfNzlKeccYZmjBhQoduEwAA6PkuC7E+zgcffKCrrrrKDffrrD4OQSkAABBSbCYaKxzuZ9MnBxo0aJA+/fTTVusyWDOHHnpokzoMNnNM8+fysxltAtPoH3zwwR3WGTBggEthb+7oo492DQAAoKf1cWbMmOFqTllgqjMwfA8AAAAAAABBR1AKAAAAAAAAQUdQCgAAAAAAAEFHUAoAAAAAAABBR1AKAAAAAAAAQUdQCgAAAAAAAEFHUAoAAISEY445RnfdddcOyydOnKhnn3221cfZVMdz5sxp8T6bMvn555/v0O0EAABoD/o4rSMoBQAAQsJ5552nhx56qMmyefPmKTc3V8cdd1yXbRcAAMCeoI/TOoJSAAAgJBx//PFat26dFi5c2LDswQcf1Jlnnqlt27bpsMMO05QpUzR27Fhdcsklqqura9fzb9myRSeddJLGjx+vcePG6W9/+5tbbs9jzzdmzBh3xtJeo6KiQlu3btXs2bPd+hMmTNA555zT4e8ZAAD0fPRxWhe9k/sAAEC4qals/b6ISCkqZvfWbYOYmBidccYZrpN2xx13uE7TE088oY8++kjp6el68cUXlZycrNraWp1wwgl66qmndOqpp7b5+X/yk59or732cmny1nmzjpl10OLi4vTmm2/q66+/VmRkpAoLCxUbG6vHHntMQ4cO1WuvveYen5+f3673AwAAQgh9HIViH4egFAAAaPTKla3fl7W3NPX/Nd5+7VdSbVXL62aOkA74yW6ltx9yyCG69dZbXcfKzuxZKysr0y9/+Ut98MEH8vl8rsNlZwLb02F74403NH/+fO+tZGW5M4q2zDpyNTU1Ovfcc92ZymOPPdZ13KZNm6Y//elP+tnPfqaDDz5YRx11VLvfDwAACBH0cRSKfRyG7wEAgJCx9957a8SIEe6MoZ1NtA6cuf32210n7ZNPPnGp76eddpo7y7gnIiIi3GVaWpoWLVrknnPJkiUujX358uWaPn26FixYoKlTp7rO43777efOYAIAALQXfZyWkSkFAAAaHX3rztPVA82+se3rtoN10n73u9/p22+/bZhVZvv27crOzlZ8fLw2bdqkp59+Wt/97nfb9byzZs3S3//+d910002uloJ1wux57HpUVJSrrXDEEUfo3Xff1TfffOOW9e/fX6eccoo7g2hnHktKSlwHDwAAdDP0cRSKfRyCUgAAoFF0XOes2w7f//739dOf/tRdWn0Fc9lll+nkk092BUD79evnOl/t9Ze//EUXXnihK+pp6fHXXHONO0P4+eef6/zzz1d1dbU7SzhjxgwdffTRrt6Cnb20jpulvt92220EpAAA6K7o4ygU+zgEpQAAQEhJSUlxZ+sCDRo0SJ9++mmL65999tmuteSdd95puN63b1935rC5ffbZp6EOQyCbiYYZ9wAAQEehj7MjakoBAAAAAAAg6AhKAQAAAAAAIOgISgEAAAAAACDoCEoBAAAAAAAg6AhKAQAQxurq6rp6E8KCzYQDAACCi+/f0N/HzL4HAEAYio2NVWRkpDZu3Kg+ffq42xEREUEPiFVVVamiosJtS0/urG3dutXt35iYmK7eHAAAejz7vrXvXfv+tX5OsPs4PUXdLvpqHdHH6dKg1HvvvafbbrvNTVGYm5ur5557TnPmzNnpYyorK3XDDTfoscce06ZNm5STk6Nrr71W5557btC2GwCA7s46FkOHDnXfvxaY6grWkSkvL1dCQkKP7yza+xswYICioqK6elMAAOjx7PvWvnfXr1+v1atXd/XmdFu+NvTV9rSP06VBqdLSUk2cONEFlE466aQ2PeaUU07R5s2b9cADD2jEiBGuM83QAwAA2s+yowYNGqSamhrV1tYG/fWrq6vdCaqDDz64x2cQ2fsjIAUAQPAkJydr5MiRrr+Bzuur7Wkfp0uDUkcffbRrbfW///1P7777rlauXKmMjAy3bMiQIZ24hQAA9Gz+dOuuCApZB8YCYvHx8T0+KAUAANQlfQ1OCoV2X61b1ZR64YUXtO++++rWW2/Vo48+qqSkJB1//PH67W9/69LJWhvuZ82vqKioIeLXWRFT//OGe0SW/eBhP3jYD+wDP/aDh/3APuiI904/B34cl9DDMQlNHJfQxHHpecelrY+J8IVIOXo7U7urmlJHHXWU3nnnHc2aNcvVkcrLy9NFF12kww47TA899FCLj7nuuut0/fXX77D88ccfV2JiYoe+BwAAgPYoKyvTaaedpsLCQqWmprb78fRzAABAd+7jdKug1OzZs/X++++7AudpaWlu2bPPPquTTz7Z1adqKVuqpTOIAwcOdAGt3en8tTUi+Prrr+uII44I6+EI7AcP+8HDfmAf+LEfPOwH9oG/X9K7d+/dDkrRz4EfxyX0cExCE8clNHFcet5xaWsfp1sN37OZ9vr3798QkDJjxoxxFeGtqr4VMWsuLi7OteaCUT+jq2p0hBr2g4f94GE/sA/82A8e9kN474M9fd/0c9AcxyX0cExCE8clNHFces5xaev6kepGZsyY4aatLikpaVi2bNkyN621TUEIAAAAAACA7qFLg1IWXFqwYIFrZtWqVe762rVr3e2rr75aZ555ZsP6Nh4xMzNT55xzjr755hs3NeEvfvELnXvuua0WOgcAAAAAAEDo6dKg1Lx58zR58mTXzBVXXOGuWxFzk5ub2xCgMsnJyW48Y0FBgZuF7/TTT9dxxx2nv/zlL132HgAAAAAAANB+XVpT6tBDD3X1oFrz8MMP77Bs9OjRLjAFAAAAAACA7qtb1ZQCAAAAAABAz0BQCgAAAAAAAEFHUAoAAAAAAABBR1AKAAAAAAAAQUdQCgAAAAAAAEFHUAoAAAAAAABBR1AKAAAAAAAAQUdQCgAAAAAAAEFHUAoAAAAAAABBR1AKAAAAAAAAQUdQCgAAAAAAAEFHUAoAAAAAAABBR1AKAAAAAAAAQUdQCgAAAAAAAEFHUAoAAAAAAABBR1AKAAAAAAAAQUdQCgAAAAAAAEFHUAoAAAAAAABBR1AKAAAAAAAAQUdQCgAAAAAAAEFHUAoAAAAAAABBR1AKAAAAAAAAQUdQCgAAAAAAAKEflPrNb36jNWvWdM7WAAAAAAAAICy0Oyj1n//8R8OHD9fMmTP1+OOPq7KysnO2DAAAAAAAAD1Wu4NSCxYs0GeffaaxY8fqsssuU3Z2ti688EK3DAAAAAAAAOi0mlKTJ0/WX/7yF23cuFEPPPCA1q9frxkzZmjChAn685//rMLCwt15WgAAAAAAAISJPSp07vP5VF1draqqKne9V69euuuuuzRw4EA9+eSTHbeVAAAAAAAA6FF2Kyg1f/58XXLJJcrJydHll1/uMqcWL16sd999V99++61uuukmXXrppR2/tQAAAAAAAAjPoNT48eM1bdo0rVq1yg3dW7dunW655RaNGDGiYZ0f/OAH2rp1q8JZna+rtwAAAKCD+XxS3rfqW7igq7cEAAD0ANHtfcApp5yic889V/379291nd69e6uurk7hyIYxfr62QP9dG6nppVXKTo/p6k0CAADoGGXbFPnpvcouXCsV50oZg7p6iwAAQDhlSv36179uCEhZAMYamvpyfaHKa6QXvsxl/wAAgJ4jqbd82RPc1YhvX+vqrQEAAOFYU8qG7Y0bN07x8fGu2fX777+/47euG4qIiNDxE7IVGSGt2FqqBesKunqTAAAAOkReSaWeKBij8lopYtNCqSi3qzcJAACEU1Dq2muv1WWXXabjjjtOTz/9tGt23Qqe232QMpPjtHcvL0Pq5a9yVVZV09WbBAAAsMc+XJ6nRcXJmlc9xCvV8O2rXb1JAAAgnIJSf/3rX/X3v/9dN998s44//njX7Pp9992ne+65p13P9d5777mAVr9+/VyG0fPPP9/mx3744YeKjo7WpEmTFIpGp/vUNyVOJZW1euWrTV29OQAAAHvsyLHZSkuI1icRk7ShoELauEAqpp8DAACCFJSqrq7Wvvvuu8PyKVOmqKamfRlBpaWlmjhxou6+++52Pa6goEBnnnmmZs6cqVAVFSEdPynHXZ+3ZrtWbi3p6k0CAADYI/ExUTphYo7yIzP1RfUgFVdUS8vIlgIAAEEKSp1xxhkuW6o5y5Q6/fTT2/VcRx99tG688UadeOKJ7XrcBRdcoNNOO03Tp09XKBuckaipQzPc9ee/2KDq2vCckRAAAPQco/qmaEiKT4tTpuvrwjjV9BnT1ZsEAAC6qejdLXT+2muvadq0ae72J598orVr17rspSuuuKJhvdtvv10d7aGHHtLKlSv12GOPuYBWd0hz/ya3SFtLqvTu0q2atXffrt4kAACAPTIp06elMTn6T+zZKizO0pFdvUEAACA8glKLFi3SPvvs466vWLHCXfbu3ds1u8/PakR1tG+//VZXXXWV3n//fVdPqi0qKytd8ysqKmoYhmitM/if1y5jYmJ0zNgsPfHZer21ZJPGZCcpKyVO4SBwP4Qz9oOH/cA+8GM/eNgP7IOOeO9d1c+Ji5KOGdtHT32+Se8s2azRWYnql57QKa+HtuHvKfRwTEITxyU0cVx63nFp62MifD6fN01cF7Mg1nPPPac5c+a0eH9tba3LzDrvvPPc8D1z3XXXueLoCxYsaPV5bZ3rr79+h+WPP/64EhMTFQy2hz/YHKGNpRHqHe/T4f186oSYHQAA6GbKyspcSYLCwkKlpqa2+/Fd3c/5yPo3xbXaJ3KZpvcq1uZe+3X6awIAgJ7Tx9mjoNT69evd5YABA3b3KdoclLLi5r169VJUVFTDMpuK2DbfltlwwsMPP7xNZxAHDhyovLy83er8tTUi+Prrr+uII45wmVJu+8uq9Ze3V6iqps4VCN1vSC/1dC3th3DEfvCwH9gHfuwHD/uBfeDvl1i2+e4Gpbq6n1NZF6GH//ehDtjwsPr1SlT2cb+RkrM65XWxc/w9hR6OSWjiuIQmjkvPOy5t7eO0e/ieBYKsltMf//hHlZR4M8qlpKToZz/7ma655hpFRra7dnqb2Jv46quvmiy755579NZbb+mZZ57R0KFDW3xcXFyca83ZDu3sD3vga/RJi9GRY3P00le5emNJnsYP7KWU+PD4YwvGvu4O2A8e9gP7wI/94GE/hPc+2NP33dX9nMSYGB0+dV+tfuUDRRauUOri15R2wDmd+rrYuXD+ewpVHJPQxHEJTRyXnnNc2rp+u4NSFniyQue33HKLZsyY4ZZ98MEHLn28oqJCN910U5ufy4Jay5cvb7i9atUqNxQvIyNDgwYN0tVXX60NGzboH//4hwt2jRs3rsnjs7KyFB8fv8PyUHXA8Ex9ub5A67eX66WFuTp1/0FdvUkAAAB7ZMKANK0YMVt1i/6qdV+9r5TxxyoyhWwpAACwa+1Oa3rkkUd0//3368ILL9SECRNcu+iii/T3v/9dDz/8cLuea968eZo8ebJrxmbus+vXXnutu52bm+tm9espIiMjNGdyf1dP6sv1hVq6qbirNwkAAGCPSzDMnL6ftiWNUGlltb798Nmu3iQAANBTg1L5+fkaPXr0Dsttmd3XHoceeqirCdW8+YNbdvnOO++0+njLztpZkfNQ1D89QTOG93bX/7Nggyprart6kwAAAPZIWkKMBk490V0vXD5XeZu9uqMAAAAdGpSaOHGi7rrrrh2W2zK7D7s2a+8spSfGaHtZtd5avKWrNwcAAGCPjRs7XnW9x8hXV6ev3n7GnWgEAADo0JpSt956q4499li98cYbmj59uls2d+5crVu3Ti+//HJ7ny4sxUVHac6k/nr4o9X6YHmeJg5MV7/0hK7eLAAAgD0axrf3Id/Th6/8U19pb8Wt3KYD6rPDAQAAOiRT6pBDDtGyZct04oknqqCgwLWTTjpJS5cu1UEHHdTepwtbe2WnuMKgdT7puS82qM6uAAAAdGNp/Ucq4/CfqCA2R699vVn5pVVdvUkAAKCnZEpVV1frqKOO0r333tuuWfbQsu9MyNGyzcVuNr65K7dpxgjOJgIAgO5t6tAMfbW+UCvzSvXv+et13oFD3WQvAAAAe5QpFRMTo4ULF7bnIdiJlPgYHTU2211//ZvNKijjbCIAAOj+w/hOGpuiKUVvKuXb5/W/rzd19SYBAICeMnzvhz/8oR544IHO2ZowtP/QDA3OTFRlTZ1e+HIjRUEBAEC3lxlRosPjl2po6QJ9+c1ifbmuoKs3CQAA9IRC5zU1NXrwwQddofMpU6YoKSmpyf233357R25fWJxNPHFyf9351rdanFusrzYUasKA9K7eLAAAgN2XMVQZI/ZTv8qPNb7gLT07v4+yUuOUk8bELgAAYA+CUosWLdI+++zjrlvBc+y5vqnxOmRUlt5askXPfr7Bddj6pMR19WYBAADsvjEnaMCmr1Wau1ErSr/VYx/H6JLDRiohNqqrtwwAAHTXoNTbb7/dOVsS5g4fnaVVeSValVemxz5eo4sOG664aDptAACgm0rKVMTwwzS85jXtt/U9vVQyVE9+tlZnTh9C4XMAALB7NaXOPfdcFRcX77C8tLTU3YfdExUZoR/sP0ip8dHaUlzpMqaoLwUAALq1EbMUk5iqib1qNKrsCy3dXKI3Fm/u6q0CAADdNSj1yCOPqLy8fIfltuwf//hHR21X2M7Gd9rUQbKThwvXF+rD5du6epMAAAB2X0y8NPo4JcVF6cikZYrw1ertpVv19cbCrt4yAADQnYJSRUVFKiwsdNk7lillt/1t+/btevnll5WVldW5WxsGBmcm6dgJOe76K4tytXJrSVdvEgAAwO4buL+017HKPvYaHTDS6ys+PW+9thRXdPWWAQCA7lJTKj093c0UZ23UqFE73G/Lr7/++o7evrA0fVim1ueX64t1BXri07W65PCRSkuI6erNAgAAaL+ICGnUbHf16HHJyi2o0Mq8Uj328VpddOhwxcdQQxMAgHAV3Z4C55Yldfjhh+vf//63MjIyGu6LjY3V4MGD1a9fv87azrBiAb4TJvdTbmGFNhVV6PFP1ur8g4YqOqrdoy0BAABCq4bmyBrdWRKlrcWVemb+ep0+dZDr+wAAgPDT5qDUIYcc4i5XrVqlgQMHKjKSAElnspn3Tp82SHe/vVxr88v08qJNOn4iQT8AANBN2QQu8x5Q8qavdM6oH+ruxQn6emOR3lm2VYftRQkIAADCUZuDUn6WEVVQUKBPP/1UW7ZsUV1dXZP7zzzzzI7cvrDWOzlOp+w7UP+Yu0ZzV2zTwF4JmjyoV1dvFgAAQPtZNlRytqSvlL3hVR03/sd67svNev2bzeqfnqBRfVO6egsBAECoB6VefPFFnX766SopKVFqamqTdGu7TlCqY43JSdXho7P01pIteu6LDcpOi1dOWkJXbxYAAED7jZglrftYKt2q/bVIG4aO0qertrtSBefOGKpBmYldvYUAACCI2j0G72c/+5nOPfdcF5SyjCmbec/f8vPzO2crw9zM0Vka1TdZ1bU+PfbxGpVX1Xb1JgEAALRfTLw0+jjv+rJXddxeKRrWO0mVNXV68MNVzDoMAECYaXdQasOGDbr00kuVmMiZrGCJjIzQ9/cbqF6JMcovrdbT89e5ovMAAADdzsD9pdQBUk2Fope/qjMPGKwRWckuMPXwR6v17ebirt5CAAAQqkGpI488UvPmzeucrUGrEmOjdfq0wYqOjNDi3GK9vXRLV28SAABA+1nph3EnedfXfKS40k06c/pgjc5OcVnhVkvzm41FXb2VAAAgFGtKHXvssfrFL36hb775RuPHj1dMTEyT+48//viO3D4EsCKgcyb30zPzN+iNxVs0oFciRUEBAED3kzlcypkoFW10GVMxUZE6feogPTlvnRZtKNI/P1njssQnDEjv6i0FAAChFJQ6//zz3eUNN9yww31W6Ly2lnpHnWnK4Aytyy/XJ6vy9a9P1+mSw0coIym2qzcLAACgfSZ8X4qKk6K87mh0VKR+sN8gPRO5Xl+sK9C/Plunmjqf9mHmYQAAeqx2D9+rq6trtRGQCo7vTMjRgF4JKq+u1T8/XqPq2rqu3iQAAID2iU1qCEgF1tE8ecoA7Tekl6x85tPz1uuTldu6bBMBAECIBaUCVVRUdNyWoM3sTOIPpw5WUmyUNhZW6Ek7k0hgCgAAdEcWfVrxtrT4vw2BqRMn99f04Znu9vMLNurD5XldvJEAACAkglKWDfXb3/5W/fv3V3JyslauXOmW//rXv9YDDzzQGduIFqQlxujU/Qe5wudfb7TaC2vJmAIAAN1P/krpm+el5W9I21Y0lIQ4bkKODhnV293+78JcJnkBAKAHandQ6qabbtLDDz+sW2+9VbGxjbWMxo0bp/vvv7+jtw87YdMnnzF9sGKiIrRkU7Ee+Wi1KmsYQgkAALpZ0fOB0yxlSlrwuFRT2RCYOnJstmaNyXK3X/t6s177epN8llkFAADCMyj1j3/8Q/fdd59OP/10RUVFNSyfOHGilixZ0tHbh12w2ffOPmCI4qIjtWJrqR76cLUqqglMAQCAbmTsHCk+XSrLkxa/2LDYAlMzx/TVUeOy3e23l27V0/PXkx0OAEC4BqU2bNigESNG7LDcCp1XV1d31HahHYb1SdZ5Bw5VQkyU1mwr0/3vr1RpZU1XbxYAAEDbxCRIE3/gXV/9vpT3bZO7DxnVR3Mm9VNkhPTF2gLd//4qFVfQ7wQAIOyCUnvvvbfef//9HZY/88wzmjx5ckdtF9ppYEaizj94qJLjorShoEJ/f38lnTUAANB9ZI2WBs/wrtswvuqmE+pMHZapc2YMcSfh1uaX6e63V2hjQXnXbCsAAOiaoNS1116rSy65RL///e9ddtSzzz6r888/39WasvvQdXLSEnT+QcOUmhCtzUWVuu+9lSooq+rqzQIAAGibMcdLCRlSRYFXAL2ZEVkpuvDQ4eqTHKvC8mr97d0VWrShsEs2FQAAdEFQ6oQTTtCLL76oN954Q0lJSS4QtXjxYrfsiCOO6IBNwp7ISo3X/zt4uHolxiivpEp/e2+l8kq8gqEAAAAhLSZe2udM6aCfS333bnGVPilxuvDQERqZlayqWp+bgfjNxZspgA4AQDgEpcxBBx2k119/XVu2bFFZWZk++OADzZ49u+O3DrslIynWBabsLGJBWbXLmNpc1DQFHgAAICRlDJXS+u90lYTYKDfRy4wRme72G4u36F+frVNVDQXQAQDo0UGpdevWaf369Q23P/30U/30pz91M/IhdKQlxuj8g4cpOzVexRU1LjC1gboLAACgOylcLy17rcW7IiMj9J0J/XTi5P6uAPrC9YWupqYN6wMAAD00KHXaaafp7bffdtc3bdqkWbNmucDUNddcoxtuuKEzthG7KSXeAlNDNaBXgsqqat2sfGu3lXX1ZgEAAOxaeYH0wZ+kpS9Jm79pdbX9h2boRwcNU1JslNZvL9c9by/Xunz6OwAA9Mig1KJFi7T//vu760899ZTGjx+vjz76SP/85z/18MMPd8Y2Yg8kxkbrvAOHakhmoiqq6/Tgh6u0fEtJV28WAADAziWkS0MO9K4v/JdU1XqgaWjvJF102Aj1TY1TUX2G+NwV26gzBQBATwtKVVdXKy4uzl23YufHH3+8uz569Gjl5ua267nee+89HXfccerXr58iIiL0/PPP73R9m+nPiqn36dNHqampmj59ul599dX2voWwEx8TpbNnDNGIrGRV1tTpkY9Wa3FuUVdvFgAAwM7tdayUlCVVFEpfP7fLmpoXHDJcY3JSVFPn0wtfbtTDH61mOB8AAD0pKDV27Fjde++9ev/9912x86OOOsot37hxozIzvWKTbVVaWqqJEyfq7rvvbnMQy4JSL7/8subPn6/DDjvMBbW++OKL9r6NsBMXHaUzpw/W3vUdtUc/XqMPvs3jDCIAAAhd0bHSpNMkRUjrP5U2fbXLE3FnTBus4ybmKCYqQss2l+jPb3yrhesLgrbJAACg7aLVTr///e914okn6rbbbtNZZ53lgkrmhRdeaBjW11ZHH320a211xx13NLn9u9/9Tv/5z3/04osvavLkye167XAUExWp06YO1vNfbNC8Ndv10le5bla+Eyb1U3TUbk3ECAAA0Pmz8Q0/XFrxprTwSanXECkupdXVLfv+gOG9NaJPsp6ev97VmXri03Vaklus4yb2czP3AQCAbhqUOvTQQ5WXl6eioiL16tWrYfmPf/xjJSYmKpjq6upUXFysjIyMoL5udxYVGaGT9umv7LR4F5Sy4FReSaVOnzZYyXHt/jgAAAB0vr2OljZ/LZVsklZ/KO3lZervTFZqvBvO99aSLXp76RZ9sa5AK/NKdfKUAa6kAQAA6HrtjkKUl5e7IV/+gNSaNWv03HPPacyYMTryyCMVTH/4wx9UUlKiU045pdV1KisrXfOzYJq/Npa1zuB/3s56/o6w/+A09YqP0r/mrdfKrSW6841lOn3qQOWkxYfVfggG9oOH/cA+8GM/eNgP7IOOeO9h1c+Z+ENFbPlGvqGH2Yu3+WGHjszQsMx4/fvzjdpWWqm/v7dCBwzL0BF7Z7ks8p6Cv6fQwzEJTRyX0MRx6XnHpa2PifC1s6jQ7NmzddJJJ+mCCy5QQUGBK3AeExPjsqduv/12XXjhhe3eWLchEREuuDVnzpw2rf/444/r/PPPd8P3Zs2a1ep61113na6//voWHx/szK5QVFQlvb8pUiXVUnSkNDWrTgOSunqrAAAID2VlZTrttNNUWFjoJnFpL/o5bVdTJy3YFqEVRRHudmqs1+/J8ObvAQAAXdDHaXdQqnfv3nr33XddwfP7779fd955pys0/u9//1vXXnutFi9e3OlBqX/9618699xz9fTTT+vYY49t9xnEgQMHuiDa7nT+2hoRtCLwVpTdAnahrqyqRk/O26AVW0vd7Vlj+uiQkb3dMQmn/dBZ2A8e9gP7wI/94GE/sA/8/RLrW+1uUCps+zk1lYpY8oKXNZXUu10PXba5WM9+sVEllbWKjJAO28vr90TajW4sJI4LmuCYhCaOS2jiuPS849LWPk707kS7UlK84pKvvfaay5qKjIzUtGnT3FC+zvbEE0+4gJQFpnYVkDJxcXGuNWc7tLM/7MF4jY6QFhOjHx00XP/9KldzV2zTW0u3aVtpjb47ZUCHpLV3l/3Q2dgPHvYD+8CP/eBhP4T3PtjT9x22/Zyvn5HWfyIVbZAO/KkU1fbtGDsgQ0P6pOr5BRu0aEOR3l62Td9uLdP3pgxwdai6u3D+ewpVHJPQxHEJTRyXnnNc2rp+uyMOI0aM0PPPP69169bp1VdfdcP5zJYtW9p9Rs7qQS1YsMA1s2rVKnd97dq17vbVV1+tM888s0kqut3+4x//qKlTp2rTpk2uWeQNe8bODh4/sZ/mTOrnzhp+ub5Q9723UoXljOkFAAAhxgqdxyZLReulr56W2pf4r6S4aJ22/yCdsu8AJcREuRn67np7uT74Ns/VTgUAAMHR7qCUDdH7+c9/riFDhmj//ffX9OnTG7KmJk+e3K7nmjdvnnuM/3FXXHGFu26vYXJzcxsCVOa+++5TTU2NLr74YuXk5DS0yy67rL1vA62YOixT5x04VImxXgftnreXa11+WVdvFgAAQKOEXtI+Z1kBCGndJ9Laj9v9FFamYPKgXrps5kiN6pus6lqfm5n47++vVH5pVadsNgAA2MPheyeffLIOPPBAFzCaOHFiw/KZM2fqxBNPbNdzHXrooTs9G/Xwww83uf3OO++0d3OxG4b1SdbFh43QP+au1uaiSpcxZUP5Jg1M7+pNAwAA8PQZJY0+VlryX2nRM1Jafyl9ULufJi0xRmcfMESfrd6ul7/K1aq8Mv3lzW91zPgc7Tek1x7X2AQAAK3brYJB2dnZLqNp48aNWr9+vVtmWVM2Ex96hoykWF1wyHCNyUlRTZ1PT362znXUqmzqGgAAgFAwYpbUd5xUVyPNe0iq8iZtaS8LPO0/NEOXzhypob0TVVlTp+e+2KCHP1pNKQMAAEIpKFVXV6cbbrhBaWlpGjx4sGvp6en67W9/6+5DzxEfE6UfTh2sQ0Z5s9q8/22ebn99mb5aX0i9BQAA0PUsi2nS6VJiplRbJZVt2+OTcucfNEzHjs9RdGSElm0u0Z/f+FZfrN1O3wcAgFAYvnfNNdfogQce0C233KIZM2a4ZR988IGuu+46VVRU6KabbuqM7UQXFkA/alyOBmUk6b8LN2p7WbUe/3SthvdJ0nET+6lvD5ilBgAAdGOxidJ+50sxCVLCnpcasKypA0f2dnWmnp6/3tXYfGreei1cX6ijx2X3iBn6AADotkGpRx55RPfff7+OP/74hmUTJkxQ//79ddFFFxGU6qH27peqkX2T9d6yrXp32Vat2Frq6i1MH56pmaP7KiE2qqs3EQAAhKvUnKa362qlyD3rm1jwyUoZvLtsi95cvEVLNhVr2eZiN8xv5pi+So5rdzcaAADs6fC9/Pz8FmtH2TK7Dz1XTFSk64RdPmuUxvZLVZ1P+nD5Nt3++lLNW51PWjsAAOh6GxdIb90ole7ZUD4TFRmhw0f31WWzRmrvnBTX9/l4Zb7+8OpSvb10i6prKV0BAEBQg1I2495dd921w3JbFjgbH3quXkmx+uG0wTrvwCHqkxKnkspa/fvzDbrnnRVal1/W1ZsHAADCldU3XfGmVJ4vffJXqbK4Q542KyVeZ0wfovMPGqr+6fGuEPprX2/WH19bRr0pAAD2QLvzjm+99VYde+yxeuONNzR9+nS3bO7cuVq3bp1efvnlPdkWdDMjslJ02cxkzV2xTW8s3uxqLlhgasrgXjpybF/FM6IPAAAEU2SktO950od/lkq3Sp/cK03/iRTTMXWghvVJ1sWHjdCCdQV69evNbmY+qzf10Yptrt6U3Q8AADoxU+qQQw7RsmXLdOKJJ6qgoMC1k046SUuXLtVBBx3U3qdDN2dp7VYM9GezR2mfQV5x0flrtrszh9ZBszR3AACAoLFi59MulGKTpcL10mf3S7XVHfb0Vgh98qBeru8ze2xfxUVHuhNzf39/lR6du1pbiys77LUAAOjp2pUpVV1draOOOkr33nsvBc3RREp8jL6370BNHZqpFxdudJ2zlxdtVsGmSA1aX6jJgzPdTH4AAACdLjlLmvr/pI/ukrZ9K33+D2nKOV4mVQfW2jxsryztNyRDby7erE9X5eub3GJXEN2KoR8+Osv1jwAAQOva9c0cExOjhQsXtuchCDODMhN14SHDdeLk/kqKjVJxlfTU/A26441l+nztdtWROgUAAIIhfZC034+kyGhp00Jp3Sed8jI2C98Jk/rrspkjNSagGLpljVuwqrKmtlNeFwCAnqDdp4t++MMf6oEHHuicrUGPYBlRdobw8lkjNC7Dp8TYKG0tqdLT89brj/Uz9dUwWw0AAOhsfUZJk8+QhhwkDZzaqS+VlRqvM+uLoQ/oleCKob+xeIsLTn2ychsn5gAA6IhC5zU1NXrwwQddofMpU6YoKSmpyf233357e58SPVR8TJTG9vJp5qwRmr++WB98u1X5pdVupr43l2zRoaP6uKLo0VEdl0oPAADQRL9JXgsSK3Z+0aHD9dWGQr369SbX93l+wUZ9uGKbjhqb7bKprC4VAADYjaDUokWLtM8++7jrVvA8EF+waElcTJQOGdVH04Zl6LNV2/Xet1tVUOZ10N5ausXdZ/UYrDYDAABAp6mrlb58QuozWhqwb6e9jPWJJwxI1945qfp0db7eWrzFFUB/9OM1GpKZqKPH5biSBwAAhLt2B6XefvvtztkS9Hhx0VFupr6pFpxana93l21VUXmNXvwyV+8s3aqDR/bRfkN7ufUAAAA6nNWVWv+ZtGG+FJMo9d27U1/OssEPGN5b+wzq5fo9Hy7P0+ptZfrruys0tl+q6/sQnAIAhLM2p6bU1ta6Iufl5eU73GfL7L66OuoEYddi6jtov5i9l+ZM6qdeiTEqrqjRS1/l6g+vLtXbS7eorKqmqzcTAAD0NIOmS/33lXx10rwHpfxVQStpcOTYbP1s9l7ad3Av2eCCrzcWueDUPe8s18L1Baql5hQAIAy1OSj16KOP6txzz1VsbGyLs/LZfY8//nhHbx96MDt7OHVYpuugfXef/spMilVJZa1e+3qzbn55iZ76bJ3WbCuVz0cnDQAAdACLBk06TcraW6qrlj69TyraGLSXT0uI0XenDHAz9bm6mpERWpdfric+XafbXl3qsqnKq5itDwAQPtoclLIZ937+858rKmrHoVXR0dG68sordd9993X09iEMREVGaN8hGbriiFH63r4D3Iw1NXU+fbGuQPe+u1J/eXO55q7YpopqOmkAAGAPRUZJU86Weg2RqsukuXdLhRuCugl9U+N18pQBuvKovTRrTJaS46JUWF6t/y3apFteWaz/LNjgalABANDTtbmm1NKlSzVt2rRW799vv/20ePHijtouhKHIyAhXc8Ha+u1l+mRlvr5cX6BNRRV64cuNbgabiQPTNHVopvqlJ3T15gIAgO4qOk7a//9JH98jFa7zMqYO/7UU1e5yq3skJT5GM8f01cGj+rghfB8u36bcwgp9vDLftdHZKZoxIlPD+yQzoRAAoEdq8zdvaWmpioqKWr2/uLhYZWVlHbVdCHMDeiVqwJREHTM+R1+s3a5PVuVrS3GlPl213bWBGQkuODVhQBqz9gEAgPaLTZSmXeTVlho5O+gBqUDWl5kyOMOdmFuZV+oKoi/ZVNzQ+iTHav+hmdpncLoSY7tuOwEA6Ght/lYbOXKkPvroI02YMKHF+z/44AO3DtCREmKjdMCI3po+PFOr8kr16ap8LdpY6OovrMtfr5cW5roOmgWo+qTEdfXmAgCA7sQCU9Mv9mpN+dXVekP8uoBlQ1lWlLW8kkp9tGKbPl+zXVtLqtyEMK99s0nj+6dp2rBMV+6A7CkAQNgEpU477TT96le/0gEHHLBDYOrLL7/Utdde6+pKAZ3BOl3D+iS7VlxRrflrLGMqX9vLql2quzXLnpo0MF0TBqQrOY6ziAAAoA0CAzvFm7yhfBNPk3qP6MqtUu/kOB0/sZ9m791XX64rcFnjNrTv87UFrvVLi3cTxlhpg7jorgmiAQCwp9r8y/3yyy/XK6+8oilTpmjWrFkaPXq0W75kyRK98cYbmjFjhlsHCEb9hUP3ytLBI/vo2y0l+mTVNpfa7mVPlbvsqRFZyS5AtXe/VDpqAACgbb59XSrbJn1yr7T/j6U+o7p6ixQfE+WCT/sPzXD9nI9XbdNX6wu1sbBCz32xQS9/lavJg9I1ZWBqV28qAACdF5SKiYnRa6+9pj/96U96/PHH9d5778nn82nUqFG66aab9NOf/tStAwSzMPpe2SmuWfbUwvWFWrCuQOu3l2vZ5hLXYqMiXGBq0sBeLlBlM/0BAAC0aOKp3ox8W77xMqb2O0/KGqNQyRoflJno2ncm5OjzNZY9tU15JVWuKPpHy/NUtiVC2WsLNGlwBiflAADdQrvGOFnQyYboMUwPoZg9NWNEb9dsCmVLc7eZ+6yjtmCdBasK3XTL4weka9KAdDfUjzoMAACgiagYad/zpPkPSZsXSZ/dL005R8oep1Bixc4PHGn9nkyt2FrqglOL1hdoW0WEnv1io175eovLGN9vaIb6M2MxACCEUXgHPY4VPJ+1d1/NHJPlsqa+WFegr9YXqKSyVnNXbHMtMylWE139qTRlpcQRoAIAAB6bhc8CUV/8Q8r9Upr3gDTlbClnokKN9V8sE9xa/t5Zuu/faxSRFKOC8lpXg8pa//R47Tckw/V7bCggAAChhKAUeizrqA3MSHTtO+NztHxriRasLdA3uUXaVlqlt5Zscc2mWR7bP83NZpOTFk+ACgCAcGeBqX3Olr54VNr4ubTyXSl7QtOi6CEmJT5aY3r5dPTMEVpbUKV5q/P19cYibSio0IYFG13tKcsY339IBhnjAICQQVAKYVN/alTfFNcqa2q1JLfYDe/7dnOJm2b5naVbXctIitG4fmka1z+NqZYBAAhnkZHS5DOklBxp6EEhHZBqLXuqtLJGX6wt0Ger87WluNLNXmzNMsbH9U/V2H70dwAAXYugFMKOFf60FHZrFdW1WrqpWIs2FrrL/NJqvfdtnmtpCTENHbbBGYkusAUAAMIsMDVqdtNl6+dJOZO8bKoQlxTXWHtqbX6ZPlu9XQut9lRpld5dludaeqL/hFyqBmUkEqACAARVu79N3377bR122GGdszVAkFltBX+AyjKoLHNq0YZCLdlUrMLyan24fJtrlhI/tp8XoBrWO4kAFQAA4WjV+9KiZ6TVH3gz88WlqDuwQNPgzCTXjpuYo2WbShpOyBWUVeuD5XmupcZHu1mLraTBkEz6OwCAEAxKHXXUURowYIDOOeccnXXWWRo4cGDnbBnQBRlUNmzPWnVtnZZvKdFXFqDKLVZxRY2bbtlaQkyURvVN1picVDccMCGWoqEAAISF5CwpOkHavkr64E/S/j+WUrLV3fo74wekuWb9nWWbi/X1hiJXc7MooL9jsxbvlW19HW8ooM34BwBAR2v3t8uGDRv06KOP6pFHHtH111+vww8/XOedd57mzJmj2NjYDt9AoCvEREW6oJO1mto6rcwrdRlU32wsUmlVrb5cX+ianUC0M4m23uicFPVOjuvqTQcAAJ2lz17SgZdLn/5NKtvmBaZspr6s0equ/R3LArdm/Z0VW+v7O7lFbtZifw0qG9HXPz2hvj5nsgb2oqwBAKCLglK9e/fW5Zdf7trnn3+uhx56SBdddJFrp512mgtQTZwYelPmArsrOiqyoUj6nEk+rdtepsW5RVqcW+yKhlrAytpLX+W6mfy8AFUqdagAAOiJUvpKB14hzXtQyl/hBajGfVcacqC6e39nr+wU1+bU+bQqr9RlUVnbXFSp9dvLXbOZi+OiI1321MisZNc/6pXEiWkAwO7ZozzcffbZR9nZ2crMzNQtt9yiBx98UPfcc4+mT5+ue++9V2PHjt2TpwdCjgWZ/DUZjhqXo/zSqvoAVZHrvNlMflvrC6UnxkZpr74pGtEnQZW1Xb3lAACgw8QlS9MukhY+Ka3/VPrqGSljmJTaTz1BVGTjDH7HjM9xdTaXb7EAVYkrb1BWVauvNxa5Zuyk3Ij6LKqhvZPcEEEAADotKFVdXa3//Oc/Lgj1+uuva99999Vdd92lH/zgB9q6dat+9atf6Xvf+56++eab3Xl6oNvISIrVjBE2q01vN5OfnU20GlRLNxe7DtsX6wo0f02+1q2N1Pq3Vmh43xQ33G9I7yQ3ux8AAOimbPa9SadJyX29Wfp6SECqJdZnmTI4w7W6Op82FJS74JT1e2xWP3dSrmSb5q7Ypmh3Ai9RI+uDVNmp8czoBwDouKDUT37yEz3xxBPy+Xw644wzdOutt2rcuHEN9yclJekPf/iD+vXruV/MQGsz+U0YkO6addjW5JdpSW6RvtlYoHWSNhdXamtptSseajKSYlzGlc3mZ5e9k2PptAEA0J3Y9/bIWU2X5a+UqsqkvmO9+3tg1vjAjETXDhud5U7KWYDKH6TaXlbtalNZ+98iuRn9RtQP87PLpDgKpgMAGrX7W8Gyn+68806ddNJJiouLa7Xu1Ntvv73L53rvvfd02223af78+crNzdVzzz3nCqbvzDvvvKMrrrhCX3/9tZv5z7Kyzj777Pa+DaDTO2yWvm5t1ujeerZ0mfaaMkDrCyu1Oq9UGwsrlF9arfzSAn2xtsA9JiU+2p1ZHFqfSWVnFqlJBQBAN1JXJ331b6lovdR7lLT3CVLaAPX0k3L+2YvtpHVeSZW+ra9FZaUNbEa/z9cWuGb6psY19JGsv5MaT+Y4AISz6PYO2xs8eLCmTZvWakDKPWl0tA455JBdPl9paakrin7uuee6INeurFq1Sscee6wuuOAC/fOf/9Sbb76pH/3oR8rJydGRRx7ZnrcCBFV8lDS2X6omDfY6XnZW0dLdrbO2Zlup1uWXq7iiRos2FLlmEmKiNLRPkob3SdKIPsnqkxJHJhUAAKHMV+vNxFeyScpbJr33B2ngVGn0MVJ8mno666dYf8XaASN6uxn9Vm8rc0Gqb7eUKLewwhVNt+bPHLdMcSttYH0eOzFH0XQACC/tCkrFxMTo3//+t3796193yIsfffTRrrWVFU8fOnSo/vjHP7rbY8aM0QcffKA//elPBKXQ7c4q+mf0M9W1dW5Gm9XbSl0m1ZptZSqvrtU3G234nxekSk2I1vDeyRqeZUGqFKUlcmYRAICQEhUjjTlOGjxDWvyitPFzad3H0sYvpBEzpWGHSdHhE3SxGf38BdOtx19SWeP6OdbfWbW1VLlFFS6zytq8NdvdY9ITY1xwiv4OAISHdg/fs+F1zz//vC6//HIF29y5czVrVtNx+xaM+ulPf9rqYyorK13zKyoqasj6stYZ/M/bWc/fXbAf2rcfBqTFunbgsF5eEdHCcq3cWqqVeWUuSFVQWqX5pfmucLrJTIrVMJdFZSnwiUqMDe0aDXwe2Ad+7AcP+4F90BHvnX5OiIpJkSacJg08QJGLX5AKVkuL/6u6+AwpZ1LYHpe4SGmvrETXNKaPyqu8zHHLprJmBdTzSypd8/d3LJPK+jrD+9jMfonuxF530R2OSTjiuIQmjkvPOy5tfUyEzwZ/t8ONN97oMpVmzpypKVOmuMLmgS699NL2bal/QyIidllTatSoUTrnnHN09dVXNyx7+eWX3ZC+srIyJSQk7PCY6667Ttdff/0Oyx9//HElJibu1rYCwVZbJ+VVSpvLI7S5XMqvjJAC/3IjpPRYn7ISpN5xPmXGS4mhHaMCAEiu/3LaaaepsLBQqamp7X48/ZxuwOdTevkqpZWt0ZrMQxuKn0fVVqg2Kr6rty6k1Fh/p0LaUtFyf8d2XUacT30TpL4JXn8nisoGANCt+zjtDkrZ8LlWnywiQitXrmzflnZyUKqlM4hWID0vL2+3On9tjQi+/vrrOuKII9yQx3DFfui8/WA1qVbllWllXqnLprKZ/ZpLS4jWgF4JGpSR6C77pcUrJipSXYXPA/vAj/3gYT+wD/z9EpsgZneDUvRzuqmaCkW+e7N8ffaWz4b7xex5ALEnHhfLpHJ9nTxvNj8b5hcoNjpSA3slNLaMhJDKHO+Jx6Qn4LiEJo5Lzzsube3jtPt/bSs23lWys7O1efPmJsvstr3BlgJSxgqyt1SU3XZoZ3/Yg/Ea3QH7oeP3gz3PhEHxmjAow90urvCmX7ai6Wu3lbkaDcWVdVq8qdQ1Y/GofulekMrawF6Jrm5DsIun83lgH/ixHzzsh/DeB3v6vunndFN530jVpdLGz6T8ZdL470nZ4zvkqXvScbH3MSkpXpMGZ7rbBWVVWr6lxLUVW0tUUlmrVdvKXfPrkxyrgfV9nUGZieqb0vWzGfekY9KTcFxCE8el5xyXtq4fOqcS2mD69OkuMyqQRe1sORDOUuJjNGlgumumsqZWG7aXuzoN6/LL3KV13GyWP2sfaptbLzU+WgPqM6nsDKMFrULpDCMAAD1SzkTpgEulL5+QSrdKn90v9dtHGneSFOdNgoIdpSfGat8hGa7ZYA+bxc+dkKvv72wtqWpon68tcI+Ji450/ZzBmUkanOkFq7pTXSoA6Ol269fn+vXr9cILL2jt2rWqqmqaRnv77be3+XlKSkq0fPnyJllYCxYsUEZGhgYNGuSG6W3YsEH/+Mc/3P0XXHCB7rrrLl155ZU699xz9dZbb+mpp57SSy+9tDtvA+ix4qKjNKxPsmvGOm7by6pdx23ddgtMlWljQbmKKmqazPBnMpJiNKBXovqnJ6h/rwR3SecNAIAOljlcOuSX0tJXpBVveTP15S3zAlP9p3T11oU8y/TOTot3beowL5OqrKrGnXzzB6psZuPKmjqXTW7Ne5xc9pQFqLyWpF5dkDkOANjNoNSbb76p448/XsOGDdOSJUs0btw4rV692v3o3Weffdr1XPPmzdNhhx3WcPuKK65wl2eddZYefvhh5ebmusBXYD0rC0DZzH9//vOfNWDAAN1///1uBj4ArbOOVkZSrGuTB/Vyy6pq6twsN/4AlV23Wg35pdXKLy3UwvWFTVLhvQCVl1WVkx7vAl8AAGAPRMVIex8v9ZskLXhCKt4obVpEUGo3Wbb3XtkprhmbzXhzcYUrbbDGMse3lWlbaZU2FVW49skqb4a/lPhoL0CV4WVT5aTFK7oL63ACQDhpd1DKspd+/vOfu5leUlJS9O9//1tZWVk6/fTTddRRR7XruQ499FAXzGqNBaZaeswXX3zR3s0G0IwVBx3aO8m1wIKiFpyytn57mRsCaBlW/lT4Beu8QJWdTLTC6f5UeLtMS2DsNwAAuyV9kHTQz6SV70iDpjYur6mUomIbZuxD+1gtqZy0BNf82VRWh3ONBalcoKrUnZgrrqjRog1FrhmLR9ljXHmD+jqcvZNjyaYCgFAISi1evFhPPPGE9+DoaJWXlys5OVk33HCDTjjhBF144YWdsZ0AgiAhNkojspJd8yutrPECVdu9QNV6G/ZXbssqXPtoxbaGYX8WnBpSH6jKSomj8wYAQFtFRUsjZzVd9sVjbqY+7X2ClDagq7asx9XhHNc/zTVTXVvnhvn5h/xZNlVpVa1bZu3jlV42VUJMlAtSNQSqMhKVHEcdTgDYU+3+nzQpKamhjlROTo5WrFihsWPHuts2/TCAniUpLlqj+qa45ldY7tWnWm1nGfNK3Wx/3rC/An1RX1jUOm9DentZVEMyE9UniY4bAABtVrJV2rJYqquW3rtN6jtOGjlb6jW4q7esR4mJapo57q/DaeUNLCi1brtX5qC8ulbfbilxzc+yxK28wYB0b7IYu06gCgDap93/a06bNk0ffPCBxowZo2OOOUY/+9nP9NVXX+nZZ5919wHo+awTNmFAumumotpm9vNS4VdbMfX8Mtd5W5xb7JqJlE8FuRGq/jJXg3snuwLqfVPjFdXF0zQDABCSkvt4hdCXvSJt+FzavMhrfcZIo2ZLGcO6egt7fB3OifWzGtfW+VwNqvU2y1/9hDFbSyrdSTprgRPGBAaq+ibHqKK2C98MAPTEoJTNrmez5hmrK2XXn3zySY0cObJdM+8B6Dlsdr6RfVNc83fe7Kyiv16DXRaWVWl7ZYQ+W71d89d6tamiI72ZcywV3j/bX1YKgSoAABoCU/ucKY06Svr2dWnDPGnrYq/t9yMpe3xXb2FYsH6J66ekJ8hf8ctOyOUWVrjyBtbnsRIHeaVVTQJVdXV1Wrc2UmvfXK5hfVJcBrmVObCAFyUOAGA3g1I2617gUL577723vU8BIAw6b/56Cweqt0uF31xYpqdfWq2hIzK1qbjK1amqqPbqOFjzi4nyAlX+zh+BKgBA2EvOkiaf7gWnlr8u5S3zMqb8KoqkyPiu3MKwPCHXfMKYwEDVhgKrT1WqdVbixGY3LtuueWu2u/VSE6IbanDa47NT4wlSAQhbuz3o2epKbdmyxZ0BCDRo0KCO2C4APYh1tDKTYjUoWTpybF/FxMS4QJVNy2xnF73OW3lDoGpdvqXGNwaq/BlV/QNqNvRNiWO6ZgBAeEnKlCaeKtXWeIXRjfXFP/qLIqMSlFFSK1UcKMV4M82hawNV1dXVer5smUbvN1AbCiu1Kq/MBatswpiF6wtd8x4XqcEZiRrQK9H1d6yv0ysxhkAVgLDQ7qDUsmXLdN555+mjjz5qstx+YNp/nLW1DJwGsGv2/0Xv5DjX/LWp/IGqhiBV/WVlzY4ZVRaPsjOLLkhVH6yyjpwVLAUAoEfzB6RM0XqpvECq2ayB+esU+dY6KWOI1He8lD1OSsmxL92u3NqwFhsljc5O0fiBGQ2z/VlNKqvBaUEqu24n5JZuLnHNLy460vVrclxLcJdWizM2mn4OgDAPSp1zzjmKjo7Wf//7Xzf7HhH8lvUp+kqRn66T4hKl6HgpOq7xMipOGri/d92Ub5dqqrzbMYlSVAydByjcA1X+4qKBGVVezQa7rHCF1DcUVLj2mbx0eBvhZx02C1D1qz/TaB06O3MJAECPlD5ImnmtfKs+VNmmf3vLCtZ6belL0l7HeoXRERLs5NmwPsmumTqrw1no1eG0oX+5BeXaUlzpTsi52pzbyhoeaz8PeifFev2c9ARXk9Mu6ecACKug1IIFCzR//nyNHj26c7aoh0iozpfyNkuRrZzN6DepMSj17RvSmg8a74uMlmISpJgk73LK2VKC9wNdW5dJxble8Mrui01svO4PaAFhkFFl0zW7oX/1wSrLqiqt8mo5WJvf8Hi5oYP+Dlz/dO+MYxJTNgMAeor4VPlGzNK3y6o08vADFZW/zJupb+tSqffIxvXs9tq5Us4kqe9Y+o0hIDIywg3bs+ZnE8bklVS6/s2mwgptLKzQpsJylVTWamtJlWtf1g/9M72TYxuyxglUAehu2v2rbO+991ZeXl7nbE0Pkpc8Rr6J4yRfjVRTKdVU1Lf669EJjStHRnkBpWobmuST6mqkymKv+e/327RQWv1+6y982DVeMUyzZq7XIXEBq/qglf/SAl9Ze0sx9UUxS7ZKFQVSRGRjs9f1X0/MbOy4WO0C+6VPNhdCYLrmcf3TGgJVVqNhfUGZcgusA+cFrGyZFRi15q/d0DBlc32Ayj8E0AqPkv0JAOjW4lOlwdO9Zpn4gYGnjQukjV94zTL4LTg1YF8pcwT9uhBik7tY5re1QMUV1V4h9fqTcRa0spN0/n5Oa4Eqq8Vp1wlUAegRQanf//73uvLKK/W73/1O48ePdwWLA6Wmpnbk9nVbZXFZ8vXfV2q2f1o07iSv+Xxe0Kq6zGtV9ZeWMeWXNkDqN7nxPtfKGwNaFnTyK9rgBaVac/i1jUEpO2u24s3W1z3kl1JqP+/68je8dPDIGCkqVoqO9S6t02OX40+RUnPcqskVGxTx9b+l2IT69WO8gJit5wJjY7zOk3/mGAuM2fLA4JhrEVJscmPHygp8+mp3XAdhy4JJaYkxSktM09h+XqDKlFTWNAz9s46cXVrHrWHK5tz64K+klPjoJrP+2dnGlHjOIgMAuinrowUafIDXV9z4uVc+Yt3HXotPk/pPkfY6huypEGZ9Emuj+qY0LCutrGmYLKYtgarGzHGvJVjRKwDoTkGpWbNmucuZM2c2WU6h8w5gQRULErlAkVcMcQeDpnmtOQtoWWAqMCg1YD8ptX9A4CogiGXZWIGdjrgUrxBmXa3kq6tvtfW3fV6gyK+2yrusq/ZadWnTbbHnrpdYtU0Raxa3Poxx+k8ag1K5C6RF9bUQWrL//5P67u1d3zBP+vKJgDsj6mty1WeCjTleyqofYlq00TsjaPdZhpo/c8zOENo+SOjVuN/s/Vqz99vaNqNbSY6Ldp23wA6cf8rm3PpOnF3fXFSh4ooaLdlU7FqTjCoLUAWcaWToHwCgW0of6LUxx0n5K6X187z+V0WhtOkrr//k17xfiZCU1EI/xwJVrg5nQImDwEBVYOZ4RpJljieqX7o3y3FOeoLrOwFAsLT7f5y33367c7YEe8ZlEjWORXd6DfZaWww/zGttMepIadghUm21F6CyZunh/us21K9eaWyWfMMnSBbfcevXB7L81+O8Io+OZVLFp3tBLQuEuaGM9UEyux44jNEtC+RrHCJpZ/4CAmMq3CB9+1rr72efM72zg8Y6ZPMf8q67IYzR9S3K2769j/cy1fzPa1ljzQvZ+1v6YCmpt/fW6qq8zDWbGc7/3lzgz1cfvcvwgmOmqlTavtoriG8Bu7hU7/nIBOu0KZv9s+HYsD8b/mfF1K0Dt7WksjGjamNRw7o2TbM/QGVnG21GHDKqAADdhiu4ONxr474rbfna65P4+xrWR3vzBq9PZ+v0GiplDGs8kYiQD1SN7Jviml9ZVY3r2zQPVOWXWivUVxt2LHHgz6rql0aJAwAhFJQ65JBDOmdL0H24YXpt+wFeGp8tn6WCt2UYo7/+QVsMnOYFknz1wR0LQllAyj+UMa1/47oWGBpykLfcrVPWeN06XRb88bPssIbrdY2BNj8bNuhXnu+lv7dm3MnS0IO8TajcqsgP/th69tXYE6Vhh3rXizdJn97X9H4b7mjZbBagGnKgV//BVFdI21c13mdDHMnw2u3ZcAZlJrrmV1lT62b6c5247WUuq8rOMFonztqiDY2BqtT4aG/a5vrOW056vCuwTgcOABDSoqKlnIlNl21f4/WVCtd5Te94y5P6eAEqy8bvM6pLNhe7JzG25UCVN2mMV95gZyUOkuOidhj6l54YQz8HQHCCUgsXLtS4ceMUGRnpru/MhAkT9nyrgF2xwEtkQDDJaeXsXYad3RvatufNmSwdPc4LcrmsLhvOV9PYLKPJLznbCyY1FLKvbHo9IGOsLiLKq9fQUDzevsAjGq8HFr63jKu0gd7zWLF7Fzyrksq2ec1mbvQr2SR9cm/T92Cv5Q8cjpwtDT24ft2t3vBI/33+Gl9u2GOidwbUv5/sfdtrxyaFdW2JuOgdM6rKq2obaje4OlXWgSutUlFFjYoqSrR0c0nA4yMDAlXx6pMUrdr65DgAAEJW7xHSrOukbSu8YX7WbPbn0q1eszqj/qCUZajbMECbaCe5r5TY2wt0oVsEqkZkpbjWvMSBP0hlJ+e2FFe4mf+WbS5xrfHxXqDKsqpsCKBlkVs2OYEqAO3Rpm+MSZMmadOmTcrKynLX7T8aqyHVHDWl0HOCXc0DXi1I7iMl12c3tSFjrO7wcxXVlowxy/I6+OeNty3AZUXgK+ub1QkLzOay21YLwob9uWGBtVKNtQovuORXVSJtXdz66446qjEoZR3Od272rlvwyoaGutkb62dwtCGM/mwtC97ZGVU31DDFC6r14M6IFQQdkZXsWmBGlZuyuaBCuYVejSq7XVlTp9XbylwzdXV1Wr8uUqvfWqH+GYnKtoyqNG92Hcu0ohMHAAgZCenSgCleMzbJjpUXsACVTVTjl/ettOS/jbf9szZbgMoCVQP2b5gAB923xIHXz2k8KbepqEJlVbVavqXENb+EGAtUeUP/stPiXfZ4n5Q4N6MgAOx2UGrVqlXq06dPw3UAQWSZTC4A5v0NNmHZTYdc6V2vq5NqyuuHHFqmV5UXJAocxjjp9IBaYPX1vfzDHm1mRz9bZp1KNzSy2gt6WfOzTC4/y96ae2fjbavBZUMJ3ZDCFKnfPg0d2ggLmNkwgORMKTalxww1tIyqwZlJrvnV1vmUV1LZcJbRglXr80vdiNPNxZXaWlotrWvcp0mxUa7zlpNmnbg4d2mdOBtWCABAl7MTVDbhjH/SGT/7zrcZp0s2SyVbpNrKxoyqzZZ1NaoxKLV+vlfn02qK+vsJ/vIDdr3XkKb1RhESrC8yMCPRNb8aC1QVeSfkNhSUuUsLXJVX12rF1lLX/KIjI5SVEtfQz7ESB3ZSzjK1AKBN/xMMHjy4xesAQogFeGy4nRoDI01YZ2/g/m17LusUHnu7l6VlNbgsC6vhslxKH9S4rg1rTMrysrhcdlaNV2/LWrMAVmxNsSI//JO3rRb0so6oDWv0t75jG8++1tUHxCwo1w3ZGUHLgLI2uX53VVVV6ZkXVmr81IHKK6txnTfLqrLgVWnVjp04O6logans+uex63ZptaoiOeMIAAgFNtuxf8ZjO/NiJ7EsOOWCVJu92Z0DT2RZ6YHGxJqmpl3cOCww90tp5bveSTWrZWXZV3Zpzc1Uja4UHRWpAb0SXfPPGm6BKjvx5sob1M9ynFufOb7RMq0KKyQVNCmo7rKq0rwZji27isxxIPy0Ozy9bds2ZWZ6tXLWrVunv//97yovL9fxxx+vgw7yijoD6AGsQ2CdPmuBtbSaswyrw6/xrlv2ldWisg6pXVqzqafrRVqQyYJPNpTQsrAqCrwWGDjzB6VKt3hDCC3zyoYM+ocO2qUNEbTaWv7CrFbw3YYm+tfxB7tCrFNjnaykGGl0dopiAoZyWlr85iLvDKN/6F9u/dnGzUWVrkmFTc44WoDKzjoSrAIAhAz73rVhf9ZaKoRuJ8fsxFdVfR+hoZV4J7fscX5FG6V8q2m1Ysfnscyq/X7UWHbAZkS2iWIasq+SvXVCrB8QDoEqfxF0Pyv5YpPDWMa4GwLo+jnlbtY/f0H1xQEF1VPio10dTlerqleCBqQnMvMf0MO1OSj11Vdf6bjjjnOBqJEjR+pf//qXjjrqKJWWlroC6H/605/0zDPPaM6cOZ27xQBClxVFtwBWK0Gs8rg+qjv8LEVFRXmdTzcssKBxeGDmiMaVrY6Wscwrf6c1kJ15zQk48zr/4ab3WzAroZfXrJ7FwP3qn6/We6349JAZPhjT5GxjYyeuqLzGpcZbR25LcaW2FFmx0UpV1/q8M5DujGPrwSp/LQc6cwCAkOAPWLWFDQm0mlSlefXDAesv7cSWNQs6+W1aKC37X9PHR9RnkNuJqsk/9Iqzm7J8L/vbCrKTcdXprP+RkRTr2th+aTsUVLdsqvX1daqsj1NcUaOlzSaOsRIHNmmM9W9cS413l0lxDP8DeoI2/yVfeeWVGj9+vP75z3/q0Ucf1Xe+8x0de+yxLlPK/OQnP9Ett9xCUArArlkwqKFj2sqQYDvDetTvvY6jDRl0zX+9rOmMitbxzBhef3+ZF9CyYJa/pkXvvRrXtSEF797iPcYCUxZAS8jwMqssy6r3yMbhiRbAsueLSQp6AMs6cWmJMa7tlZ2ywxlHy6yyzptdbq0PWFW1Eqyy2XFymtVxyEqJp+goACB0tVZP07Kjy/KazHLsTkBljmw8iVVd6mVk+2/biSq/dZ9Ky17xrltWlQWnLPhllzZUsM9or34Wgl5QvarGK6geOMux9XNKWyiobpLjolx/xp2QS7WAVby7TInjZBzQI4NSn332md566y1NmDBBEydO1H333aeLLrrIZUn5g1LTpk3rzG0FEG78wwd3xQqozri08bbVo7IMLDsbalNVBxZxt85pRJQ3S2Fg7Su/Mcc1BqWKNkjv/9G7Hp3QOAuhnXm1y/5TpOxxjbMSbfnGG1powS2rhWWPse23ZZFRHX7GcUxAmY4dglX1wSmbxtlmx2mt6KidebQ0ebu0YJV1EgEACFn2vRr4vW4GTfOan51Usu97y6iySwtaBbIsK/991rYHTOR06P81BqU2zJe2rfCCVlY/02YUtOcKkUzrniY2OlKDMhNdaz7zn/8knL+fY32ekspalVSWamVeY//GPwNgYOa4Bar6JMcpPTGGYBXQnYNS+fn5ys7OdteTk5OVlJSkXr0a/4O368XFzYbXAEBXsM5ia8MILQPrmD9IlYVewMofuLLhhBZYSu3f9GysrPPi82Y2tKZtjfen2br1QSk7a/vFo61v08gjpeFHeNetA/zlfwJqX9Q3N/uQ1cNK9YZCdkCwyoqOWufNhgD6ZwG0y8Cio/MDnseG+lnHzTpz/svedOQAAN2JnQhqbajgXkd5zb7z7bvbDQvMa7wemIG1ZbG0/rNmzx1dX3C9tzTxtMYAlpt5sKpxBmK+Mztt5j9TWVOrvJKqhtIG1rYWVSivtMrV5FybX+ZaoLjoSNevyUiM1pqCCA3bVKwBGcn0cYAu1q6BuM3/WPnjBdB9hw/W15vKGNb6ehbAslkI/cMCbfZB/wyEdoY18LHWSbVpr20GQgtmuSBWpddBNdGxjetaECx3QeuvO3ymtPfx3nWrf7XwKS/byrKvomKbXtrshr3qh0DW1ngzHbl1Y92wQys6asVCrU0Z3DSrytLivaLq3uw4tszqWFkLzKoyMVERLkjVOyBYZS0zOVZx0WRXAQC6GQsmxQ5qOqNwc/328Yb62+QrFnSykgBWHqA412v7BHy3f/taYwDLzTCcosiYZA3duk4RC4ukiac0zihcuN4LigVmYNv3Or+t2sz6Hs2LqvtPxrlgVXGFthR5wSq7bjMd2wm59dvLtXZbndZti9D2T9a5UT8WrLJsqr4pXj3OvnY9NV7JDAMEQi8odfbZZysuzvvPtKKiQhdccIHLmDKVlTY7FAD0wACWzeJjbWesgOr0i3dcbkMJLVBlZ2199cusftXYk5oOHbBMLTf7ULF3htWvvEDavKj11x05uzEoZUMR37s14M6I+m2vP2vbb7Ib3uCyquIjlRG7WeMGpEjDe7sOcXl1nUuN31piKfJV2lpSqbziSm0rrVS11XkoKNHm7UWKVJ0ifHWKVK0ifXUuezYrs5crqu4FwOKVEt++TC8gJNn09vwgAcJX3729FvidbieWLEhl389RAT+lLKhk37WV/hmGC6Wy7UotX6eI9ZIm/aBx3RVveUMDA9nJrSg76RQjHXp1Y/mCle94Qwjt+V2zSWUyvSGM1vyBLjh2Ms4CS9YC1db5XH/GAlW5BaV6M3+NC0Tll1W7YNW6/HLXAllNzuz6WY5tKKB3Gc8EMkBXBaXOOuusJrd/+MMf7rDOmWee2TFbBQA9KajlT+2vrm4MSg07pPUfwdb8bOjB+FOk2kqppqrZZaU3C2FgDQ3rEPvvtyhY4MyFgWeDrVP98d2NtyMilRCbpEERkRpkzzP0EGnabO9pizar8o3fqqK6zs2WU15Vq4qaWlVU1aq6zqfVSRO1oOJILdpQpOi6Sh209QlFxiYqMTlVKSkpSktNV6/0NCUnpyrCgncp9bVA7H1aUXrL7LJO9p508OyHgr/GR221tHWJdxbaaodZUM72o53ttrPRodaRtP1gx8jOvtu+d5c13vuw21ajzA0VrbfRsuwsWBLp1UezgKf/evN1S7Z6l+7+iPpm1yO9H0C2vp9l2gWu11X8gVw3qYFlJtr1+mNpddz81n7sDb/1/0hzGYQxjT/cLHPR/z7ss+CG4VbWZzuW1c/gVeZlM46Y2fi8lpno//zY5zWwXh2A8GbfM0mZXmtuwiles//D3ImmItWV5GtdyWsaMHpy0wCW9QPs+9v//5Av4P9+6yoEFmYvWOfNLtiiCGnmtY3lCixQ5mpbMqtgcza5iyuEnhKvvbISVbbcp2MOG67IqGhtK7FaVV69Kpv1eEv9MECryWn1qprXrPIPAwzMHLeglZVQsKAYgE4KSj300EPtfGoAQLs1DwhYx3XIjLY91gq+z77Ru26d4oZMLOscFzcLYNV4ty0oFDhLkZ8FBepZh82KhlqTAjKgIiJVXRehQVmDlZOR7YYD5udtUnr1FvmsU10qlW2WLByQW19cvShrPxWPnKPVxdKmbdvV77ObFOUPlPiHKLrLeKnvOGnkrMb3s/g/9UMn64dQNgyrLJMG7u/9GDAWZPjs/pb3kXX0bZpx/xlrCwit/sAL5gUGrix44TLcohtrktgyC4T4AyaBl9Zsxqa9jq7fhmrpnZu9/WqBJbv0N7udPV6acFrjdr32q9aPa9be0tT/13h7weP1QccW2JDSGZc13v7wDu9z0BI7w37wLxpvv/M7qSygZlpg0MuK/B70s8b7PvmbN4zF7m8IcllHPMKribbfjxrX/fJJb1ipe07/Z9v7nEdG2Oepb+O6H93pZQQ0pBUG8E8u4GdZBnnLWn5vtj3f+VPj7QX/bD3j0NYdfnjjttnfgX8/2GcNAHZ3huGkHOUnr5Fv2KFN19n7BK/5v4fse8v+v7FLa4GTowya7v3fbv/v23eLfd/YUMLCdd7twCLuXz8r5S70al7Z//FWmN2+09xQxRSvLAF2DFa5YujxGq+0JgXWLXvcglQui7y+btW2gGGA1gLZpMaZSbH1garGAut2m4lkgA4avgcA6EadYgsOWFNA5kxgAOvQq3acpchYoCFwuKJ1eGffVJ+RE5iZE+FCVDk+n3L8P+hr+qpq8i+1bXuh8rcXqKCwUEXFhSorLVZ0Tbk2VaRr5Yp8rdsSqe3vLtMxWwsUHx3pUuQTYkuVGButxJgoNwNPRGAQzTrhNoShNRac8rNZD9MH12dFRXozMdrZY3t/FowL7Ozb8y56pvXnHTyjMdhlj7UOf2tsOvEGEU0DPM3VVQesagEa2yafFBnjBcJsG91ltBcoC5Q53AuQuSCXnV0PCHglNCvub5lQtt0NQTHLxKtrzLQK5JY3u+2CaPYjqL42mp+9NwtKtaT5LFf2w8laS+xYBQal3DbVB6Qs28m234JR/svA4XTZE7wfXP4fce7HWn0dt+aZXvYZN7Y//bNnNlwme/f7sxhGHSUNP8zVZHPrAEBnsv+v3AmZVobh9R7htZbYSZnA/+/cySWfN7zQWiD7/+6omxtvf3KfVLi2fpKVFO//U5fNnC0lZzdmeYdxgXV/Tc7WhgFamQN/wMqaBau2llj5gyopt+kEYGkJMQ1ZVRaospqcFsDqlRirSItmAWGMoBQAhLudzVIUWFerNYEd4ug4xeaMU06OFBBSajILYFZeiSq2rnGv91y/nyvKV60YX6Wi66oU7atSTEWVEiOrlLypj5LrNrhio/0S65Q9+FDFJdgshf4gRf3ZX3+AIXB7D7pix+204WlW4yNwKm8LZORMagxcWVaZPzhjQZHmARSry2WXNjQi8NJ+TATO9mj7dMZPmw6ta7geueOPj2P/2PYhc4FZU7tyeCsZWIFDRP0OucoLcjUEr2obg1jNA1j7nOkFfxoCYgHZYBZYCzTm+PqgYeDQVLtuD/dJX2xoXHfyD+v3T0LToS4tGXqQ2mzaBV7gyT88cWcChz8CQChrHjiyTFkLTFkhdRv2Z0P17YSM/R9s9aoC2fehf4i/FW0PzDy1dY/+feP/l3nfet+JljUbOLSwYf2Ypt+1xn3nRfToYYCBbBIZmyjG6nL6C6x7dTorVVxRo8LyateWb2mavWzxKAtMWZDKhv9lJgUErJJiXXAM6OkISgEAOl3gLIAT+qUocv0XOvrovVReE+FS461tLqyv5VBcoa0WF7KRU6vyA55lhFLio5vUcHB1HGLilBYVY7lJO2dBjuZ1QCyTbN9zdqxnZEGjwIwqY8GsKWe37Q1bRzxj6M7X8dcY868fTC29XntqkNiwkLba2XAR2weBQSkbrtpZmh9PAOiJLOspa4zXdmb/8+trWpV6J2XcjIKbvEv7bgz8nvjqGalkU8vPkxKQeW1swhUbsm0nASy4ZbMBu9qRsV6B9sDv3FXve8MSLSPY/v/3t25YvN0Kn6clxrg2IiulaXJxVc0OQwC3lVYpv7RK1bWWeVXlWktS46NdcKpXYowLXnnXvdvpibEuSAZ0dwSlAABd3oHbKzulSVaVdc5yLUjlWrk2FVW6M4x2ttFa86KjsVER6l0frPJqOHiz5djZxnadZQwsTA8AQE+1swxpf7aTsQxXG5Zt9ScDa0/uimXO1ljdRau7VLhDvUpn7VypKODEhJ8FsWw4YWDW8+ZvvEvLSrbt6UaBKytNMDjTWlKL2VU2HNACVHklXqDKH7Sy4YBFFTWurWmhIoDFDW1YoAWoLMMqIzlWveszrSzrijpW6C4ISgEAQi6ryobsWdPAxuU2819eSUBKfH2zzlxVrU8bCytca95hS423zpp3dtEuMwKa1bJiWmcAAAIEDp+270gbAm1cfcEWhn8HskkxbLi0v96fmwyk/rJ5xmq/fbxMKxs67x9C7588xGoEBlry36YBLKuF5QJUGV4dLP9EI8aCZ5altacz+wbx5NywPtohYGWz/20vq9L20mrv0l2vUn5ZtQrKvCyrAne9WqvyAmpr1kuOi1JGwHBA6/dYdlV6QoxSE2LIskLIICgFAOgW7IzfgF6JrgWyukR2RtFfuyEwYFVeXdtQx0HNsqv80zq7jpqdVUysr+eQHOsCYinxzWojAQAQzmwo3i7X8WcwtSHr2D/DbqDqCq/eVeCEIMaKsNtA/fL8+pl3behhiVSwVirJaRqUsplcbQih1b+K8deerL9M6i2N+k7TAJbVqAysNxkiAaukuGjXBjSbP8QftCqprHEBq/wyy7CqbJJpVVJZW9/KtDZ/x4CVxepS4qJdcMqyrdItOFZ/3bsd64YOcuIOwUBQCgDQrdmsNf76Us07bKV2lrG+VoP/0jpudmkp85Ya31KGlf8MY3ZagrJT45WdFq+cNG9IIEVHAQDoJFbfsKUahzYRRuCsg1bE3QJUNhts84lJ/MMEbfZZy76y5pfSTwosdfjxX6WSLV62lWVt2aV/FkKrdRWiQRkLFtnJM2uDMncMAFp2uRegsr6P1bHyAlYF5V7/p6bO1zA0cP12G2K5I+vupCdYdpUXpPLXsfLXt7LgFTMHoscEpe6++27ddttt2rRpkyZOnKg777xT+++/f6vr33HHHfrrX/+qtWvXqnfv3jr55JN18803Kz6+HUVaAQA9mnXYkuOiXRuYsWOHrbq2boeAlaXGe0MCq9wZRpslJ3CmHOt7We0qC1D1TYt3ASu7bh0zziYCABAElvVkrbXZUmdd7w3/s4wql1VVf+lmIYxtWi/LgluWlVW4zmuB0gd5wxH98pZ7ReCtYHuIT55h2eX+CWaa85+0syGA/mzywrL6y/JqFZRXq6i8WrV1CijCvmO2ub9EggtaNWRb+YNYtszqWkXSP0LoB6WefPJJXXHFFbr33ns1depUF3A68sgjtXTpUmVlZe2w/uOPP66rrrpKDz74oA444AAtW7ZMZ599tvuw33777V3yHgAA3Y9lPGWlxrvWXFVNnTbbjIBFFY0F14sqXH0Hq2llTesLAzp/kV6h9eT62g12mRTrliXEhnbHFQCAHsWCIA0ZVxmtz35r682+ycu2Kt7YOPtgUa5UusUrqB4YwPr0Pm+2QJtZMLG3lJzltaQsL0BmQSz/ujYs0IYPWvAqsr62VYgEZwJP2rU0NNBfGsEfoLITdgUBta3c8rJql23lD2StaeW1rEyCf2igZXXZa9pMyl5rvG3rIXx1eVDKAknnn3++zjnHmx7UglMvvfSSCzpZ8Km5jz76SDNmzNBpp53mbg8ZMkQ/+MEP9MknnwR92wEAPVNsdKTLrgrMsHKz5FTUNASobFZAC1hZZlVFdZ1Lf28pBT4pNsoLUiXHNgStLFiVGhsanVMAAMKW1ZJK7uO1nIlNZyB0MwfWqy6XkvpIpVu9wJQFraxtrr+/7zhp//MbZx58/dfNXiiiMUiVNUaacnbjXSve8updxaVK8WleNpYVcu/CIJYNy7MJYqwNVdNZAwP7RJZhZUMCLUjlD2IVuiBWtcvGsjIJm4sqXdsZm0U5MSZSGzZEqHjeevVK8rLQ/S01wQtiUZy9Z+rSoFRVVZXmz5+vq6++umFZZGSkZs2apblz57b4GMuOeuyxx/Tpp5+6IX4rV67Uyy+/rDPOOCOIWw4ACDdulpz6ztFe2SkNy2tq61yBdavXYLMD+us3WMHR4ooa1ykrzd+x0GhdXZ22bojUxg9WKys1Qb1TGrOrLHBF7SoAALpwBsKoxu96N1zwkF94WVAVBVLJVq+YujULVGUMbVzXalntwOcNE7QWEZBBbTMVfvOfHVe3bCybWbDfJGnMcQrlPtGgVoraW9a5l1VVpaKKatcnsmYF2osDblvgymZRrqiuVl5FhL7aUKTIyJKdFme3IuzJ8dFKjI1WUmy0EuOiXNaVzarsvx0bxdDB7qJLg1J5eXmqra1V3759myy320uWLGnxMZYhZY878MADXYS2pqZGF1xwgf7v//6vxfUrKytd8ysq8grdVVdXu9YZ/M/bWc/fXbAfPOwHD/uBfdCT90PvxGjX9spq2jGrtEKjZdVesKq+4Kh/dpziijpV1Eort5Zo9bYdZ8ZJS4h2ASqbEbB3/XTO1qzAaHQPCVj1xM9Ce+3pe6efAz+OS+jhmPTQ4xKdLKVbCwhEeU9YfyVSOvI2L2PKAlTW7HqtBaVqvLpW/nVrKhTRbz9F+Auy28yDVVa/qcYVYPeVFcjnX9dXp8jPH5YvbaB8vYZ6wwWbF3kPIRYOSo+PVLqr+9x67WcLSlmgqqCkQm9UrtaY0Zkqrfa5gFVhhdW3soLs1aqtlQtwWWuLGMu+io3aoe5V4GVcDCUWOvPvpa2PifBZZKeLbNy4Uf3793dD8qZPn96w/Morr9S7777b4pC8d955R6eeeqpuvPFGV4Nq+fLluuyyy9wQwF//unmapHTdddfp+uuvb7E2VWJiG6YqBQCgE1TVSsXVUkm1VFwT4V26FqHq2p08MEJKipZSYnxKibFLKbn+eqKNDOCkYLdSVlbmTrgVFhYqNTW13Y+nnwMAPYyvTjG15Yqv3q6aqHiVx/Z2i+OrtmmvTS80rhYRofKYTJXHZqouIkqFCYNUGp/j7oupKVFmyVKXXuRz4SHvsi4yWnUR0SqL7a2K2Ey3boSvRnHVRaqLjHH3eS3Ky9YKEa5MV51UViOV17fKughV1sprdfWXtd6yujZGOCwmlRTtc/0na/FRUkKUTwnRdinFR0txkSFTDqzH9nG6NChlw/esw/TMM89ozpw5DcvPOussFRQU6D//2TGV8aCDDtK0adPcbH1+Npzvxz/+sUpKStzwv12dQRw4cKDLttqdzl9bI4Kvv/66jjjiCMXExChcsR887AcP+4F94Md+2Pl+sK9lK6juz6zyz3xjGVZ2aenwrbEEKpumuSGzyl3GuduW6h5qaex8Frx+ic0kvLtBKfo58OO4hB6OSWjqtselslgRuV9I21crYvsqL6sqgG/MCfINPcS7sX2VIufe2epT+UYeJd/I2d6Noo2K/OAPO65kgamoGPmGHtq4bnmBIhf8wyveHhkjn9W/Su4rX3Jfd6n49N2O4HTUcbF+lA0HLKuqUWllbUCtq2ptry/Sbsusr9UWdrLPFWavL8qeHG9F261QfJRS4mKUZJfudnSPLL1QvQfHpa19nC4dvhcbG6spU6bozTffbAhKWY0Nu33JJZe0Gm1rHniKivLS7lqKr8XFxbnWnO3Qzv5PKBiv0R2wHzzsBw/7gX3gx35ofT/ExtrIgAQNbzq63X3PFVfWeMGqEqtb5dWu8teysplw8stqXJPKdkhj99erskuvedctvb0rA1bh/FnY0/dNPwfNcVxCD8ckNHW74xKTIY2c6V23373l26X8VVLJJu925lB7U979SZnSsPoAlfuNbDWtaqXaKq+l929c1wIpFlzy39fAHlPl3e9f11KUCte2vo1DDpLGn+xdt+GKW5dIydlSYqZXVD5Ix8UGNSYn7PjdGKiiuj5gZcEqq3tV7tW5aqx/Va0SS7uSVFxZp+LKKqlo50MHbTZmC14lB8wuaNddDay4+mCWtdhoV0y+O4nZjePS1vW7fPa9K664wmVG7bvvvq5w+R133KHS0tKG2fjOPPNMN8Tv5ptvdrePO+44N2Pf5MmTG4bv2bA9W+4PTgEA0BNZ4MhqI1gb2jtph4CVda78garGwutePavqWp+bLdBacwkxUeqd4gWo/DMEuhkDk2IVT70FAABCi51ISszwWkssKOUPDu1K+kDpyJsaA1guOFVflN1mIYwJqAeVkC7te6633NazwJgFxYqt4PsWKTmrcd3iXOmz+wMKt/fyglMJ9dvdZ7TUa7C6ivVvrPVNbb3eVW2dTyUBgSq7tNvFlf7LGu+yosadGLTZmCuqq7S1pGqXh89mZ7ZAVXJ9FpZdJtmlPyMrrvF2T591sMuDUt///ve1detWXXvttdq0aZMmTZqk//3vfw3Fz9euXdskM+pXv/qV65Tb5YYNG9SnTx8XkLrppvo/JAAAwpB9N6Ynxro2IqBPaOpcBlVjoMra1mIveGWBrPLqWq3LL3etOcuiyvAXWa+/9G7HuSmaQ21IIAAA2E32nR4d57WWxCRIORNbvs8ysaygu58FtlIHeDMUWoCrbJvX/Ow1/EGpgnWK/PQBDd+cq8jPNkix8V4R9yjbllgpe7yUMcxbt7JYylvmBdDsNV0h+dr616+VMkc2Pm9VmbR2rpTU2wuIJfZuGmTbBQsGpSXGuLYzdmLQAlL+mQW9y8bZBkvqg1pueWWN23TLwnKZWEW73g7riyXXzzyYFtCsYLv/enc+idjlQSljQ/VaG65nhc0DRUdH6ze/+Y1rAABg1yxF3D9kby+l7DBls80G6AJV9cMALWCVX1rpOktWc6Gsqlzrt+8YsIqOjHCzAVqQKsNmCnRBscaOknWgCFoBABAGIi0oEhAYyRwuHfILOzMmVRZKZfleK6+/tNkD/SxYVb5NyZWbpa2LdxzqZ9lV/qCUZWV9/o/Wt2PvExqDUhYQW9xYHN6JTa4PUGVKA/aT+u7tLbfsr5pyKdoCYu0bpmZ9nYTYKNf6pOx82KCdKCyrrvWCVwHZVqWVjdcteGW37dKKtnt9sVptKW6sIdlcXHRkQ//LMqwskGUtIca77rYvJsrdZ5c21DBU+mghEZQCAABdIzY6Utlp8a61VG/B6ixYoMoCV/7rdmm3LVXdUtRdmvrmkhaDVpZNlZ4Q651ptM6S6zDFuutJ3aiUBwAA2A2R9UP3rFmgqiW9R6lu2iVaU/ayBkzY30I3Um2ll21lwwTTBjSuawGjzBFeIfZIm3Y40rt0t6O8GlYN68ZK/faRyvKk0m1SdalUVeK1gjVSxtDGdbevlvzF4e35LDhlzTKrohOkIQdK/SY1Zmtt+kqKTfKCXHEp3vWYxF0WercTha7WVFy0lOrzMr5aqbfln/zGAlRF9cMHrWC7Vwuryi2zmliW8V5ZU+eCVjsLXAWyzbTg1GWzRrqyEF2JoBQAAGiRpYLnpCW41tKZPusUWb0qC1BZZtX2Mq9gaEF5VUN9hfzSatdaYpOb5K6P1Kp3VqpPanzDTIEMDwQAIIzEJrpMqILEYfIN2L+xsHpLLAvqgJ+07XnT+ktTzmq8XV3uZWWV5nmBqoyAIJkFwfxsSKA/eOUXOGyxZIu08MkdX89qZ1lwatRRXhDLbF8jffFY4zBDy8iy6/7bex0rjfLPhJgrzb3LC4pFxSgiMlpJ9S3LgnH9JkujD6jfxjovsysmUZW1da5PZsXarR9WWlWr8qoaF6yyoFZ5faaVtYr6AJbFwuy2ZVh1NYJSAACg3exMn9WYstZacVBLTfdPvVxQf1bPrttZPrtdUlGnmjq54uubi3csCmozBvZKjK0PVMV5war6oJVlXEX3wKmXAQBAJ7GaWJZ1FZh55dd3rPSdO6SaCi94ZZfuul2WS2kDG9e1AFHfcV7QqrI+eGXrWk0ty6JyMx7Ws8CTFYHf6bDHepYVFhgIay4wiGZBtbdvcllccUmZykrsrSxXO6u3lJ4upWR72WktqKmtc0MILVgVGwJ9KYJSAACgw1lxUH/h9daUlFfq2f+u1uSpA1VUWefqWnlZV16zGQMbU9GLmzzWEqhsdhoLWvmHBFp9K/+lDReMi+6+RT8BAECQWefCAlfWdsbqYe1/ftNltQHZVXGpjctT+kkHXOoFn9xwQ3+rvx0dUD4hJUc65JdeFpWbAbG+kLubCdEKx/dvXLe8wLu0gFnheq8FCszAcnW4HvG2Ky5Z0XGpSo1LUergA3Y53DAYCEoBAIAu4Ypyxkqjs1MU0yxV34YHWjbVNjdbYOMQwW0BAaui8hrX1rTy/DbdsmVyWf2qXoFBqyTvdneeqQYAAISQqGgpId1rgawmVWu1tJqLjpVS+7Vt3T6jpGP+0DgU0V3WD02sLJKSMhvXrSiQijZIshbAglIhgKAUAAAIyeGBbla/pFiN7Ltj4U+bkcbVryqrdoXX/cMD7bYFraxegtVUKG1l5kBjM880CVbVzx7ohiUmxrgCoNS0AgAAISkqRkrN8drO2HDFqRdIFUVSVbF3WV0mRe98psBgISgFAAC6FQsUpcTHuDYwo+V1rE6CFVzfXuoVXm8IXtllaZULWFVU17l6VtZay+Tqlx6vHx/cxjOcAAAAoSY2Scoao1BFUAoAAPQ4CbFRSohteeZAU1lT6wqub28IVlUFXK92swdatlVldV3Qtx0AACBcEJQCAABhx4qgZ6VaCygwGqC6ts4Fp+wSAAAAnYOgFAAAQDMxUZHqkxIatRYAAAB6qsiu3gAAAAAAAACEH4JSAAAAAAAACDqCUgAAAAAAAAg6glIAAAAAAAAIOoJSAAAAAAAACDqCUgAAAAAAAAg6glIAAAAAAAAIOoJSAAAAAAAACDqCUgAAAAAAAAg6glIAAAAAAAAIOoJSAAAAAAAACDqCUgAAAAAAAAg6glIAAAAAAAAIOoJSAAAAAAAACDqCUgAAAAAAAAg6glIAAAAAAAAIOoJSAAAAAAAACDqCUgAAAAAAAAg6glIAAAAAAAAIOoJSAAAAAAAACDqCUgAAAAAAAAg6glIAAAAAAAAIOoJSAAAAAAAACDqCUgAAAAAAAAg6glIAAAAAAAAIz6DU3XffrSFDhig+Pl5Tp07Vp59+utP1CwoKdPHFFysnJ0dxcXEaNWqUXn755aBtLwAAAAAAAPZMtLrYk08+qSuuuEL33nuvC0jdcccdOvLII7V06VJlZWXtsH5VVZWOOOIId98zzzyj/v37a82aNUpPT++S7QcAAAAAAEA3DErdfvvtOv/883XOOee42xaceumll/Tggw/qqquu2mF9W56fn6+PPvpIMTExbpllWQEAAAAAAKD76NLhe5b1NH/+fM2aNatxgyIj3e25c+e2+JgXXnhB06dPd8P3+vbtq3Hjxul3v/udamtrg7jlAAAAAAAA6LaZUnl5eS6YZMGlQHZ7yZIlLT5m5cqVeuutt3T66ae7OlLLly/XRRddpOrqav3mN7/ZYf3KykrX/IqKitylrW+tM/ift7Oev7tgP3jYDx72A/vAj/3gYT+wDzrivdPPgR/HJfRwTEITxyU0cVx63nFp62MifD6fT11k48aNriaUDcWz7Ce/K6+8Uu+++64++eSTHR5jRc0rKiq0atUqRUVFNQwBvO2225Sbm7vD+tddd52uv/76HZY//vjjSkxM7PD3BAAA0FZlZWU67bTTVFhYqNTU1HY/nn4OAADozn2cLs2U6t27twssbd68uclyu52dnd3iY2zGPasl5Q9ImTFjxmjTpk1uOGBsbGyT9a+++mpXSD3wDOLAgQM1e/bs3er8tTUi+Prrr7uC7P66V+GI/eBhP3jYD+wDP/aDh/3APgjMbNpd9HPgx3EJPRyT0MRxCU0cl553XNrax+nSoJQFkKZMmaI333xTc+bMccvq6urc7UsuuaTFx8yYMcOd/bP1rP6UWbZsmQtWNQ9Imbi4ONeasx3a2R/2YLxGd8B+8LAfPOwH9oEf+8HDfgjvfbCn75t+DprjuIQejklo4riEJo5LzzkubV2/SwudGzu79/e//12PPPKIFi9erAsvvFClpaUNs/GdeeaZ7iygn91vs+9ddtllLhhlM/VZoXMrfA4AAAAAAIDuoUszpcz3v/99bd26Vddee60bgjdp0iT973//ayh+vnbt2oaMKGMp6a+++qouv/xyTZgwwdWksgDVL3/5yy58FwAAAAAAAOhWQSljQ/VaG673zjvv7LDMiqJ//PHHQdgyAAAAAAAAdIYuH74HAAAAAACA8ENQCgAAAAAAAEFHUAoAAAAAAABBR1AKAAAAAAAAQUdQCgAAAAAAAEFHUAoAAAAAAABBF60w4/P53GVRUVGnvUZ1dbXKysrca8TExChcsR887AcP+4F94Md+8LAf2AeB/RF//2RP0c8JXxyX0MMxCU0cl9DEcel5x6WtfZywC0oVFxe7y4EDB3b1pgAAADT0T9LS0jrkeQz9HAAA0B36OBG+jjo1103U1dVp48aNSklJUURERKe8hkUErTO4bt06paamKlyxHzzsBw/7gX3gx37wsB/YB8a6YdZZ69evnyIj97yqAv2c8MVxCT0ck9DEcQlNHJeed1za2scJu0wp2xkDBgwIymvZQeMPiv3gx37wsB/YB37sBw/7gX3QERlSfvRzwHEJPRyT0MRxCU0cl551XNrSx6HQOQAAAAAAAIKOoBQAAAAAAACCjqBUJ4iLi9NvfvMbdxnO2A8e9oOH/cA+8GM/eNgP7IPuiuMWmjguoYdjEpo4LqGJ4xK+xyXsCp0DAAAAAACg65EpBQAAAAAAgKAjKAUAAAAAAICgIygFAAAAAACAoCMoBQAAAAAAgKAjKNUJ7r77bg0ZMkTx8fGaOnWqPv30U4WT6667ThEREU3a6NGj1dO99957Ou6449SvXz/3np9//vkm99ucAtdee61ycnKUkJCgWbNm6dtvv1U47YOzzz57h8/GUUcdpZ7k5ptv1n777aeUlBRlZWVpzpw5Wrp0aZN1KioqdPHFFyszM1PJycn67ne/q82bNyvc9sOhhx66w+fhggsuUE/y17/+VRMmTFBqaqpr06dP1yuvvBJWn4W27Idw+Cz0FOHex+lq9DVCE9/9oYnv4NB3yy23uP/LfvrTnzYs47iE5m/4zjwuBKU62JNPPqkrrrjCTZv4+eefa+LEiTryyCO1ZcsWhZOxY8cqNze3oX3wwQfq6UpLS93xtg57S2699Vb95S9/0b333qtPPvlESUlJ7rNhf+Dhsg+MBaECPxtPPPGEepJ3333X/Yf98ccf6/XXX1d1dbVmz57t9o3f5ZdfrhdffFFPP/20W3/jxo066aSTFG77wZx//vlNPg/2d9KTDBgwwHW45s+fr3nz5unwww/XCSecoK+//jpsPgtt2Q/h8FnoCejjdD36GqGJ7/7QxHdwaPvss8/0t7/9zQUOA3FcQvM3fKceFx861P777++7+OKLG27X1tb6+vXr57v55pt94eI3v/mNb+LEib5wZn9azz33XMPturo6X3Z2tu+2225rWFZQUOCLi4vzPfHEE75w2AfmrLPO8p1wwgm+cLJlyxa3L959992G4x4TE+N7+umnG9ZZvHixW2fu3Lm+cNkP5pBDDvFddtllXbpdXaFXr16++++/P2w/C833Qzh/Frob+jihhb5G6OK7P3TxHRwaiouLfSNHjvS9/vrrTfoAHJfQ/A3f2ceFTKkOVFVV5SLxlirtFxkZ6W7PnTtX4cRSxS21fNiwYTr99NO1du1ahbNVq1Zp06ZNTT4baWlpbuhDuH023nnnHZfavtdee+nCCy/Utm3b1JMVFha6y4yMDHdp/0fYGdTAz4Klxg4aNKhHfxaa7we/f/7zn+rdu7fGjRunq6++WmVlZeqpamtr9a9//cudObchBOH6WWi+H8Lxs9Ad0ccJffQ1Qgff/aGH7+DQYpmFxx57bJP9bzguofkbvrOPS/QePwMa5OXluf/w+vbt22S53V6yZInChXV+Hn74YRd0sLS/66+/XgcddJAWLVrkxtqHI+skmpY+G/77woEN3bM0z6FDh2rFihX6v//7Px199NHuP7OoqCj1NHV1dW6M/IwZM9wPbWPHOzY2Vunp6WHzWWhpP5jTTjtNgwcPdl9+Cxcu1C9/+UtXg+PZZ59VT/LVV1+5DrANn7Ex+M8995z23ntvLViwIKw+C63th3D6LHRn9HFCH32N0MB3f2jhOzj0WHDQhoDb8L3m+FsJzd/wnX1cCEqhw1mQwc/GCNsH3H5sPPXUUzrvvPO6dNvQtU499dSG6+PHj3efj+HDh7vsqZkzZ6onngWy/8jDoaba7uyHH//4x00+D1aY1z4HFrC0z0VPYV/u1vm1M+fPPPOMzjrrLDcWP9y0th/sx0G4fBYA9Hx894cWvoNDy7p163TZZZe52ms2YQZCx85+w9vEGZ2J4XsdyIYdWLZH8yr0djs7O1vhyiKqo0aN0vLlyxWu/Mefz0ZTlhpqfzc98bNxySWX6L///a/efvttV2jTz463DYMpKCgIi89Ca/uhJfblZ3ra58HOLI0YMUJTpkxxMzRZkeI///nPYfdZaG0/hNNnoTujjxP66Gt0Pb77Qw/fwaHFhoHZ5Bj77LOPoqOjXbMgoU3QYNct84bjEnq/4Tv774WgVAf/p2f/4b355ptNUnjtdmDdjHBTUlLiznbbme9wZcPV7A828LNRVFTkZsYJ58/G+vXrXU2pnvTZsNqz1im19PC33nrLHftA9n9ETExMk8+CDVOyMds96bOwq/3QEjuTaXrS56El9r1QWVkZNp+FXe2HcP4sdCf0cUIffY2uw3d/98F3cNeyLGgbUmnf8/627777uvpF/uscl9D7Dd/pfy97XCodTfzrX/9ys5w8/PDDvm+++cb34x//2Jeenu7btGmTL1z87Gc/873zzju+VatW+T788EPfrFmzfL1793YzkfT0WSS++OIL1+xP6/bbb3fX16xZ4+6/5ZZb3GfhP//5j2/hwoVuFrqhQ4f6ysvLfeGwD+y+n//8526GBvtsvPHGG7599tnHzbxRUVHh6ykuvPBCX1pamvsbyM3NbWhlZWUN61xwwQW+QYMG+d566y3fvHnzfNOnT3etJ9nVfli+fLnvhhtucO/fPg/2dzFs2DDfwQcf7OtJrrrqKjf7kr1H+7u32xEREb7XXnstbD4Lu9oP4fJZ6Ano43Q9+hqhie/+0MR3cPfQfAZejkto/obvzONCUKoT3Hnnne6AxcbGuumTP/74Y184+f73v+/Lyclx779///7utv3o6Onefvtt10Fs3s4666yGqZp//etf+/r27es69TNnzvQtXbrUFy77wDpms2fP9vXp08dNKTp48GDf+eef3+N+zLT0/q099NBDDevYj4OLLrrITUucmJjoO/HEE13nNZz2w9q1a13QISMjw/09jBgxwveLX/zCV1hY6OtJzj33XPdZt/8P7bNvf/f+znC4fBZ2tR/C5bPQU4R7H6er0dcITXz3hya+g7tnUIrjEpq/4TvzuETYP3uebwUAAAAAAAC0HTWlAAAAAAAAEHQEpQAAAAAAABB0BKUAAAAAAAAQdASlAAAAAAAAEHQEpQAAAAAAABB0BKUAAAAAAAAQdASlAAAAAAAAEHQEpQAAAAAAABB0BKUAoJNFRETo+eef7+rNAAAA6FD0cQDsKYJSAHq0s88+23WYmrejjjqqqzcNAABgt9HHAdATRHf1BgBAZ7PO2UMPPdRkWVxcXJdtDwAAQEegjwOguyNTCkCPZ52z7OzsJq1Xr17uPjuj+Ne//lVHH320EhISNGzYMD3zzDNNHv/VV1/p8MMPd/dnZmbqxz/+sUpKSpqs8+CDD2rs2LHutXJycnTJJZc0uT8vL08nnniiEhMTNXLkSL3wwgsN923fvl2nn366+vTp417D7m/ewQQAAGiOPg6A7o6gFICw9+tf/1rf/e539eWXX7qO06mnnqrFixe7+0pLS3XkkUe6Dt5nn32mp59+Wm+88UaTDpl1+C6++GLXkbPOnXXGRowY0eQ1rr/+ep1yyilauHChjjnmGPc6+fn5Da//zTff6JVXXnGva8/Xu3fvIO8FAADQ09DHARDyfADQg5111lm+qKgoX1JSUpN20003ufvtv8ELLrigyWOmTp3qu/DCC931++67z9erVy9fSUlJw/0vvfSSLzIy0rdp0yZ3u1+/fr5rrrmm1W2w1/jVr37VcNuey5a98sor7vZxxx3nO+ecczr4nQMAgJ6MPg6AnoCaUgB6vMMOO8ydmQuUkZHRcH369OlN7rPbCxYscNftrN7EiROVlJTUcP+MGTNUV1enpUuXutT4jRs3aubMmTvdhgkTJjRct+dKTU3Vli1b3O0LL7zQncX8/PPPNXv2bM2ZM0cHHPD/2bsPOLmq+v//7+19N9uSTe8hPUCQJASEQAhNICKiX3oRf4gggojyR6qoCH4RBZQv0pQmooAgNZRQpENCCKT3spvdzfbe5v/4nLuzLRuym+zuzM68no/HYWbu3Jm5J5fdPfO5n/M5h+xjrwEAQKhjjAOgvyMoBSDk2QCpY6p5T7H6CF0RExPT7rEN9GzQZ6zWw6ZNm/TCCy9o0aJFbvBnqfK/+93veuWYAQBAaGCMA6C/o6YUgLD3/vvv7/J40qRJ7r7dWh0Gq7vg99///leRkZHab7/9lJKSolGjRum1117bp2OwAqDnnHOOHnnkEd1xxx2699579+n9AAAAGOMACHZkSgEIebW1tcrLy2u3LTo6uqXQphX2POigg3TooYfq0Ucf1Ycffqj777/fPWfFOq+//no3mLrhhhtUUFCgSy+9VGeddZYGDRrk9rHtF110kQYOHOiuCJaXl7tBne3XFdddd51mzpzpVraxY/3Pf/7TMmAEAADYHcY4APo7glIAQt5LL73kljBuy64Arly5smXVmL///e+6+OKL3X6PP/64Jk+e7J6z5Y1ffvllXXbZZfra177mHltthNtvv73lvWwwV1NTo9///ve68sor3UDw1FNP7fLxxcbG6uqrr9bGjRtdqvxhhx3mjgcAAOCrMMYB0N9FWLXzQB8EAASK1T14+umnXeFNAACAUMEYB0B/QE0pAAAAAAAA9DmCUgAAAAAAAOhzTN8DAAAAAABAnyNTCgAAAAAAAH2OoBQAAAAAAAD6HEEpAAAAAAAA9DmCUgAAAAAAAOhzBKUAAAAAAADQ5whKAQAAAAAAoM8RlAIAAAAAAECfIygFAAAAAACAPkdQCgAAAAAAAH2OoBQAAAAAAAD6HEEpAAAAAAAA9DmCUgAAAAAAAOhzBKUAAAAAAADQ5whKAQAAAAAAoM8RlAKALnjooYcUERGhjRs37nHfUaNG6dxzz+2T4wIAANgXjHEABBJBKQAhP8jqrP385z8P9OHp8ssv14EHHqiMjAwlJiZq0qRJuuGGG1RRURHoQwMAAEEs2Mc4ba1bt07x8fHu2D7++ONAHw6AIBMd6AMAgN520003afTo0e22TZ06VYH20Ucf6bDDDtN5553nBmtLlizRLbfcoldffVVvvfWWIiO5bgAAAPrfGKfjRbjo6GjV1tYG+lAABCGCUgBC3nHHHaeDDjpIweadd97ZZdvYsWN15ZVX6sMPP9Ts2bMDclwAAKB/CNYxjt/LL7/s2lVXXaWbb7450IcDIAhxGR5A2Hv99dddxlJSUpIGDBigk08+WStWrNjj63w+nxtgDRs2zE2/mzdvnr744ot9Ohar1WBKSkr26X0AAAACOcapr6/XZZdd5ppddAOAzpApBSDklZaWqrCwsN22rKwsd2tT5ewq45gxY1w9p+rqat15552aO3euPv3005YgUWeuu+46N2A7/vjjXbP9FyxYoLq6ui4fW0NDgwtA2WuWL1+uX/ziF0pJSdHBBx+8Dz0GAADhIJjHOHfccYeKi4vd2Oapp57ah14CCGUEpQCEvPnz53d6BdD89Kc/dYXG33vvPXdrFi5cqAMOOEDXX3+9/vrXv3b6ngUFBbr11lt1wgkn6LnnnnPFO80111yjX//6110+Niv4OWfOnJbH++23n5599tmWYwEAAOhvY5y8vDz98pe/1O9+9zulpqbuQw8BhDqCUgBC3t13360JEybssj03N1dLly51dQ7aBoGmT5+uo48+Wi+88MJu39OuPtrVwksvvbRlsGZ+/OMfdysoNXnyZC1atEiVlZV699133fuy+h4AAOjPY5yf/exnLkPre9/7Xrf7BCC8EJQCEPJsKlxnRUA3bdrUkp3U0aRJk1xhTgsWWR2G3b12/Pjx7bZnZ2crPT29y8dmVw/9VzmtzsNjjz3mbi1NfsaMGV1+HwAAEH6CcYzz/vvv6+GHH9Zrr73GSsIA9ojfEgAQRE455RR3+/e//z3QhwIAANBtlp1lxdVHjx6tjRs3uuave2UZXJs3bw70IQIIImRKAQhbI0eOdLerVq3a5bmVK1e6QqGdXUFs+9o1a9a49PS2dRisqOfeqq2tVVNTkytcCgAA0N/GOBZ0smwrC0p1dNJJJyktLY1VhgG0IFMKQNgaPHiw9t9/f1fos+3gyFbBe+WVV9xqM7tjU+5iYmLcKjb+gqL+lWa6wj7Plkru6L777nO3naXiAwAABPsY595779XTTz/drll9KmOFzx999NF96huA0EKmFICwdtttt7nlkm0FvAsuuKBluWS7imfLJ++O1VW48sor9Zvf/Ebf+MY33OBuyZIlevHFF1uWYv4qixcv1o9+9COdeuqprmaDFRR9++233ZLJFpA688wze7inAAAgnARqjLNgwYJdtvkDY4cffjgX3gC0Q1AKQFizq4EvvfSSWxr5uuuuc1cGbcD029/+ttO087ZuvvlmxcfH65577tEbb7yhWbNmuauPtoTynkybNk3z5s3Tv//9b1dfwa5Ejh071h2DLeEcGxvbg70EAADhJlBjHADojghf25xMAAAAAAAAoA9QUwoAAAAAAAB9jqAUAAAAAAAA+hxBKQAAAAAAAPQ5glIAAAAAAADocwSlAAAAAAAA0OcISgEAAAAAAKDPRSvMNDU1afv27UpJSVFERESgDwcAAIQxn8+n8vJyDRkyRJGR+36tkHEOAADoT2OcsAtK2UBt+PDhgT4MAACAFlu2bNGwYcP2+X0Y5wAAgP40xgm7oJRdOfT/w6SmpvbKZ9TX1+uVV17RggULFBMTo3ASrn0P136Hc9/Dtd/h3Hf6HV797qu+l5WVuSCSf3yyrxjnhC/OS/DhnAQnzktw4ryE3nnp6hgn7IJS/lR2G6j15mAtMTHRvX+4/UCFa9/Dtd/h3Pdw7Xc4951+h1e/+7rvPTXVjnFO+OK8BB/OSXDivAQnzkvonpc9jXEodA4AAAAAAIA+R1AKAAAAAAAAfS7spu8BAID2K6M0NDSosbFxt2nb0dHRqqmp2e0+oaon+24p71FRUT12bAAAYM/s77f9PUfvjYX2dYxDUAoAgDBVV1en3NxcVVVVfWXQKicnxxXO7qm6R/1FT/bdXm8rzyQnJ/fY8QEAgN2rqKjQ1q1b3d9z9N5YaF/HOASlAAAIQ01NTdqwYYO7sjVkyBDFxsZ2Otiw/WxQZwONyMjwmvXfU323AV1BQYEbGI8fP56MKQAAepll9djfXSvSnZ2dHXYX1vpqLNQTYxyCUgAAhGmWlA00bKleG7Dtju1j+8bHx4dlUKqn+m4D4o0bN7o0eIJSAAD0Lvt7awET+/ubkJAQ6MMJ6bFQ9j6OccJrdAkAANoJt0BToHCFFgCAvsff3+D/N2YkCgAAgsL+++/v2uTJk92VNv/j73znO11+j2effVaXX355tz/73HPP1R133NHt1wEAAOwJY5zdY/oeAAAICkuXLnW3lgJuAzX/47ZspUBbBWZ3TjrpJNfQe6rrGlUTXgsxAgCwTxjj7B6ZUgAAwNVdqG1o7LTVNTTt9rnutL1d/WbUqFH62c9+poMPPljnnHOO8vLyNG/ePM2cOVNTpkzRJZdc4moemIceekgLFy509xcvXqypU6fq4osv1owZM9y+H3/88R4/zwp6nn/++Zo+fbrmzJmjm266qeW5m2++WZMmTWq5wrlp0yZVV1e7K5129dM+Z8GCBQpVb6zK1y0vr9KqEqZDAAD6/xinp1p/G+NMnTrVtRtvvHGPYxz//r01xiFTCgAAqK6xSTc8++WuT/h8qquvU2xMrBUN2KfPuOGkyYqL3rsi3zt37tQHH3zg6hbU1NToueeecyvB2Oo6J598sv7xj3/ou9/97i6vW7lype6//3796U9/0j333KNrrrlGL7/88ld+1i9/+UvV1ta6q5g7duzQN77xDTdIs4HY7373O+Xm5rqiqVVVVa4m14svvqiSkhJ9+aX371dUVKRQlZkUq8YmaWtlBEtsAwD69xinB/W3Mc6yZctcwOnQQw/VxIkTdzvGef7551VaWqrly5e7x70xxiFTCgAABD2rh+AvpGlXDO2qol2xO+CAA9yVwc7S4M24ceM0a9Ysd9+yntatW7fHz3r11Vd14YUXusFXUlKSzjrrLC1atEipqaluueMzzzxT//d//+cGZrYajR3HihUr3NXKJ554QjExMQpVEwalKDoyQhX1Ul5ZbaAPBwCAfu/cAI5xzj777D2OcVatWqUf/vCHvTbGIVMKAAAoNirSXeXryAZH5WXlSklN2eeV+uwz9pZdMfS7/fbblZ+f764q2oDpiiuucFcWO2PP+1lhUavX0F3+gaK9/v3339e7777r0uZnz56txx9/XIcddpjLknr99dfdYO+qq65yA8j09HSFmviYKI0fmKQNG6Uvt5dpRFZKoA8JAIC9GuP09GeE4hhn7ty5brsFx2yc0xtjHDKlAACAG5RY2nlnLTY6crfPdaf11LLMxcXFysnJcYMxq73w5JNPqifNnz/fpcPb9LTKyko98sgjLq29vLzcTeezINS1117rUt6XLFmirVu3ur5Z8VFLfbfXbdmyRaFqypBUd/tFblmgDwUAgH0a4/RU669jnIcffjjgYxwypQAAQL9y2WWX6dRTT3VFPYcMGeIGWD3JBmM/+tGPXMq61XOwIuannXaaG5jZ59ogzgZoluZuRUntquLVV1/tBmp2ldKm+1mR9FC136AUV14sv7xO+WU1GpjaeqUWAAAE/xhn2rRp7vG3v/3trxzjvPPOO/r5z3/usuV7a4xDUAoAAAQVW4nGCof72fLJbY0YMUIffvjhbusyWDNHHHFEuzoMtnJMx/fysxVt2qbRP/DAA27qYllZmauzYIYNG+ZS2Ds67rjjXAsXCbFRyknwipx/sb2MoBQAAP1sjNPRV41xbAqfjYX2tYzD7jB9DwAAAN0yPNkLSn2+rTTQhwIAAPoxglIAAADoliGJUmSElFtao8IKVuEDAAB7h6AUAAAAuiUuShqdldQyhQ8AAGBvEJQCAABAt01tXoVvOVP4AADAXiIoBQAAgG6bNNhbhW9rcbWKK+sCfTgAAKAfIigFAACAbkuOi9boTKbwAQCAvUdQCgAAAHtlylBvCh+r8AEAgL1BUAoAAASF448/Xnfdddcu22fMmKGnnnpqt6976KGHtHDhwk6fO+KII/TMM8/06HGi1ZQhae52c1GVSqvrA304AAAEJcY4u0dQCgAABIULLrhADz74YLttH3/8sXJzc3XiiScG7Liwe2kJMRqZmejuf7GdbCkAADrDGGf3CEoBAIBWDbW7b431e79vF5x00knasmWLli1b1rLtgQce0Nlnn62dO3dq3rx5mjlzpqZMmaJLLrlETU1N3Xr//Px8nXLKKZo2bZqmTp2q//u//3Pb7X3s/SZNmuSuWNpn1NTUqKCgwO1v26ZPn67zzjuv230KB1Obs6VYhQ8AENQY46jtGGfBggVu/0CPcaID9skAACD4vHhVu4cRPp8S6uoVERsjDZoizfp/rU++8gupcTerrmWOkw65tFsfHRMTo7POOssN0u644w43aHr88cf17rvvasCAAXruueeUnJysxsZGnXzyyfrHP/6h7373u11+/0svvVT77befS5O3wZsNzGyAFhcXp9dee01ffPGFIiMjVVpaqtjYWD366KMaMWKEXn31Vbe9qKioW/0JF1OHpur5z3O1cWeVymvqlRIfE+hDAgBgj2OcdgZODqsxziOPPKLRo0frlVdeca8P5BiHTCkAABBU6e0WDKqrq3MDK7uyZ82u9P3sZz9zA6wDDjjApbwvXbq0W+9twaX/9/+8AefAgQPdFUXbNmbMGDU0NOj888/XX//6V9XX17uB26xZs9zzV155pf79738rKclbaQ7tDUiM1bD0BPl80peswgcAQNCPcWbPnq0XX3xRP/nJTwI+xiFTCgAAtDru1nYPfU1Nqi4rU0xqqiKiOgwbFty8+/eJ2LvrXpMnT9a4cePcFUO7mmgDOHP77be7K38ffPCB4uPjdcUVV7irjPsiIiLC3aalpWn58uV688039cYbb+jqq6/WW2+9pTlz5ujtt992n2mDx2uvvVZLlixRVFTUPn1uKJo6NE1bi6vdKnyzxmQG+nAAANjjGOcrxy1hMMZZunSpC1wFeoxDphQAAGgVHbf7FhWz9/t2gw3Sfv3rX+vDDz/Ud77zHbetuLhYOTk5brCWl5enJ598stvvO3/+fP3lL39x962Wgg3Cjj76aHe/srLS1Vawzx01apS+/PJLbdiwwV05PO2003TnnXdq9erVqqio2Ot+hbKpQ1Ld7YbCSlXWNgT6cAAA2BVjHLUd49h0wWAY4xCUAgAAQcUGaatWrdK3v/1tN2Ayl112mbuCaAVArSaDDb66649//KNWrFjhinpaQdFrrrnGTdGzwqM2cLNCn1Yc1Npxxx2nxYsXu+WWDzzwQB1yyCG67bbb3BVH7CozOU5D0uLV5JNW5DKFDwCAYB/jzJw5U/vvv3/AxzhM3wMAAEElJSVll6t1VnDcrip25txzz3WtMzbo8hs0aJC7ctiRBZ0++eSTXbbbSjTf+ta3lJqa6uovYM9T+LaX1rhV+A4alRHowwEAIOgE0xjnvCBZVZgRFgAAAHokKGXWFlSouq4x0IcDAAD6AYJSAAAA2GfZKXEalBqnxiZpRR5T+AAAwJ4RlAIAAECPmDrEy5b6YltpoA8FAAD0AwSlAAAIY01NTYE+hLDg8/kUDqYN84JSq3dUqKaeKXwAgMAKl7+//fnfmELnAACEodjYWFe8e/v27crOznaPIyIiOg1a1dXVqaamJuyKffdU322wZksy279vTMzeLyPdHwxMiVN2cqwKKuq0Kq9cM4YPCPQhAQDCkP29tb+79vfXxjmdjXGw72OhnhjjBDQo9dZbb7mlB60afG5urp5++mktXLjwK19TW1urm266SY888ojy8vI0ePBgXXfddTr//PP77LgBAOjvbGAxevRo9/fXAlO7Y4ON6upqJSQkhN2Arif7bq8fNmyYoqKiFMqsn1OGpmnxqgIt315KUAoAEBD299b+7m7dulUbN24M9OGE9FgoYh/HOAENSlVWVmrGjBkuoHTKKad06TWnnXaaduzYofvvv1/jxo1zg2mmHgAA0H2WHWXLEDc0NKixsfOpVvX19e4i0te//vWQz/Lpzb7b60M9IOU3rTkoZZlStQ2NiosOj34DAIJLcnKyxo8f7/6eo/fGQvs6xgloUOq4445zrateeuklvfnmm1q/fr0yMjLctlGjRvXiEQIAENr86da7G2jYIMOCVvHx8WEXlArnvu+LwWnxykiKUVFlvdbsqNDUoV6dKQAAAvG3PFwuCvXXsVC/qin17LPP6qCDDtKtt96qhx9+WElJSTrppJP0y1/+0qWT7W66nzW/srKylohfb0VM/e8bjhHZcO17uPY7nPserv0O577T7/Dqd1/1fV/fO1jHORMHJeudtTu1dHOR9huY2CvHgfbC+Wc1WHFOghPnJThxXkLvvHT1NRG+IClHb1dq91RT6thjj9XixYs1f/58V0eqsLBQF198sebNm6cHH3yw09fccMMNuvHGG3fZ/thjjykxkUESAAAInKqqKp1++ukqLS1Vampqt18frOOcnTXSq9siFRUhnTSySbFcpAYAIKxUdXGM06+CUgsWLNDbb7/tCpynpXmp4E899ZROPfVUV5+qs2ypzq4gDh8+3AW09mbw19WI4KJFi3T00UeHXbp/uPY9XPsdzn0P136Hc9/pd3j1u6/6buOSrKysvQ5KBes4x4aXdy9er7yyWn1jWo5mj/HKLqD3hPPParDinAQnzktw4ryE3nnp6hinX03fs5X2hg4d2hKQMpMmTXIDH6uqb0XMOoqLi3Oto6+qn9FT+uIzglW49j1c+x3OfQ/Xfodz3+l3+OnNvu/r+wbzOGf22Gw9+9l2fbKlVIdOGBh2qzcGSjj/rAYrzklw4rwEJ85L6JyXru4fqX5k7ty5btnqioqKlm2rV692y1rbEoQAAAAIDvsPH6CYqAjtKKvV5qKqQB8OAAAIQgENSllwaenSpa6ZDRs2uPubN292j6+++mqdffbZLfvbfMTMzEydd955+vLLL93ShD/96U91/vnn77bQOQAAAPpeQmyUpg8b4O5/uKEo0IcDAACCUECDUh9//LEOOOAA18wVV1zh7lsRc5Obm9sSoDLJycluPmNJSYlbhe+MM87QiSeeqD/+8Y8B6wMAAAA6d/Aor5bU59tKVV3XGOjDAQAAQSagNaWOOOIIVw9qdx566KFdtk2cONEFpgAAABDchmckaHBavHJLa7RkS7EOGZsV6EMCAABBpF/VlAIAAED/YcXNv9acLWVT+IJk0WcAABAkCEoBAACg11DwHAAA7A5BKQAAAPQaCp4DAIDdISgFAACAXkXBcwAA0BmCUgAAAOj1guc5qfGqb/S5gucAAACGoBQAAAB6veD5waMpeA4AANojKAUAAIA+LXi+pag60IcDAACCAEEpAAAA9GnB8w827Az04QAAgCBAUAoAAAB9goLnAACgLYJSAAAA6BMUPAcAAG0RlAIAAECfoOA5AABoi6AUAAAA+gwFzwEAgB9BKQAAAPQZCp4DAAA/glIAAADoUxQ8BwAAhqAUAAAA+hQFzwEAgCEoBQAAgD4veP610enuPgXPAQAIXwSlAAAA0OcOGJ5OwXMAAMIcQSkAAAD0OQqeAwAAglIAAAAIaMHzZVtLVVhRG+jDAQAAfYygFAAAAAJW8HxsdpIamnx66tOt1JYCACDMEJQCAABAwAqef+vAYYqLjtSGwiq9t55pfAAAhBOCUgAAAAiY9KRYHTs1x91/eXmedjKNDwCAsEFQCgAAAAE1a3SGm8ZX12jT+LYxjQ8AgDDR7aDU9ddfr02bNvXO0QAAACAsp/Gd0jyNb31hpd5fXxToQwIAAMEYlPr3v/+tsWPH6qijjtJjjz2m2lpSrAEAALBvMpJidcyU5ml8X+SpqLIu0IcEAACCLSi1dOlSffTRR5oyZYouu+wy5eTk6Ac/+IHbBgAAAOyt2WMyNCYrSbUNTfrXJ6zGBwBAqNurmlIHHHCA/vjHP2r79u26//77tXXrVs2dO1fTp0/XH/7wB5WWlvb8kQIAACAMpvENVWxUhJvG98EGpvEBABDK9qnQuV29qq+vV11dnbufnp6uu+66S8OHD9cTTzzRc0cJAACAsJCZHKdjmlfje2l5noqZxgcAQMjaq6DUJ598oksuuUSDBw/W5Zdf7jKnVqxYoTfffFNr1qzRr371K/3oRz/q+aMFAABAyJszJlOjsxK9aXyfMo0PAIBQ1e2g1LRp0zR79mxt2LDBTd3bsmWLbrnlFo0bN65ln//5n/9RQUFBTx8rAAAAwmg1vpioCK0rqNSHTOMDACAkdTsoddppp2njxo16/vnntXDhQkVFRe2yT1ZWlpqamnrqGAEAABBmsmwaX/NqfC8yjQ8AgJDU7aDUtddeq6FDh7r7lkpNOjUAAAB6axrfyExvGt9TS7Yx7gQAIMTsVU0pm7Y3depUxcfHu2b377vvvp4/OgAAAIStyMgIfat5Gt/a/Ap9tLE40IcEAAACGZS67rrrdNlll+nEE0/Uk08+6Zrdt4Ln9hwAAADQU7JT4rRgsjeN74XPc1VaVR/oQwIAAD0kursv+POf/6y//OUvrpi530knnaTp06fr0ksv1U033dRTxwYAAADokLGZ+nxbqTYXVem5Zdt15uyRgT4kAAAQiEyp+vp6HXTQQbtsnzlzphoaGrr1Xm+99ZbLshoyZIhbZeWZZ57p8mv/+9//Kjo6Wvvvv3+3PhMAAAD9bxrfNw8YqsgI6YvtZVqRWxboQwIAAIEISp111lkuW6qje++9V2eccUa33quyslIzZszQ3Xff3a3XlZSU6Oyzz9ZRRx3VrdcBAACgf8pJi9dh47Pc/Wc/267ahsZAHxIAAOjr6Xv+QuevvPKKZs+e7R5/8MEH2rx5swsUXXHFFS373X777V/5Pscdd5xr3XXRRRfp9NNPV1RUVLeyqwAAANB/zZs4UMu2lqq4ql6vr8jXcdMGB/qQAABAXwalli9frgMPPNDdX7dunbvNyspyzZ7zs+l4veHBBx/U+vXr9cgjj+jmm2/e4/61tbWu+ZWVlbVMQ7TWG/zv21vvH8zCte/h2u9w7nu49juc+06/w6vffdX3fX3vcBvnWIr/8VMG6uEPtuit1fmaMjhZg9Pi+/w4glE4/6wGK85JcOK8BCfOS+idl66+JsLn8/kUBCyI9fTTT2vhwoW73WfNmjU69NBD9fbbb2vChAm64YYbXKbU0qVLd/sa2+fGG2/cZftjjz2mxMTEHjt+AACA7qqqqnLZ36WlpUpNTe3268N1nPPfHRHaWhGhjHif5g/xqZeuhQIAgF4e4+xTUGrr1q3udtiwYXv7Fl0OSjU2NrrpghdccIGbvme6EpTq7Ari8OHDVVhYuFeDv65GBBctWqSjjz5aMTExCifh2vdw7Xc49z1c+x3Ofaff4dXvvuq7jUss23xvg1LhOs4pq67XH15fp9qGJp04PUezRmco3AXDeUF7nJPgxHkJTpyX0DsvXR3jdHv6XlNTk5s297//+7+qqKhw21JSUvSTn/xE11xzjSIju107vUvKy8v18ccfa8mSJbrkkktajsViarYKn9W4OvLII3d5XVxcnGsd2T9ob//P3hefEazCte/h2u9w7nu49juc+06/w09v9n1f3zdcxzmZMTE6dtpgPfdZrl5bVagZIzKUEh+e/392FM4/q8GKcxKcOC/BifMSOuelq/t3OyhlgScrdH7LLbdo7ty5bts777zjspZqamr0q1/9Sr3BImuff/55u21/+tOf9Prrr+uf//ynRo8e3SufCwAAgOAze3Smlmwu0dbiaj2/LFffPXhEoA8JAAB0U7eDUn/9619133336aSTTmrZNn36dA0dOlQXX3xxt4JSlmm1du3alscbNmxwU/EyMjI0YsQIXX311dq2bZv+9re/uQysqVOntnv9wIEDFR8fv8t2AAAAhLbIyAgtPGCo7n5jrT7bWqqZI8s1flBKoA8LAAB0Q7fn2hUVFWnixIm7bLdt9lx32HS8Aw44wDVzxRVXuPvXXXede5ybm6vNmzd39xABAAAQBoYOSNAhYzPd/WeWblN9Y1OgDwkAAPRmUGrGjBm66667dtlu2+y57jjiiCNcTaiO7aGHHnLP2+3ixYt3+3qbMvhVRc4BAAAQ2uZPGqTUhGgVVdbrjZX5gT4cAADQm9P3br31Vp1wwgl69dVXNWfOHLftvffe05YtW/TCCy909+0AAACAvRYfE6UTpw/Rox9s1ltrCrT/8AEamBof6MMCAAC9kSl1+OGHa/Xq1frmN7+pkpIS10455RStWrVKhx12WHffDgAAANgnU4akatLgFNnsPZvGZ5n3AAAgxDKl6uvrdeyxx+qee+7ptVX2AAAAgO6IiIhw2VLr8ldrQ2GVPt1crJkjMwJ9WAAAoCczpWJiYrRs2bLuvAQAAADodelJsTpq0iB3/4XP81RR2xDoQwIAAD09fe/MM8/U/fff392XAQAAAL1q7rgs5aTGq6quUX//cLMam5jGBwBASBU6b2ho0AMPPOAKnc+cOVNJSUntnr/99tt78vgAAACALomKjNB3vjZc97y5TusKKvX857k6acaQQB8WAADoqaDU8uXLdeCBB7r7VvAcAAAACBY5afH69kHD9Mj7m/Xeup0uc+rg0dSXAgAgJIJSb7zxRu8cCQAAANADpgxJ04LJg/TKlzv076XblJUcqzHZyYE+LAAAsK81pc4//3yVl5fvsr2ystI9BwAAAATaEftla/qwNFlZqUc/2KyiyrpAHxIAANjXoNRf//pXVVdX77Ldtv3tb3/r7tsBAAAAPS4iIkLfOnCYhqUnuMLnf3tvo2rqGwN9WAAAYG+CUmVlZSotLZXP53OZUvbY34qLi/XCCy9o4MCBXX07AAAAoFfFRkfqzFkjlRIfrR1ltXry4y1uLAsAAPpZTakBAwa4K07WJkyYsMvztv3GG2/s6eMDAAAA9lpaYowLTP3l7fX6Mrdci77coQVTcgJ9WAAAoDtBKStwbleWjjzySP3rX/9SRkbrKiaxsbEaOXKkhgxhyV0AAAAElxGZifrmgUP15Mdb9caqArdC3/RhAwJ9WAAAhL0uB6UOP/xwd7thwwYNHz5ckZHdLkcFAAAABMSBI9K1o7RGb60p1D8/2aqMpFgNS08M9GEBABDWuhyU8rOMqJKSEn344YfKz89XU1NTu+fPPvvsnjw+AAAAoEccMyVHO8pqtGpHhR5+f5N+OG+cUuNjAn1YAACErW4HpZ577jmdccYZqqioUGpqqqsl5Wf3CUoBAAAgGEVGRui7B4/QnxevU355rR55f5MuPGyMYqKYAQAAQCB0+y/wT37yE51//vkuKGUZU7bynr8VFRX1zlECAAAAPSA+JkpnzRmphJgobSmqdoGpmvrGQB8WAABhqdtBqW3btulHP/qREhOZgw8AAID+Jys5TqfPGqGYqAit3lGh/3tzvUqq6gJ9WAAAhJ1uB6WOOeYYffzxx71zNAAAAEAfGDcw2U3dS4mPVl5Zjf60eJ22FlcF+rAAAAgr3a4pdcIJJ+inP/2pvvzyS02bNk0xMe2LQ5500kk9eXwAAABArxiekaiLjxirh97dqB1ltbr3rfU67aDhmjo0LdCHBgBAWOh2UOrCCy90tzfddNMuz1mh88ZG5uQDAACgfxiQGKuLDh+rxz/c7KbyPfbhZh07JUeHjc9qt6APAAAIgul7TU1Nu20EpAAAANAfi5+fM2eUZo/JkM8nvbg8T/9eul2NTb5AHxoAACFtn9a/ramp6bkjAQAAAAIkMjJCJ80Yom9MHyxLkPpgQ5Gb1sfKfAAABFFQyrKhfvnLX2ro0KFKTk7W+vXr3fZrr71W999/f28cIwAAANDrbLre3HFZOnPWSMVGRWhtfoXueXOdiitZmQ8AgKAISv3qV7/SQw89pFtvvVWxsbEt26dOnar77ruvp48PAAAA6FOTh6Tq+4ePVWpCtCuA/qfFa7WliJX5AAAIeFDqb3/7m+69916dccYZioqKatk+Y8YMrVy5sqePDwAAAOhzQwck6OLDx2lwWrwqahvdynyfbi4O9GEBABDeQalt27Zp3Lhxu2y3Quf19fU9dVwAAABAQKUlxuj/HT5GkwenqKHJpyc/3qoXP89VEwXQAQAITFBq8uTJevvtt3fZ/s9//lMHHHBAzxwVAAAAEATioqN05uyRmrdftnv81ppC/fW9jaquowA6AAD7Krq7L7juuut0zjnnuIwpy4566qmntGrVKjet7z//+c8+HxAAAAAQbAXQF0zJUU5avP75yVat3lGhPy9eq7PmjFJ2SlygDw8AgPDJlDr55JP13HPP6dVXX1VSUpILUq1YscJtO/roo3vnKPuZrcXV2lgu1Tc2BfpQAAAA0EOmDxugiw4fq7SEGBVU1LkC6Kt3lAf6sAAACJ9MKXPYYYdp0aJFPX80IeLttYX6ID9SxS+v1sxRmTp4dIYGpcYH+rAAAACwj4YMSNAP543Vox9s1qadVXro3Y06bmqODh2X5TKqAABAL2ZKbdmyRVu3bm15/OGHH+rHP/6xW5EPnmEDEpQYLVXXN+nddTt1x6trdM+b6/TJpiLVNZA9BQAA0J+lxMfoe4eO1kEj0+XzSS98nqcnP9lKljwAAL0dlDr99NP1xhtvuPt5eXmaP3++C0xdc801uummm7r7diHpsPFZOmFEk86ZPUJThqQqMkLuSto/P9mm37y4Qv9euk25pdWBPkwAAADspeioSJ1y4FCdOGOwG+st2Vyie99ar9JqVqMGAKDXglLLly/XwQcf7O7/4x//0LRp0/Tuu+/q0Ucf1UMPPdTdtwtZNjgZPyjZrdbys+MmasGUQcpIilFNfZPeX1+kP762Vne/sVYfbyxSbQOrtwAAAPQ3Nl3vkLFZOm/uaCXGRrm6one9vkZfbi8L9KEBABCaQan6+nrFxXmrjFix85NOOsndnzhxonJzc7v1Xm+99ZZOPPFEDRkyxP1Rf+aZZ75yf1vpz4qpZ2dnKzU1VXPmzNHLL7+sYJcaH6N5+w3UlQv20wWHjtK0oWmKivQKov/r0236zQsr9cySbdpSVCWf5YADAACg3xg3MFkXHzFWOanxqqht1MPvb3Kr9NXUc+ERAIAeDUpNmTJF99xzj95++21X7PzYY49127dv367MzMxuvVdlZaVmzJihu+++u8tBLAtKvfDCC/rkk080b948F9RasmSJ+gMLvI0bmKLTZ43Qz4+b5IpiZiXHqrahSR9sKNKfFq/T/76yWq98kaf8sppAHy4AAAC6KDM5ThfPG6uvj7eC59Inm4r1h9fWaG1+RaAPDQCA0Fl977e//a2++c1v6rbbbtM555zjgkrm2WefbZnW11XHHXeca111xx13tHv861//Wv/+97/13HPP6YADDlB/khwXra9PyHb1p9YXVrppfJbqvbOyTm+sKnBtcFq8pg9L04xhA5SeFBvoQwYAAMBXiImK1HHTBmvS4FQ9+ckWFVXW6/53NmjO2EwdOyVHsdHdvh4MAEBI63ZQ6ogjjlBhYaHKysqUnp7esv373/++EhMT1ZeamppUXl6ujIwM9VeWPTU2O9k1qy21Mrdcn20t0eod5cotrXHt5S92aGRmogtQ2dQ/W/EFAAAAwWlUVpJ+dNR4vbQ8z9USfW/dTq3ZUa5vzxyuEZl9O14GACCkglLV1dWu7pE/ILVp0yY9/fTTmjRpko455hj1pd/97neqqKjQaaedttt9amtrXfOzYJq/Npa13uB/3+6+v107m5yT5FpVXYO+zC3X59vKXCbVhoIK155duk1jspI0Y1iaJg9OUXxMlILJ3va9vwvXfodz38O13+Hcd/odXv3uq77v63v3p3FOuLFx3fFTBmp8dqKeXrLdlWb40+I1+vq4LM3bL8ut3teTOC/Bh3MSnDgvwYnzEnrnpauvifB1s7L2ggULdMopp+iiiy5SSUmJK3AeExPjsqduv/12/eAHP+j2wboDiYhwwa2FCxd2af/HHntMF154oZu+N3/+/N3ud8MNN+jGG2/s9PV9ndm1t6oapC2VEdpcIRXVRLRb4W9Qgk/Dk30akijFBVd8CgAA7EFVVZVOP/10lZaWukVcuisUxjnhoK5R+nRnhDaVe+O4AXE+zcr2aYC3dhAAAGE7xul2UCorK0tvvvmmK3h+33336c4773SFxv/1r3/puuuu04oVK3o9KPX3v/9d559/vp588kmdcMIJ3b6COHz4cBdE25vBX1cjglYE3oqyW8CuJ1nNqc+3lerzrWXaUV7bLkA1OivJZU9NHpyqlPhuJ8EFfd+DWbj2O5z7Hq79Due+0+/w6ndf9d3GJTa22tugVKiNc0LdF9vL9NyyXLdCnyVKzZ80UIeOzXTj4H3FeQk+nJPgxHkJTpyX0DsvXR3jRO9NtCslJcXdf+WVV1zWVGRkpGbPnu2m8vW2xx9/3AWkLDC1p4CUiYuLc60j+wft7f/Ze+MzcgbEKGdAko6eMsSlgS/fXqrl28pc7akNO6tde+GLfI3MSNSUIWmaMiQ1IEXS++LfNxiFa7/Due/h2u9w7jv9Dj+92fd9fd9QG+eEuv1HZmpcTpqe/nSrK9OwaEWh1hVU67SDhistsWf+LTkvwYdzEpw4L8GJ8xI656Wr+3c7KDVu3Dg988wzbgW+l19+WZdffrnbnp+f3+0rclYPau3atS2PN2zYoKVLl7rC5SNGjNDVV1+tbdu26W9/+1tLKrqt+PeHP/xBs2bNUl5entuekJCgtLQ0hZuBqfE60trEQdpZUeuuvlmQaktRtTburHLt+c9zNSw9wQWnLEiVnUKeOAAAQCBXYD5z9kh9sqlY/1mW62qH/uG1NVp4wBBNHzYg0IcHAECf6nZQyqbo2bxAC0YdeeSRmjNnTkvW1AEHHNCt9/r44481b968lsdXXHGFu7XA00MPPaTc3Fxt3ry55fl7771XDQ0N+uEPf+ian3//cJaZHKevT8h2rbSqXl9YBtX2UheY2lpc7Zqt4jcoNU5TLYNqaKpyUuN7JF0cAAAAXWfjr4NGZbhV+p74aIsbpz3+4RatzCvXSTOGBN1CNgAABE1Q6tRTT9Whhx7qAkYzZsxo2X7UUUe57KnuOOKII9xKfrvTMdC0ePHi7h5uWLL070PGZblWXlOvL7eXuSyqdQUV2lFWqx1l+XptZb6ykmNbMqgsm4oAFQAAQN/JSo7TRYeP1esr8/XGqnwt2VyijYWVbjqfBawAAAh1e1UNOycnx7WtW7e6x8OGDdPBBx/c08eGHpASH6NZYzJdq6prcFfgvthWqtU7KlRYUac3Vxe6lpoQ7YJTU4ekalRmkiKtcjoAAAB6VVRkhI6ePEgTBiXrHx9vUVFlve59e70On5Ct+ZMGuecBAAhV3Q5KNTU16eabb9b//u//uppQxgqf/+QnP9E111zjip4jOCXGRuvAEemu1TY0anVehZvmZ4GqsuoGvbdup2tJsVGa3JxBNTY7SdG2PAwAAAB6zcjMJF165Hg999l2fbq5RItXFWhtfoXLmqImKAAgVHU7KGWBp/vvv1+33HKL5s6d67a98847uuGGG1RTU6Nf/epXvXGc6GFx0VGaNizNtfrGJjfosSl+K3LLVFnXqI82FrsWFx2piTkpLkg1YVAKNQ4AAAB6iY2zvn3QcE3MSdXTS7a5WlN3vr5Gs0Zn6tDxWUpLYEUqAECYB6X++te/6r777tNJJ53Usm369OkaOnSoLr74YoJS/VBMVKQmDU51rbHJpw2FlS6DympRldU06LOtpa5ZwtTY7GRNHpyqiYNTGRgBAAD0ArtoOCIjUU9+skXrCir1ztpCvb9+pw4YMcAtamO1qAAACMugVFFRkSZOnLjLdttmz6F/s7oF4wYmu2arv2wpqtaXuV6AqqCiztWisqal2zU8I8EFsqYMTnVp5RRKBwAA6LmFay44dLQbdy1ele9WVLYs9o83FWva0DRXc2rIgIRAHyYAAH0blLIV9+666y798Y9/bLfdtrVdjQ/9nwWZRmQmunbs1MHKL6/RitxyF6DaXFTlAlbWXvlih7KTY12AavzARH3FgooAAADoxlhsv5wU12xVPgtOrdpRoWVbS12z4uhH7DdQozITA32oAAD0TVDq1ltv1QknnKBXX31Vc+bMcdvee+89bdmyRS+88MLeHQX6hYEp8a7ZlbmymnqtdAGqUpdWbllUBWsKtXhVkwq2Rcq3LFf7j8zUyIxEVvIDAADYR6OyknRu1mjlllbrzVUFWta8mrK1kZmJmjsmnQuDAIDQD0odfvjhWr16te6++26tXLnSbTvllFNcPakhQ4b0xjEiCKXGx+jg0Rmu1dQ3avWOclck3YJUNY3S+xuK9eGmUqXER2vKkFSXZj4qM4kAFQAAwD4YnJag7x48QvMravX2mgJ9uqlEm3ZWaUNBhcp3RGjEtlLtPyKTMRcAIPSCUvX19Tr22GN1zz33UNAc7VaKmT5sgGvVNbV66On1Sh+eplX5lSqvadD764tcI0AFAADQM6zY+TcPGKajJg3Sf9cU6t11hSqpjdATH2/TG6t3usz2/YcPULStVAMAQCgEpWJiYrRs2bLeOxr0ezbwGZIoHX/gUEVERrmpfZ9v8wqlE6ACAADo+ez146YN1iFjBuiuJzeoITZKhRV1+ten2/Tqinx9fUKWvjYqw622DABAv5++d+aZZ+r+++/XLbfc0jtHhJAKUPmLczbs37TbAFVyXJTGD0rRxJwUjR+YooTYqEAfOgAAQL+SGButqek+HTV/nD7dWq531haqtLpez32Wq8WrCjR3XJZmjc5wGe4AAPTboFRDQ4MeeOABV+h85syZSkpKavf87bff3pPHhzAIUFXUNmrJ5hLXIiKkERmJ2m9QiibkpGhIWrxbeQYAAAB7FhcTpa9PyNacsZn6ZFOx3lpdoOKqer20PM8VSD9kbKZmj81Ucly3vwYAANDjuv3XaPny5TrwwAPdfSt43hbBA+xNgGrjziqt2VGulXnlyi+vdcU6rb3y5Q43zW+CBagGJZNFBQAA0EU2XW/2mEw3dW/plhK9uSrfrZb82sp8LV6dr8mD03Tw6HSNzU5mDA8A6D9BqTfeeKN3jgRhG6AaNzDZNauHUFxZ51bys2bZVDbNz67yWYtszqKyDCqb6peTShYVAADAV4mKjNDMkek6YPgAfZlbpjdXF2hrcbXLWLeWkRSjg0Zm6MCR6UpLiAn04QIAwkyXg1KNjY364osvNH78eCUkJLR7rrq6WmvWrNHUqVMVGUkRRey99KRYzRqT6VpDo5dFZQGqVc1ZVPbY2itf7FB6YowmDk7V5MEprlg6q8sAAAB0zhaVmTo0zbXtJdX6aGORy6Aqqqx32emLVuxwF/0ss8rKKLAIDQAgqIJSDz/8sO666y598MEHna7Kd/755+vHP/6xK4QO9HQW1fFtsqhW7SjX2vwKVx/hvXU7XYuPiXQDqEmDU910P6b5AQAAdG7IgASdvP9QHTd1sJZvL9XHG4u0obBKK3LLXUtNiNbMEek6aFSGMpJiA324AIAQ1uWglK24d+WVVyoqatcv+9HR0brqqqtc0IqgFPoii6quockFplbklmllnlcs/bOtpa7Zhb3RWUkuQGWNwRQAAMCuYqMjdeCIdNfyy2v0yUavZEJZdYPeWFWgxasLNH5gssuesjGVTQUEACAgQalVq1Zp9uzZu33+a1/7mlasWNFTxwXscRA1eUiqaz6fT1uKqrUir8wFqXaU1bp6VNb+syxXg1Lj3EDKCnmOzEx0hT8BAADQamBKvKvvefTkQS5b6sONRe4C4OodXkuNj3a1qSxAZRcKAQDo06BUZWWlysrKdvt8eXm5qqqqeuSggO6wYucjMhNdO2ZKjnZW1LqV/CxAtaGw0gWpdpQVaPGqAkVHRrjA1FibFpidrKEDEqiZAAAA0KZ8wrRhaa4VVdbpww1F+mRTkcpq2mdPHTw6Q5NyUhlHAQD6JihlBc7fffddTZ8+vdPn33nnHbcPEGiZyXGaO85alqrrGt30vjU7KrSuoMINqPxZVK9oh+KiIzUmO8llUVmzrCpW9AMAAJArgXDs1BzNnzTQXfD7YEOH7KmEaLdy30Ej08meAgD0blDq9NNP1y9+8QsdcsghuwSmPvvsM1133XWurhQQTKzg+QEj0l2zaX4FFbVal29BqQqtL6hUdX1jS1FPkxwXpTHNAaqx2UluMEaQCgAAhHv2lH/lvsKKWlcY3V976vWV+a4Nz0jQNNtnSBoBKgBAzwelLr/8cr344ouaOXOm5s+fr4kTJ7rtK1eu1Kuvvqq5c+e6fYBgZcElq5dgbc7YTDU1+bS9tNplTa0vqNDGwkpXMH3Z1lLXzIDEGI3JSnLT/cZmJSstMSbQ3QAAAAiYrOQ4HTt1sOZPGqQvc8vc9L71hZWuvqe1Fz7P07B0L0BljQAVAKBHglIxMTF65ZVX9Pvf/16PPfaY3nrrLZd5MmHCBP3qV7/Sj3/8Y7cP0F9YDYRh6YmuHT4hWw2NTdpSXK11+d5Uvy3FVSqpqtenm0tcM1nJsS3T/SyjKjmuyz9CAAAAIZU9NX3YANfKaur1xbYyLd9Wqg07K7W1uNq1F5e3Bqgsy4oVkQEAHXXrG7UFnWyKHtP0EKqDq9FZSa7N1yDVNjRq884qF6CybKptJdUqrKhz7cMNxe41VoPKglMj0+NU1xjoHgAAAPS91PgYl4VurbymXsu/IkC1//ABmjF8ABf2AAAOfw2A3YiLjtL4QSmumZr6Rrean9WiskBVbmlN88p+tfpvU5O2bInUtsXrNX5Qaktwy2paAQAAhIuUDgGqL7Z7ASqb4ucPUL3wea72y0nRgSPSNTEnxV0YBACEJ4JSQBfFx0Rp0uBU10xlbYMLUlmAak1embb45AWqyuv0ztpCWX30wanxLpOKIBUAAAjHANXsMZmuVdQ2aNnWEi3ZXOICU/6FZhJiojRjeJoOGJ7uiqWzwAwAhBeCUsBeSoqLblmJpr5+oJ6qXK3xM4dqc3GtuxpYUF6r7aU1rhGkAgAA4cym6x0yNsu1/LIafbq5WEu2lLgV/N5fX+RadnKsWzHZpvhRIB0AwgNBKaCHxEfLFfI8cJRX8N9S1v3T/XYXpMpJjdfIzESNykxyjdX9AABBr7pEWeVfSDo+0EeCfmpgarxbwW/B5BytL6xwC8p8sa1UBRV1euXLHa6NyEjU1KGpmjqEFfwAIJR1Oyj1xhtvaN68eb1zNECIpaz7V6UxtjLNhoLK5kBVhRt42XQ/a3Z10KQnxrjglAtUZSVpYEocaewAgOBRV6XId36nocWrpLzPpeEHBvqI0M9XQh43MMW1mhlDXP2pJZuL3cW8zUVVrr3wuVcgfcqQVJednpUcF+jDBgAEMih17LHHatiwYTrvvPN0zjnnaPjw4T15PEBIr0xjq81Y82dSbdpZpY07K92tre5XXFWv4qoSl85urM7CqKxEjXSZVIkaOiCBYqAAgMCJTZRv+Gxp3SpFfv6ElD1Wik8L9FEhRGp3zhyZ7lpptRVIL9UX28rareD38hc7NDgt3gWoLDvdMq4AAGEWlNq2bZsefvhh/fWvf9WNN96oI488UhdccIEWLlyo2FhSa4HuZFL5a1L5V/fbWlyljYVeoGpLUZWq6xtbCoGa6MgIVwTUC1J5GVU2iAMAoK/4Jhyr6nefk+qrpKWPS7P+n9ycdKCHpCXEtNSfsgLpX24v0+e2gl/z6sfWXl2Rr+yUOBegmpSTSpF0AAiXoFRWVpYuv/xy1z799FM9+OCDuvjii107/fTTXYBqxowZvXO0QAiz4JI/hd00Nvm0vaS6TTZVpSpqG7WhsMo1qaClePpIK5xugaqsRBfsAgCg10RGa1Pm4ZoQ+ZlUsELa8JY05vBAHxVCuED6waMzXKuqa9CK3DIt31amNfnlrl7n4lUFrqXER2u/QSluleRxA5MVG01mOQCEfKHzAw88UDk5OcrMzNQtt9yiBx54QH/60580Z84c3XPPPZoyZUrPHSkQZqJcVlSia4eOz5LP51NhRZ0LTlldKgtUFVXWtxRPf2/dTve6rOTYlul+VpcqMymWK4cAgB5VGzNAvkknSiuekVY8K2VNkFIHB/qwEOISY6M1c2SGa5ZhvjLPssnLtCqvXOU1Dfp4U7FrMVFWqypZE3NSNXFwiiuhAAAIoaBUfX29/v3vf7sg1KJFi3TQQQfprrvu0v/8z/+ooKBAv/jFL/Ttb39bX375Zc8fMRCmLLBkaerWDhqV4bZZzQULUm20bKrCSuWV1bjAlbVPNhW7fezKoX+FP7sdkpbgCosCALAvfCPmSjtXS/lfSmtelmaeG+hDQphlmO8/fIBrDY1N7mLdl7nlWplb5mp0tpQ/WCJXKH3y4FTtl5PialJxsQ4A+nFQ6tJLL9Xjjz/usjbOOuss3XrrrZo6dWrL80lJSfrd736nIUOG9PSxAuik5kLbFf6q6xrdSjU2MLMglRUFtSuHluZuzcRFR7rsK38mlQ3U4qKpSwUA6Cb7Yj/jf6T1i6X9jgv00SCM2SIw/hIIJ04frB1ltS6D6svcspYi6dZe+XKHUhO8aX4WoLJsKsZAANDPglKW/XTnnXfqlFNOUVxc3G7rTr3xxht7fK+33npLt912mz755BPl5ubq6aefdgXTv8rixYt1xRVX6IsvvnAr/1lW1rnncmUOMAmxUW6QZc3UNzZpW3G1W7lmU2GlNhVVqaa+SWvzK1wzljQ1ZECCy6Tyr/Rn9RsAANij+FRp8kmBPgqghWVB5aTFuzZv4kCV1dRrZW65VuWVaV1BpcqqG/TRxmLXbAEZu0A3sXnslJXc+XcbAEDvie7utL2RI0dq9uzZuw1IuTeNjtbhh++54GVlZaUrin7++ee7INeebNiwQSeccIIuuugiPfroo3rttdf0ve99T4MHD9YxxxzTna4AYSEmKtINtqxpP7kMR5viZyv8+af92RRA/xXEd9aqpS6VZVONaG45qfFM+QMAfLWmJmnjW9Kwr0mxSYE+GsCxelL+Quk2zc/qclotKqtDtbOyruVC3X+W5So7OVb75XjT/EZnJbn6ngCAIApKxcTE6F//+peuvfbaHvnw4447zrWusuLpo0eP1v/+7/+6x5MmTdI777yj3//+9wSlgC5ePRycluDanLGZLkhVUlXfvLqfrepXqfzy2pa6VEs2l7RM+bNpfi5IlekFqqzYKAAALZb9XdrygVS0wasvRd0eBOE0v/GDUlz7xnRvARkLTq3MK3NjoIKKOhWsLdQ7awsVHxOpCYNSWrKoGPcAQO/o9m9Xm173zDPP6PLLL1dfe++99zR//vx22ywY9eMf/3i3r6mtrXXNr6ysrCXry1pv8L9vb71/MAvXvvfnfifHRmjq4GTX/HWpLGtqc3GVNhd5GVTVdQ1as6PcNT/LphqRkaDBKbEqqZVq6+oUTvrzOd9X4dp3+h1e/e6rvu/rewfVOGfoLEVu/kDa9ql8WRPlG3pQr3w+OhfOP6t7a0B8pGaNSnOttr5RawsqtWpHuVbvqFBFbYOWbi52zeKrIzMStd+gZBegsoyqrhRL55wEJ85LcOK8hN556eprInyWKtENN998s8tUOuqoozRz5kxX2LytH/3oR907Uv+BRETssabUhAkTdN555+nqq69u2fbCCy+4KX1VVVVKSEjY5TU33HCDbrzxxl22P/bYY0pMTNyrYwXCSZNPKquTdtZKO2siVFgTofJOfr9ER0oZcT5lxkuZdhsnxXNREQC+ko1fTj/9dJWWlio1NbXbrw+2cc7A0s80uPRTNUbGaHXOyaqL9mocAv1t7FNUK22vitD2Sqm0rn0AKjlGGpLo09Akn7LivfqcAIC9G+N0Oyhl0+d2+2YREVq/fn133q7Xg1KdXUG0AumFhYV7NfjrakRw0aJFOvroo92Ux3ASrn0Pt35X1TV42VRF1dpYWKH3lq3WoCHDFBkZ2W6/9MQYN+3P2vB0mzYY7+pchYJwO+dthWvf6Xd49buv+m7jElsgZm+DUkE3zvE1KfL9u6TijVL6KDXNvkSKCI3f+8EunH9We1txVZ3LnrJaVBsKq9RgUatmSbFRborfpMEpGpud1G6cwzkJTpyX4MR5Cb3z0tUxTrfzGKzYeKDk5ORox44d7bbZY+tgZwEpYwXZOyvKbv+gvf0/e198RrAK176HS7/TYmKUlpSgKcO8X1Q5ZSv1tcPGKa+8XpuLbNpflatNVVrTqNLcCn2R6630Z+M0q2dlRdQtSGW1qTKSupYCH6zC5Zx3Jlz7Tr/DT2/2fV/fNyjHOVZP6q1bpdLNitrwhrTfsb16HGgvnH9We8vAtBgNTEvSoRMGqcam+eVXaEVumQtSVdU1asnWMtesBqfVoZoyxCuW7j8PnJPgxHkJTpyX0DkvXd2/X02umTNnjsuMasuidrYdQOBY2vqg1HgNy0zRQaMy3DYbtFk21ZbiKm1tDlRV1HrbrL3X5gqjFU8fnp6o4RmWVZWo+JiogPYHALAPkjKlqadKSx+RNrwpjZorxTGND6HBxihTh6a51tjkcwXSv8wt0xfbS1VW3aDPt5W6ZhfiRmUkyMq8FVXWadAAvmQDQI8FpbZu3apnn31WmzdvVl2H4sa33357l9+noqJCa9eubZeFtXTpUmVkZGjEiBFumt62bdv0t7/9zT1/0UUX6a677tJVV12l888/X6+//rr+8Y9/6Pnnn9+bbgDo5UHbuIHJrhmbKVxcVa8tRVUuUGVBqtySGlXWNWpFbrlrxpKmspPjXBaVy6jKSNCglHhFUrABAPqPYQdJ1cXSwIkEpBCyoiIjWsY6J04f7C66eQGqMhWU12pNfqW2FERqx6trlZkcpzHZyRqTnaSxWclKSyRIBQB7FZR67bXXdNJJJ2nMmDFauXKlpk6dqo0bN7ovnAceeGC33uvjjz/WvHnzWh5fccUV7vacc87RQw89pNzcXBf4alvPygJQtvLfH/7wBw0bNkz33XefW4EPQHCzKXo2Vc/ajOED3LaGxibllta4AJU/WFVUWe+m/ln7eFOx28/S4YcOSGjJpLJgVVoCgzkACFp2hWHCgvbb6qqkWBaZQeiOc7yLaYk6ZkqO8strtGxzkZ7N3+Qyyu3C3Cebil3zr2JsAaoxWV6gKiWecQ2A8NTtoJRlL1155ZVupZeUlBT961//0sCBA3XGGWfo2GO7VzPgiCOOcMGs3bHAVGevWbJkSXcPG0AQio6KbBnA+dkSzBag8geq7KpjbUOT1hdWuuaXmhDtpvy5IuoZiS5oxbQ/AAhSRRukD/8iTT3Fy6ICQtzAlHgdPiFblWt9OmrBRG0vq9P6ggqtK6jUtpJqFVbUufbhBi9INTAlztWjslpUozIT3RgJAMJBt4NSK1as0OOPP+69ODpa1dXVSk5O1k033aSTTz5ZP/jBD3rjOAGEieS4aE0anOqaaWryqaCitiWTaktRtXaU1bi6DV9Ueyny/ovyNqBrG6iyxwzqACAI5H4m1VdKSx7xVuMb2r3seqA/8xdAt+avu2m1qNYXWKtQbllNS5b4O2sL3f7jByW7Vf3sNWRRAQhl3Q5KJSUltdSRGjx4sNatW6cpU6a4x7b8MAD0JKslZUXUrfmLqNc2NGp7SY22Ngep7NbS4neU1brmn/Zn8aic1HgNGZDgtbQE5aTFKzaaQBUA9KnJJ0v11dKW96UlD0uRUdLgGYE+KiAgLLO77QW4qroGF6Cy1fxW5ZW5hWGWbytzzdjFNgtQWRaVZYb351WLAWCfg1KzZ8/WO++8o0mTJun444/XT37yE33++ed66qmn3HMA0NvioqM0OivJNb/ymvqWANWW4mptK65WdX2jtpXUuCYVt8uosiCVDewGp3lBK6b+AUAvsl++M74r+RqlrR9JnzwkHXSBlDM10EcGBFxibHTLin5W2sRKF6yyANWO8pZVi629uiJfKfHRGt9cXH3swGSlkkUFINyCUra6nq2aZ6yulN1/4oknNH78+G6tvAcAPclS2ycPseZddbRBXUlVvavbsN3fSmtUXtPQklG1ZHNJy+ut4KhlUVmQKifVC1YNSIzhaiQA9Ghg6nSpqVHa/qn0yYNeYGrQ5EAfGRCUBdPnTx6kspp6rc4rd1lUa/Mr3Djm080lrplBqXFegCo72V2s4yIbgJAPStmqe22n8t1zzz09fUwA0CODuvSkWNfsyqOfDe78QSrLoMotqXZT//wFR/2p8sZqOrgglQtWeYGqgalxLlMLALAXIiOlA87yMqasztSm/0oDJ3kBKwC7sEwoK19gzVYt3riz0gWn/AXT/Rfa/rt2p1vlz4JZ47K9LKrh6QnU1gQQekEpP6srlZ+fr6ampnbbR4wY0RPHBQC9NrhLzYnRxBwvo8pfy8GCVLmlNa7llVrB0Rq36t/GnVWu+dn3psykWGUnx2hrcYTG5JVrRGaKWw2QrCoA6GJg6sBzpHWvS2OOICAFdJEFmMYNTHGtbS0qC1JZ21lZp007q1x7bWW+oiMj3IU1K1fgyhakJ2gQi8AA6O9BqdWrV+uCCy7Qu+++2267TZWxL2SNjY09eXwA0Ce1HNoO8oxdjbTMqdzSahekcsGqMm/6n23PL6vRlqIIlX6wRZGRkUqMjWqpT+W/zU6Oc4XaAQAdWKHz8Ue3Pvb5pKL1UubYQB4V0G9rUZniyjqtK/ACVHZrBdP99aj8/IGqIQMsWJXobm1RGAJVAPpNUOq8885TdHS0/vOf/7jV98gMABCKbHBmgzZrbVlB9R1lNdq8s0KLijcpOyVOO6vqVVXX6FLprXUc+A1unv5nAz9bRZB6DwDQwaoXpTUvS+OPkfY7juwpYC9YyYKDkrypfpYwUFRZ11Jb0wJTtnKxLQLTGqjyFoGJiYpwdaksi3zi4BSKpwMI7qDU0qVL9cknn2jixIm9c0QAEOQF1a2NTI9X+Wqfjj9yrLvib4Eqy6iyYupWp8oyq2z6X8eBn8lIinFXJS1A5Q98ZSWRVQUgTFmWVFO9d98CUxV50v5nSNFxgT4yoN+yxIHM5DjXpg8b4LZZoMrqaPqDVP6AlV1YW5Fb7pqWSMPSEzR5sBegsvEKSQgAgiooNXnyZBUWFvbO0QBAPxQTFalh6Ymu+dnAz2o7uEBVc5Bqe2m1yqobVFRZ79qXNvhreY8IDUyJU05aghsA5qTFuaCVBcAAIKTZF97JJ0vJOdKyJ7wC6JU7pYO/JyWkB/rogJBhwaWMpFjX/FP+bLxi5QlW5pbry9yylotp1l75codbiXhiToomDU7VmKwkpvkBCHxQ6re//a2uuuoq/frXv9a0adMUE9P+C1NqamvxYAAI54FfVnKca21X/7OipBaosgGg/3ZHaY3qGn1uNUBrbaXERzdP//PXq0pwhdbJqgIQckbMkpKzpY/ul8q2Sm//r/S170npowJ9ZEBIj1e8FYYTNG/iQFemYFWeZU2VaU1+hUqq6vX++iLXbFViW91vVGaiRmYmuvusSAygz4NS8+fPd7dHHXVUu+0UOgeArhUlHZOd7FpnWVU2DTC3+da2WWH18poKrd5R0bK/DQoti8pqVHkDSW8KoGVsAUC/ljFGOuwn0od/kcq3S+//WTrqeim2NRMVQO+xDG2rSWWtvrHJFUy3ANXKvHKX7e1f6c/Y9TEbg4zMTHJBKrtNSyDDG0AvB6XeeOON7r4EALAXWVW1DY3KL6ttN/0vr7lW1eaiKtda30NutT8LVA1MjXdTAQemxJNVBaD/ScyQ5l4mLXlYGrw/ASkgQOxilyt+npPqLqDtKKvVpp2V2rSzSht3Vrr6VP4s73fX7XSvSU+M0ajMJJdFNSIzUYNT4xmHAOjZoNThhx/e3ZeEpfSKNYpY/qSUlCnFD5Di06SE5tvoeFaVAbBHlhJvgzprfk1NPhVW1HpBKitQ2lxYvbKuUfnlta5Jpe1WAMxMjnWZVRa0GpjqBauykmOpCwEgeMXEe1P32o6XKvKbx1EUQAcCcQHNvzjLrDGZbltpVb02FVVq484qbSqsVG5ZjQtUFVeVaMmWErdPbFSEhqYnaETzeMZuqZcJoNtBqWXLlmnq1KmKjIx097/K9OnTu/KWIS+lZpsiNm+SIjv50hcVJx35Cym+uf5W/gqpstB7HJfqDbjiUqQofmEDaM+uNrpMqNR4zRjeuppOWU2DckurlVtSowIXnKpxAar6Ru/KprW27HueZVG5jKpUr2YV9aoABJW2AamaMum9u6WYBGnat6XMsYE8MgCS0hJjND1xQMvqfjX1jdpaXKWNhVXaUuxldNfUN2lDYZVrfpZNZcEpayOzksimAsJcl4JS+++/v/Ly8jRw4EB33yLl9iWoI2pKtSpJGiPfuFFSfYVUUyrVlHi39VVSY50U21pPRls+lLZ/uuubRCd4walDfyzFJnnbClZ772PbXRArxXsvMq+AsGW/e62GgzVLsfez39NWoNTLoKpxUwH9922QWFhR51rbVQDtiuag5sLqOakJbjqgZVnFx1DIFEAA1ZZJvkapPFd694/SoKnSpBOllJxAHxmAZjZWGDcwxTX/OMQulPlLDlizcYiXTVWqz7aWttTKtOLpo7OTNTozyWVWRRGkAsJGl4JSGzZsUHZ2dst97FlZwgj5JhwrdVidUA11Um15+wwqW1Wmqd67CmjP2cCrqUFqqJYaarzglN/m93YNYEVEesEpy7KafXFr7YWi9VJdZXP2VaoUa9lX3Z6xCaAfB6vSk2Jd2y/HGyD6B4nltQ3NQSqvqPr2Eu/WVgHcUlTtmlTc8pqMpJiWourZSTGqqPfeBwD6RNow6etXSatf8sZCO5ZLO76QRsyR9jvWyzIHEHTjEH92txVOb5tN5YJUrjZVlauVuWpHhWv+C2QjMpM0OitRo7OSNSw9gcVcgBDWpQjFyJEjO72PvRAdK0V787BbjDnca372Ra++2gtQ1VW0D2ClDvECTRa4siBWfaXka2rOxirz6lX5bXhL2r6k/WdZVpUN3KwdeI5Xs8GU5XqBMdtuwavOph0CCJlBYmp8jGvjBia3q1dlK/65aYDNtaqsPoSttlNUWe/aF9vL1NTUpC2bI7XyhVXKSUtQTqpXY8IyqgalxlErAkDvsAts00+TRh8urXxOyvtc2vyutO0T6ahrvQt0APpVNpWNPWyssaGgUht2VmpjYaWq6hrbrPKX7+pjWmDKVvijLhUQerqdNrNz505lZnpBlS1btugvf/mLqqurddJJJ+mwww7rjWMMPzYVz7KdXMbToPbPjT/aa36NDVJdeXOAqqp9MCkxSxowojUDy9LeLchlzdLfo2Jb913zcpsAVkT7+lY2ddDqN/hrXJVs8YJmtt2OMSbJC7YB6NesnkN2Spxr04e1bq+stXpVNW7lP1sBcFtRpbZFSHUNTdpaXO1aW8lxUc0BKq9Z0MoKrDMFEECPSBnkFUG3jPAv/+2Nd9oGpOziHmUNgH4z9hg6IMG1Q8dnuSxsm+K3vsAKqFdqQ2GlymsaXEaVNT+rgenqUmV6QSoba1CXCgjxoNTnn3+uE0880QWixo8fr7///e869thjVVlZ6Qqg//73v9c///lPLVy4sHePGO3ZdLyEdK91NOkbkr7ROkCzYJQLUJVJdR0CWDZF0AJQLnjlz7wqlUq3eEGqGf/Tuu/aRVLuZ+0/KzLGBagio+IV2TShdbul1lcVSXHJXgaWBbLsvgWyyMYC+oWkuGiXUeXPqqqvr9d/qlbp4K+PVVFVo/LKvKl/1izTqqK2URUFlVpXUNnufWwKYI4/UOVqVtkqgHEMIgHsnYwx0twfe7U6/WzhmI/uk/Y7TsqZTnAK6IfZ3P6LWnPGZrogldW/3FxU6ab8bdrp1aWy8YY1/yp/VpdqWJtV/uw+2VRAiAWlrrrqKk2bNk2PPvqoHn74YX3jG9/QCSec4DKlzKWXXqpbbrmFoFSwskGZqztlVxKH7vr8jO94t01NzcGrktYAlg322g7qLHiVnONNHbSphBbEcjWxSiVfqZoiJrfuu+WDXQNY3gFJMYnSUde1TiHc+rFUntecgZXcGsDy37fMLgaXQFCwOJKt3Dc0I0bT1FrLpbah0RU1tQBVXmltS8DKrnL6pwC2LaxuKfn2PlZcve00wNT4aDcwBYCvZL8nouNaH6991csG//gBKSlbGnWoNOzg1nqbAPoVGwv4s7hnjvTqUlXXNXqr++2s0qaiKm0p8upSretwQWxAYoyGp3sBKgtU2eItcdFkbQP9Nij10Ucf6fXXX9f06dM1Y8YM3Xvvvbr44otdlpQ/KDV79uzePFb0BTufNnXP2u5M/VbrfcvAaqj1pg7WVaqppkL6YHXr8+mjW7O0am3qYKUXzJK9rrr9QNKCV3nLdv+5x/ymdVC59jWpeKO3NLTV0bIAV4z/NkHKntRa1N2mOEZGEdAC+oAN9oa5AWD7L4A2BdAFqGwaoAWsmu9bYfXtblpgTbv9E2OjvBUA/SsBpiW44BWFTgF8pckLvQtwG96WKgukL56WVj4vDT3IC1CldXJhDkC/khAbpQmDUlzz16Wy7KlNOyu1xZUV8LKpbAXikqpSfb7NW+XPvgoMSonXkLRYbSmTtpdUa2hGlKIZWwD9IyhVVFSknBxv2d3k5GQlJSUpPb11ypjdLy9vvfqNMGG/3V0wKF5KzLB5PZLaBKXGzvNaW/5sLAtktQ0U5UzzsrAscNXSmgNZVg/Lgk1+JZu+OoB17G9bg1KfPylted+bYmjZVlH+W2vR0sHf9zKxzNZPpOIN3j4W4HJZW20yt+yqqwW4AHR7CuDY7GTX/Cwlv6iyriWbymVWlVarsLLOFTnteMXTsrNsul9rsCrB3ZJVBaCFjUcmniCNm+9lYG98Ryrf7hVEt3HD0TfxdxwIMVYGwJUFSIvXrOZttsrfthKv7qVlUtltaXW9G3NsL6nSloJI7Xhzg2Kjo9zrXF2rdK+2lWVsR1FaAAjOQucdB/18CUCPZmMNP9hrHVmmVWN9+wDWyEOlrAlewXV/s8yr+ppdM7DssbEphtYsbtZWRJvBaeFqL4C1O0dd7wXf/NlatvJPbJIiohI0uHiFItZESXFW+D1OGnJg69REm9poGWW2PSrOu+XnB2HO/oZkJse5NmVI6xTA+samlhpV/gLrdmuBKrvyae2zrd5Vz45ZVf6aVZbmT2F1IIzZ39lRc6WRh3gF0Te+7ZUe8Aek7ALZ+jekoTOlhAGBPloAPczGAB0vhllQaltxtTYWlOuVgk1KiIlUbaOvddGWDa2lBWxMMaw5SGXZ35atTQ1MIAiCUueee67i4rwv+zU1NbroootcxpSpra3tnSMEXL2IDqv7ZU/wWlcccLY0rdoLbFl9LNf89+vbr0KYM9XL1mq0KYnV7bO1rPkzqkzFDi+ryg6xqUkDy7coYk1ZawH3gZNag1LrXpfWL25/XBac8mdizTxXSsrythdv8t7bsrP8NbVsKoJ/9UMgxNkUvY5TAC2rqqymoTlAVd0SqCqoqO00q8qkJ8a01KjyWpyyk+NI0wfCbQyROdZrbRWskFY8K638j5epPXKud7GLC0ZAyEpLiHFtfHaC6jf6dNxx+6miXi5Qta3Ey6baXlKj6vrGXVYXtkLqXoDKq09ltapSE8jUBvo0KHXOOee0e3zmmWfuss/ZZ5/dIwcF9CibohfVZqnor2IDU2tdMWaeNGiKC1b5qkqVX/yOhg23Iu+NzVlRbaYbRkR6ta9su9XTMhb4qrZWJEW2+VHc/umuASzXjzhvCuPcy1qztda94RWTt/e3P4rutk2bcbqUlOntW7Ba2rmmuQZXwq63iZkEvhC0bNDnH0zul5OyS1aVBal2lHmF1fPLalwAq7iq3rUVbQqr+6cA+oNUdjswNU5ZSVwBDWqWMWtTvtteGNj2qVfQ2n7X2eIZxv+70Iw6rPXCQOHa5tVkfZ1foJhyincRwH8RYdN7bntk0kBJw/q6t+gL9jfV6l7axSWraWnN/g6OmCMNn/XVtTUBhMzYwlYGzkiK1bRhae1KC9jUPy9Y5QWnrJD6+sJK1/ysfIAFqYY1B6ksaGX1rgD0UlDqwQcf7OZbAyEudbDX7A9Yfb1yV9fJN+14KaaTwM7kk73mn4roMrFqvKLvVgDerYrYzL4EWaH22nKpzlql1NTgvcZaW7Y6on0p2522y2TvXCuteWX3+9qy2hmjW1cvWvWS9wXPFYmPbH//wHOk9JFu14jtSzR2x4uK/CTP+1JnXwItIOcvPJ+9n5TQXH/OgnJ2TG4lxSgK0KNXsqr8hdW9KYDeSoAucFVWo5r6ppYpgJ9va93fUvW9YFVcy/Q/u81MiiVY1Vvc70P/74Pmf+PCNVLJZm/Ks7/Z7zm7td+Dx93aOj27YNVXT7ce9rXWoJTVEtrw5u73nXBca1DKsmQr8737Uc2vR+jJGicd+mOpdJu0+T2v/lTVTi9zatUL0hH/n5ScHeijBBDA0gLThw1oKaRumdlWQH1LkVejKq/5ApitKNx2VWHL0h7cpu7lkAEJbhsZVUAPTd8D0ENTEa25QFQnA16rgWGt3QqHNV7wyupjxbW5ejviEC+AZYXgbT9fU/vWtk6GBZEsc8DV36rZ9dYCSH5NjV79LdPYST/svf1qy5RcmyftWN46dbGt2Re3BqW2fSIte6KTfxcLekVJB50vDZrcnDG21Fs1yR8IaylSb3W5YqSxR7ZOxyjf4X3ptH1c3a7mYvauuH2MlDywNfBnQUHrrz1nGWrBFhizOif279uyemS9VJHfoUh/87Hv63Hb/zP2Rd9u3Xt1yDYJpn+XvSisPiY72bV2UwCrG7Sj3J9ZVeMFqMq8VQD9qwJKpe2CVV6AKk4ZidHaVil3BXVgWgBT9v0/63bu7GfVfv5b7jd5/7/7lW71AtzuZ9rOdaO3Iqnbv14ac0Trvuvf9FY1bcki8jKJIuuqNXnbKql+XmvQ3bI0LdDdbuGINj93ow9rDR5Z1pHV63P1/yrb1AKs8o637cqqFhj4qkCT9cX/vpap6s/u9P9Osn8by4ay27ZTs9OGe6uvmV0WvIhp/XxjWTLZE932JhsmvfnRPpwsBD1bjW/aqdKkk6TtS7yC6PZ71z+l3uz40tvPpvcDCDt2ccpfCmCmd01WdQ1NrpyAC1K5YFVVS4a2tbaBKpv6N2SAt5LwkOYamPZerCgMeAhKAf1ihUPLPGozHdDPruJ29UqufYGz1hWjD/eyDPzBLf8XX//9FC9DzPgGTtGmzMM1bOqBljLWnAHWpvB820G8DfQ74/+ctl/yLXBUU7L7Y2xbFL9sq3d1e3f2P1Ma/rXW7IqP/tLmyQgvwGNfTC0YY8uJ+/ct2uAF0TpOi4yMUmSTT2lVzVMxTWWhtPrl1kCXC3Y139q2zHGtQbSKAmnNy+0L9dsXdOuztUkneitHGbty/9atnXQqwjtmCyrYSlOmpkz66L72580fiLBbC2JOPL75fYuk127c/b+ZTWGZ8V3vvh3fS1e3BK4ifT5N27JZka+84x3D4BnSjO+0BtUW/9rre8u/WXOAywIF9u8wZWHr57zxm9b/t/zBFv8U14yx0sw2U8c/eai1Dly7AF1M87Qb/5o78gKadVVe4KV5ilZEY53SGuuVljxIE9q8r++j+1VdWa6y+kiVNkSrqC5KRbWR2lkbqYqIJG1pmuLqVzU1Nalye7Eqnn9DiTERykyKVnZitLKSYtz9zNRkJQ6f3noMFmCxLB//ebDjcMGgBi+wYtmTfsv+IZVtbz5f/oBTc6DJptjOu7p13/fu8gJCnbF/ixN+1/p45fNS/pdf/bPu/7mzaUz2pbyjpibFNFa1n95rwS4LRO/OiNmtwSPLfLJpybtj/8/7g0L2M2L9dothpLVpA7yAvD9YawZP91pX2M+0/+d6TywY4Q9IuBVlERbsYpH9DrFmf7v8Pxd233732O+SzPFevUhryYP6deAewL6JjY7UyMwk1/yq6xpb6l5ut9qXJdXu4pdN/dtQWOWan/36sDqXrCgMEJQC0Bk39a6L01aSslSSNEY+C3h0NnWxrTGHe9laNrhvF/Bqvm9F3f0GTZUO+0nrPv5pj/4aMJb54JeQ4WU32PYGy+5onibof13bgJ4FQNrxta7MaOwLcdsvy7ubHum+qLcG59z0oq0f7r7vE7/RGpSy9936FdkXFgRq+ZxG79/FBTXq2mSpNU99asvet2TTV7xv62CoXR2zTrUZELXNPnHH1KRI+3e0z2tqzqhp2bdJqizY/dt2zDSwfXc5J538O/izFTpOYfWz2jBtg1KWlWdZNXvqmz0q2aTEmlJZWCTHNtiFywTJFy9Vx2dr49TjXXZVbnGVMta/poydLWEzx45ou6Q10el6f9QP3NVPWwVw/w3/UVp9gasvEdVxgGn/Dm2DUhaQal44YRcWlGp3wJ3Uq3AB0ObgalsWXEkd1hoc9QdL/UE9+//LH+ixTKL0Uc3BvuaMw+g4NfkitLr2LQ1t+7m2opkFGN3PWWvgr+W27QqoQ/aXUgZ52ZguwO6/bb7fNqNpd6uwAn2p7d8/+z2SOsT7+Sxc5bUvn/H+7lhwyi7g+Ke+Awhr9ve+Y5Z2o039K6/Vdn+wqqT6K1cUToqNaglSDR4Q71b9G5gS74JgQKgiKAWgb9kUv8g2X1h3x+q7+Gu87Il9IejqlwLL6vnGHc0Bq7rWjBT7Mm0BlbbFbQeMkOZc0mm2mNURK/94Zeu+VnzeMpzc9Dv/dKo2U6rShnXY92BLN7gAAJJCSURBVKT2X8xd0Xn/4zZBNJsycsyvWh+3BOiaAwBtv/xbJsnXvtc6HdIFIfz3o9oH/Ww64zH+jKbmLCbjD3r5l003djxH39SyT1N9vb5c9LKGHn6koqKi2q+OaZ99yI+as57aZNf5n2tbP83M+WHr1MG2BftN22CFmX6aV5esJQjSHEy0W3/xfz/LNLN/f/8ULf9UTjdVq02xbLP/GV7ttg7TWiMaapUYl6LJQ1I1Wamqr6/Xys+TNWlkjmqbIlVe36TyWp/Ka5tUVtekosYkldc0qLymQmvzK1RUmqWExjj5IqKUnJig1KR4DUhKUnpKgtLT0izu1Wq/472gYUvWnj/LzlqHQJOt1uk/R3uqzTb1W+oyW320M/X1qo5b0f4zOlvNbHesrpw1oD+ybGSrPWXTqHd8IeWvkIrWeYuUbPqvlJTd+vfHsjPtAkVKDllUAJyoyAgXZLLW2YrC/mCVBaoKK2pV2cmKwvbrJCMx1pUSGMiKwghBBKUAhB/76+5WZdzDr0ALXmSN7/QpC0rVfpbXusHqZvmn3O2Jve+4o7RX/IGKzjLZbFtXV4+0f4OOwZmv2rdthlN0veqjU7wvYx2z4ywI1tVghenOvsOaawJ1RdtaSXvSjYDJ+oHHauK845UUE6Mkf2ZVs9qGRs1qLqzu6lOVHq9NpTVugOlYEl5pc9sqpa5b4RVDHZCgwWkD3VXRLhVWb1v/CEDfsFpt1sbO84LjNoXWAlSW1euX97n02WPe70ubfuyfts1UPwDdXFHYpv/taK5/aeOInZV1rrWtVWXDBRs3DLKC6lavaoC1eKXEs5o2+heCUgAA9IC46CgNt2WhMxK/+mpoSbUKK+vc9rKaCq3aUdGyf2xUhLsKmtPmSqg9psYEEEQsQ7WzOo1WQ86yHS1byuqo+WupWZaqBaesZmHHrE4A2MOKwhUtKwrXKL9lVeFaVdc3qqCizrXl28pa9rcxgwWo7MKX3Q4dkKABrACIIEZQCgCAPr4aallVO0rb1JhovrVVALcWV7vWVkJMlAtQ+Vf/8d+3VQYBBInxR3tZmraKpWVS7Vzn3a+rkHI/k6Y3Lwjhr3tXXeLVcbPp3W2nYgNAG8lx0UrOTtbYjisK1zSowGpeugteNdpWUq2CilrvoldeuVbmtWZVJcZGuSCVrSicley1zORYpSfGuimGQCAxmgUAIABZVSMyE13za2ryqbCy1l0FtQCVFVe31H3LqrKroRt3VrnWVkp8tCuC2vaKqNWY2OMUQAC9w2rC2bRv/9TvxgZvAYryvPZTpjf+16tN5UR4xdStjqG/pQ5lyh+ALl30Gjdw14teFqDa3txsPFHVSa0qY8OFjKRYNw0wszlQZQGrQSnxSk0gSxthFJS6++67ddtttykvL08zZszQnXfeqYMP3v3qO3fccYf+/Oc/a/PmzcrKytKpp56q3/zmN4qP7+JqYQAABBkLJNkKO9amDk1rV2PCip+6QFWZrdTjpfAXVdY3F1ZvaDfIjG4uqmp1JXJSvbT9QWlxLhAGoI9Z7cLOFgawRTcsSGUBK5vuV7bNa5vfk2KS2i9wYRlXtiCG1bRquwgFAHTholeD1aoqr/XKB1RYbapaFZZ7t/WNPrfNmtqUE/BnV1k5AVsF0G5tbGFZ2jbNEAipoNQTTzyhK664Qvfcc49mzZrlAk7HHHOMVq1apYEDB+6y/2OPPaaf//zneuCBB3TIIYdo9erVOvfcc10U9/bbbw9IHwAA6C02+HNLQ6e1W6/PXQ3115awgqh2NdQCV7UNTW2mABa7fe1CZ1ZSrCuqbtlUbnBptaq4CgoExpjDvWZsGl/J5ua2yatB1fbn8tO/STUl3mqbVjQ9dbCU0txshVZbaAMAdsNW6LMLVNbaclMAqxtclvZOC1ZV1LqLYF6QqtZlV60vrHStbWaVZVJZdrZ/VUG7mJZOzSr056CUBZIuvPBCnXfeee6xBaeef/55F3Sy4FNH7777rubOnavTTz/dPR41apT+53/+Rx988EGfHzsAAMFWWN1W57HaElanyq6KWq0JV3eiuRjqsq2lbd4jsvnKZ9t6VfGufgWAPpIwwGuDp+/6XEOd91xDjdfKt3vNL320dOiPWx9WrJEK10jpw6S4FKYAAvjqKYCJMa6NzW7/nGVp55dblrY3jnALtZR60wBtu7XP2ownYmyhlpQ4F6DKtjGFZX6nxikjsQurCiPsBXTUWVdXp08++URXX311y7bIyEjNnz9f7733XqevseyoRx55RB9++KGb4rd+/Xq98MILOuusszrdv7a21jW/sjJvZYL6+nrXeoP/fXvr/YNZuPY9XPsdzn0P136Hc9/7S7/T4iKVNihREwe1Bqtsip8bUJZ5g0rLrrIrodV1TdpQUOFaW8lxVljdrn7GKSMhSoU1UklltdISfWF1JbQvzvm+vjfjnFAXIc26xCLOUnWxVJ6riPJcqSLP3fpShsjnPx81lRpe9I70/gY1RkZ6U/5ScuRLzvFuBzQXVUef4WclOHFeumZgUrQGJqVo+pCUlgtfbjzRvPqfjScsOGXjidr6Jm0pqnKtLSspkJUc6wWsUuNc3Us3tkjatcA65yU47ct56eprInz2f1eAbN++XUOHDnXZT3PmzGnZftVVV+nNN9/cbfbTH//4R1155ZXuB6OhoUEXXXSRqzHVmRtuuEE33nhjp9MAExPbL7cJAEC4aPRJ5XVSab1UWheh0jqprC5CFQ028uz8NTGRUnKMTykxdtv+flwkSRl7o6qqymV/l5aWKjU1tduvZ5wDv+jGKg0relfx9SWKbSi3cFY7RUnjtCXzMHc/oqnBBbDqo5NUF5Wiuujk5vvJaoqMCcjxA+ifmnxSRb1UZq0uwt3amKK8LsKNNTpj4wUbP6TG+pTWfJsa422jZFX4jXH6XVBq8eLF+u53v6ubb77Z1aBau3atLrvsMjcF8Nprr+3SFcThw4ersLBwrwZ/XY0ILlq0SEcffbRiYsLrD3u49j1c+x3OfQ/Xfodz38Ol31aTympJ2FVQy6iyKYAffr5KGTnDXDbz7thUQG/1nliXrp+dEuuyrbKTY109i/6oL865jUts0Za9DUoxzkGn5yXSviXmK6Iiz638F1GxQ75BU+UbPsvbuTxPkW/f2vkbxSTKN+ow+cYf4z1uavCmBCZmSAkZ3gqD6BJ+VoIT56Vv2KrCxdX1rv6lG1eU16rAWkWd6hqaOtm/Sdu2bdWUcaM0MC3BG1Mk2WqA3m06UwH73c9LV8c4AZ2+ZwcYFRWlHTt2tNtuj3Nycjp9jQWebKre9773Pfd42rRpqqys1Pe//31dc801uwyY4+LiXOvI/kF7+5dQX3xGsArXvodrv8O57+Ha73Due6j327qWnBCnUdmtg5GcshU6+pjJKq/zuWKoNrgsqvRurYZVaXW96pukvPI619qy8aPVmLCiqIPSWlfwSY3vP0XWe/Oc7+v7Ms7Bbs9L/Ggpa3TnOyWmSVMWelMC/a2qSGqolhprpOhY75eBKd8pfXp/62vj06TELCkx02vZE6SMMX3TuX6Kn5XgxHnpfTlxscoZkNRum+XElFTVu6l/FqSyC2Be/aoql6ldVtukisJqrS+0BVvajye8i19x3gWw5kCV3Q5IjGGV4SD8eenq/gENSsXGxmrmzJl67bXXtHDhwpYIqT2+5JJLdpsC1jHwZIEtE8CkLwAAQn4VwEGpMS77qSMriFrsglR1LcEql2XVvBqg1Z+wpi27LjVtASoXsEqNV3pSrJJio/pNsArot+JTpXFH7bq9vtoLUMW0WaWrsU5KHSpVFkqNtVJNqdeK1nnP28+rPyhVkS99cI+3IqBlVbnsqjb34wdIUSykAIQz+xtvf++t7Zfj1avy15t+6rn1mjl3pEprmtqtBGhji/pGX8uiLZ2x8UN6S6AqRgOaA1YuaJUQ02+ztsNBwP8qXHHFFTrnnHN00EEHucLld9xxh8t88q/Gd/bZZ7spfr/5zW/c4xNPPNGt2HfAAQe0TN+z7Cnb7g9OAQCAvg1YDbTC6B0CVv6rof6glBVbt1awm6WmTWxURMtA0q58tr0KarcJMQStgF5jwai2ASkzYIR0+FVesfW6Sqlqp1RV6GVWWaDKVgD0c881t87YlMCJx3v3ayukHV9IyQNdIfZdPhdAWLG/7QnR0qjMpF0ybGw8UVZtKwnXamdzlnZxVZ27IFZUWa/q+kZV1lmr1tbi6k7eW0p344g4Nx3QxhOZSa0ZVzaOQRgHpb7zne+ooKBA1113nfLy8rT//vvrpZde0qBBg9zzmzdvbpcZ9Ytf/ML9D2u327ZtU3Z2tgtI/epXvwpgLwAAwFddDZ00OLXTpabzSmtdwCq/vMYNOOsafS3LTe+udpUFqtKTYtyAMtstQe2t6pMYG/BhDRC67FtdXLLX0kd2vo8FqA75Ufspge5+kXc/xRvfO6VbpM8ea30clyolD/ICVBaoyp4kJXdYpx5A2I4n0hJjXBs3MHmX52vqG12QyjKq7GKY3fof+7OsLHhlbW3+ru+fmhDtSg20zeC28QXBqr4RFKM3m6q3u+l6Vti8rejoaF1//fWuAQCA/scGeUMHJLjWlgWrrD6VXfksrqpvuQrqv29LUbebDqjydq9Pjotyg0gvUOUNKG35acuyIrsK6AMx8VLm2M6fs0yrtqU2IqOlrAlSxQ5vOmBtmdd2rvGeP+Cs1qBUwSrp839KCQO86YA2DdBNCxzQXN8qQ4pkxgQQruJjojQ4LcG1jizLqry2wdXELKq0TKs6l2nlLzdQU9/kLoqVVVdobX5FuxpWWclxLkDlBaoSXNDKAliMKUIwKAUAAGDBKhsAWuuMBa3sCqj/6qcNJguas6pse0Vtoypqq7ShsGqXKYH+YJU/Xd8+w26ZDgj0Efs5a/uzljXea/5aVhacKt/h3Vbme1lTfjZN0LZZ68z+Z0jDD/bu23sUrJSSsr1GwAoIa/Y3PjU+xrXRWbsWXbepfxao2tF8wSu3xLu1MgP+zO3Ptpa2G1Mkx0crOS7GXQxrvR+tlPhoJcXZ42gXvKL4etcQlAIAAP2CBa38waWOahsaXUHU/LKa5iWna90y1Dsra92UwG0lNa51ZEEpC061XdEnKylOGcmxio1gARWgT1g9qfRRXuvM4BlekMo/LbCmpPW+BaySslr33blW+uKp1scRkd4qgS7DKk0aM09KG+o9ZzWy6mu8wu9RrMIGhGPAyqb+J2ZEa3hGYvsaVjUNXi1MF6iqdrc2vqhrMxVwT9ISbIEYL3vbf2vlBiyzC60ISgEAgH7PrkZ2NiWwsckGj3UtgSpL3S8s91L3baqgXSG1oqidFUaNjZJKt0eouSwzgEBxtazGdf5cx9W3bUpfzvTm7KoCqaneu7VmRsxp3Xfbp9Lyf3r3YxK9ulYWuPJPExz2tdaAl30OWZVA+NSwSohxre0KgQ3NZQYqahtcSQG7rfDf1rZ/bOUGbF9rq3e0TgvsGKwamBrnrRKYGOu2R9q8wTBDUAoAAISsqMjWqXsd1TU0uamANg3QqzHh3VrGlQ0irc5EfVNADhtAV3UMFA2a4jV/IMmyqixAVV0i1ZZ6RdT9GuukyBgvcFVf5bWKvNbnreaVPyi16b/Syudb61nZtEAryp4y2GuxrVkWAEJTdFRkc1Z152UG2qqqa3AZ2zb9z6YGuqmAZTUuA2t3warICLVbeTi9OVjlX+DFpgWGYskBglIAACAsxUZHalCqpdTHd1q/akdJpV55dWNAjg1AD7Avb64genrnz487Shp7pFfTyoqsW8F1axbAsqmBVpPKzx77A1fl23d9rzmXSlnN2VyVO6X6Sik+s5c6BiDY2bTAUVnW2texqna1qmq0wwWsalzgyi6QWW3MhqbWqYHrCip3eU8LWllgypqrXRUfrZQ29/3PWcZVYmz/qZlJUAoAAKCT+lUWrMrcNV4FIJTYlzbLcrJmmU+7M36BNPSg1npWln1Vnus1e9w2A2vzu9LaVxXZ5NPE7cWK+LRAyhglpQ3z6lnFtU4HAhBeEmKjNDIzybW2fFbHqrpBRbbycPPqw1ZqoMQt7lKvspp6NfnkMq2s7UlcdGRzxlWMBvgzr5ozruw2mOpaEZQCAAAAgK8SHSelDvZaR5ZpFd02gm2BrmSppkxxDeWKyPtMyv+89ekjr5OSmrOoKgqkqGhvWmA/yWoA0Et1rBJjXBut9gErfz2ryjpbZbhBlR1qWrnHLdu91YitppUVZ7fWGcukskDVmbNGus8MJIJSAAAAALAvqwe2Nekb0sQT1FRZrHXP/13D9hsrVeZKpVu9Ff+sHpXfyuek3M+8IJatMGhTBpOzvdukgV72FsEqIOxFR0UqLcHangNIVoLApgNaxpUt9mJZV5aBZdvscVVdY3OrVnxspAKNoBQAAAAA9CQLJMWlqCJ+qHxWtyqm+YtkY337IFNToxQRKdVVSEXW1rU+Z0XYj7+t9fHm96WGGq9GlmVWxadKcWlSZOC/VAIIrhIE2btZ5MXU1De6gJUVW7fViwONoBQAAAAA9IWoDlkOB1/oBaqsNpVN5avMlyoLpIp8KTK6fQBrw1tS2bYOb2jBr+Ysq0Mubd2cv8ILeNm0wph479amIEYneNMFAYSt+JgoDU5LcC0Y8BsJAAAAAAIZqBowwmtfZfAMKSnLK6xeU+atGOhrkmrLpZjE9vuueK6TAFYzy7Saf0Pr4y+e8YJfrhD7cG/qIFMGAfQRglIAAAAAEOwmHNP+cVOTN+2vplRq6rAal9WiioySGmq9KX/1NVJjbeu0wLYKV7cPYEXFeasEpg6V0kdJww7qrR4BAEEpAAAAAOh3rJaU1ZWy1tGBZ++6zYJYjXVea2vcUVLRBql0i1S6zQteFa1vbW2DUl8+600FtGLs/sLsHackAkA3EJQCAAAAgHAIYkU215hqa+hMr/kDV1bXylYKtCBVXJuAlz234c0OWVkR3nRAC1BljfcCXADQDQSlAAAAAABe4Mqm/lnrOG3P1yhNOFaq2OEVYreC7PVVUnWR16yQesu+PmnRdVLCAC9g5dpA7zYxi2LrAFrw2wAAAAAA8NVsmt74o9sHnqzIulstcIeXMeVnxditELu1ks3t3yciUhpxiDT9263bqoq811NgHQg7BKUAAAAAAN1jASR/TavMse2fix8gHf7z1qwqu7VpgXbfCq/HtFmK3lYSfO1GbwVBtwJg8yqAbiXALAJVQIgjKAUAAAAA6NlpgKmDvdaWZVfZaoGWLeVnmVYRUd5UQFsJ0JqfFVXf7zhpzBHe48YGb7+4FIJVQIggKAUAAAAA6H0WSLI6U21ZltVxt0rlua0F1q2VbW/Oqkps3bd4o/TenVJMklejympfWZ0q/y1TAIF+h6AUAAAAACBwrPD5gOFe0xxvW1OjN+0vPq19rSpb8a++Uire4LW2pp0mjZrbvG+JVJ7nBazsPQhWAUGJoBQAAAAAILhERkmpQ9pvG/41acj+zbWqdkjldpvn3do0QAtA+RWslD573Ltv2VYpg12LSMxSUk1ucxZWTN/2CcAuCEoBAAAAAPrPKoD+guhtWWaVZVG1iJCSBnrBKqtDVbTOtYimJo3L3yKVfF1KmOztunOdVLhGSs6WkqwNlGLi+7RbQLgiKAUAAAAA6P+ZVW2NmOW1xvrmrCrLqMqVSrapbnuxF3zyy18hrV3U/vVWTN2CU4mZXrH1xAxve0OtV5jdphwC2Gf8JAEAAAAAwiKzqqm+XivyB2t024LrA0ZIw2dLlflSRb5UVyHVlnvNMqwsKOW3ZpG09lUpPtUrrJ6Q4d1a0MruW+H26LgAdBTonwhKAQAAAADC1+DpXvOrq/Km/Vmz4upti63XlEryebfWbEXAto66vjUoteFtr7aVC141N8u8sgBWbDLF1wGCUgAAAAAAtBGbKMWOlNJH7vrc/qdLk0+Sqoq8gFXVTu/WtZL2ASwLWO1Y3vlnRMZIR17jBar8da0syEXQCmGGoBQAAAAAAF1hgSKrN2Wts6BVW6MOlTLGSNX+AFbzrQWfmhqkuNTWfTe9K237uPVxZHTr59h+B5zVWny9dJu3eqD/+eh4AljotwhKAQAAAADQ0zJGe62jxgaptqx9cfbkQV4AywJX/qCVPwPLVhKMim3dd91r0rZPWh9HxXkZV5alZbdTvtkawLK6WBbgiknozZ4Ce42gFAAAAAAAfcVW7vOv5uc3YYHX2gatXCv3alxFRrbua1P7bPVAe84yphprpYo8r1kAa/pprft+8bQXwLJsqsQsKTnbe62/DRjZ/r2BPkZQCgAAAACAYAtadQxc+U09RZI1SQ21XmaV1bOqKZHqKttnYNVXN+9XI5Vt9VqLCOn439lcQe/hxv96gS5/XStrcWkErdCrCEoBAAAAANAf2Up/yQO91plZ/88LXNk0wMrC1lUFrdkUQQuA+W39SCre0P71EVHelMCkLGnWRa21qyoKvNcStMI+IigFAAAAAEAoB65Scrz2VYYd5NW2ssLs/lUFfY1SVaF327aY+mePSUXrpYhIKX6Al1VlwStrlmk1YnavdwuhgaAUAAAAAADhzlYLbKupSaot9YqvW7ZVW74mLyBlt251waLW5yww1TYo9f49XoArPtVbSbDtre1rBd4RtghKAQAAAACA9mxanj/7qaNDL28NWvlXCXStRIqKab9vxQ4vaOUKsXeQkCHNv771I9+/S6op9lYbtGYrB7r7MV5G1ozvtL42f4XU1OitOmjNCsAzlbDfCYqg1N13363bbrtNeXl5mjFjhu68804dfPDBu92/pKRE11xzjZ566ikVFRVp5MiRuuOOO3T88cf36XEDAAAAABCWvipo1bGulRVjr7HVBP23Zd6tZUu1VVPu7dsZWz2wrZX/kUrbFG63zK24FC8Ly1YWnHlO63Mb3pbqKrwaWbafTUWM9N+PkkYe0n56IsInKPXEE0/oiiuu0D333KNZs2a54NIxxxyjVatWaeDAXYu11dXV6eijj3bP/fOf/9TQoUO1adMmDRgwICDHDwAAAAAAdqMr9ayaNX3te4pSg9RY7xVib6xrbh2KspvUod4KghbEslUDbSqhC36V7jrdcPN7Utm2zj/UMqxGzW19/NH9XlF4twJhZpvbzOaMrKRu/xMgiINSt99+uy688EKdd9557rEFp55//nk98MAD+vnPf77L/rbdsqPeffddxcR4aYGjRo3q8+MGAAAAAAA9yDKcmr/n79H+p7fed1MJ/RlYnWRaDTnQq11l0/0seOXz3zZ50wLbKs/1Vics377r+1hg6qjrWh//94/e9EQ3zTBGiozxgmfR8V4GWdtjrMj39rNMro4BtjAW0H8Jy3r65JNPdPXVV7dsi4yM1Pz58/Xee+91+ppnn31Wc+bM0Q9/+EP9+9//VnZ2tk4//XT97Gc/U1RUVB8ePQAAAAAACI6phAO81pnx87v+Xgd/38uUcisQNq9EaMXerVnQqa26Sm9aYGesXlZbSx+Vijd692OSvGONS/FqZlkG1rRTW/fd8qGX/eWvrWUBLwt0xSR4rYuZZ/1BQINShYWFamxs1KBBg9ptt8crV67s9DXr16/X66+/rjPOOEMvvPCC1q5dq4svvlj19fW6/vrWAml+tbW1rvmVlZW5W9vfWm/wv29vvX8wC9e+h2u/w7nv4drvcO47/Q6vfvdV3/f1vRnnwI/zEnw4J8GJ8xKcguq8xKV7LWP8rs/5fHaQrY8PPF9qrPWmGrrphvWuRTTUeLu32TfS5/7r7WcBJ2t+CRlqmnhyy8PIdYul0i3qVEyCmo7+Veu+nzwolW2XYuK9wJUFsaxOVmSkfNHx8k3/bsu+EZvf9QJuEVHyTTjGy9zqpfPS1ddE+Hz2rxoY27dvdzWhbCqeZT/5XXXVVXrzzTf1wQcf7PKaCRMmqKamRhs2bGjJjLIpgFYoPTc3d5f9b7jhBt144427bH/ssceUmJjY430CAADoqqqqKpfxXVpaqtTUDsVeu4BxDgAA/YjPp6imOsU0VSmmoVLRTTWKbGpQU0SUipNbg2CDSpcorqFMEb5GRfoa3D5Rvnr32sbIWK3OaQ1gjc97Vol1Ozv9ONt3+bAzWh6PyX9JKTVe3GTZ8LPki4gO+BgnoEEpm75nAyYrWL5w4cKW7eecc45bYc+m53V0+OGHu1pSr776asu2F1980a28Z1cKY2Nj93gFcfjw4S5La28Gf12NCC5atMgVZPfXvQoX4dr3cO13OPc9XPsdzn2n3+HV777qu41LsrKy9jooxTgHfpyX4MM5CU6cl+DEedkHVv/KphE21CiivlpqsiLxVjOr0a0u6BtxSMuuEVbwvarQPe+bdPIeVxzcl/PS1TFOQKfvWQBp5syZeu2111qCUk1NTe7xJZdc0ulr5s6d667+2X5Wf8qsXr1agwcP3iUgZeLi4lzryP5Be/t/9r74jGAVrn0P136Hc9/Dtd/h3Hf6HX56s+/7+r6Mc9AR5yX4cE6CE+clOHFe9sKAIV3fd+zX++y8dHV/L6oTQFdccYX+8pe/6K9//atWrFihH/zgB6qsrGxZje/ss89uVwjdnrfV9y677DIXjLKV+n7961+7wucAAAAAAADoHwK+DuF3vvMdFRQU6LrrrlNeXp72339/vfTSSy3Fzzdv3tySEWUsJf3ll1/W5ZdfrunTp7uaVBagstX3AAAAAAAA0D8EPChlbKre7qbrLV68eJdtVhT9/fff74MjAwAAAAAAQG8I+PQ9AAAAAAAAhB+CUgAAAAAAAOhzBKUAAAAAAADQ5whKAQAAAAAAoM8RlAIAAAAAAECfIygFAAAAAACAPkdQCgAAAAAAAH0uWmHG5/O527Kysl77jPr6elVVVbnPiImJUTgJ176Ha7/Due/h2u9w7jv9Dq9+91Xf/eMR//hkXzHOCV+cl+DDOQlOnJfgxHkJvfPS1TFO2AWlysvL3e3w4cMDfSgAAAAt45O0tLQeeR/DOAcAAPSHMU6Er6cuzfUTTU1N2r59u1JSUhQREdErn2ERQRsMbtmyRampqQon4dr3cO13OPc9XPsdzn2n3+HV777quw3DbLA2ZMgQRUbue1UFxjnhi/MSfDgnwYnzEpw4L6F3Xro6xgm7TCn7xxg2bFiffJadtHD9gQrXvodrv8O57+Ha73DuO/0OP73d957IkPJjnAPOS/DhnAQnzktw4ryE1nnpyhiHQucAAAAAAADocwSlAAAAAAAA0OcISvWCuLg4XX/99e423IRr38O13+Hc93Dtdzj3nX6HV7/Dve9fhX+X4MR5CT6ck+DEeQlOnJfwPS9hV+gcAAAAAAAAgUemFAAAAAAAAPocQSkAAAAAAAD0OYJSAAAAAAAA6HMEpXrB3XffrVGjRik+Pl6zZs3Shx9+qFB2ww03KCIiol2bOHGiQtFbb72lE088UUOGDHH9fOaZZ9o9byXarrvuOg0ePFgJCQmaP3++1qxZo1Dv97nnnrvL/wPHHnus+rvf/OY3+trXvqaUlBQNHDhQCxcu1KpVq9rtU1NTox/+8IfKzMxUcnKyvvWtb2nHjh0Kh74fccQRu5z3iy66SP3Zn//8Z02fPl2pqamuzZkzRy+++GLIn++u9D0Uz3dnbrnlFte3H//4x2Fx3rsr3MY4wSZcxyHBLpzHC8EsnP+m9xf8zQ0ee/pO35vnhaBUD3viiSd0xRVXuAr1n376qWbMmKFjjjlG+fn5CmVTpkxRbm5uS3vnnXcUiiorK905tUF5Z2699Vb98Y9/1D333KMPPvhASUlJ7vzbD3Eo99tYEKrt/wOPP/64+rs333zT/fJ9//33tWjRItXX12vBggXu38Pv8ssv13PPPacnn3zS7b99+3adcsopCoe+mwsvvLDdebefgf5s2LBhboD0ySef6OOPP9aRRx6pk08+WV988UVIn++u9D0Uz3dHH330kf7v//7PfYlpK5TPe3eE6xgnmITrOCTYhfN4IZiF89/0/oC/uf3rO/3lvXlebPU99JyDDz7Y98Mf/rDlcWNjo2/IkCG+3/zmN75Qdf311/tmzJjhCzf24/P000+3PG5qavLl5OT4brvttpZtJSUlvri4ON/jjz/uC9V+m3POOcd38skn+0Jdfn6+6/+bb77Zcn5jYmJ8Tz75ZMs+K1ascPu89957vlDuuzn88MN9l112mS/Upaen++67776wOt8d+x4O57u8vNw3fvx436JFi9r1NRzP++6E4xgnmIXrOKQ/COfxQrAL57/pwYS/uf3rO31JL58XMqV6UF1dnYvEW6q0X2RkpHv83nvvKZRZarilko8ZM0ZnnHGGNm/erHCzYcMG5eXltTv/aWlpbnpDqJ9/s3jxYpeyvt9+++kHP/iBdu7cqVBTWlrqbjMyMtyt/bzb1dC259zSXEeMGBFy57xj3/0effRRZWVlaerUqbr66qtVVVWlUNHY2Ki///3v7kq3pfyH0/nu2PdwON+W5XDCCSe0O78mnM77VwnnMU5/Ee7jkGASzuOFYBXOf9ODEX9z+9d3+k96+bxE7/M7oEVhYaH7hTdo0KB22+3xypUrFapssPPQQw+5YISl+d1444067LDDtHz5cje3PlzYQNB0dv79z4Uqm7pn6ZujR4/WunXr9P/9f/+fjjvuOPdLKioqSqGgqanJzXefO3eu+0Ju7LzGxsZqwIABIX3OO+u7Of300zVy5Ej3x2vZsmX62c9+5mpoPPXUU+rPPv/8czdgtekuNmf+6aef1uTJk7V06dKQP9+763son29jX1RsOppNJegoXH7O9yRcxzj9STiPQ4JJOI8XglE4/00PVvzN7X/f6fN6+bwQlMI+s+CDn80Jtv+h7YvLP/7xD11wwQUBPTb0je9+97st96dNm+b+Pxg7dqzLnjrqqKMUKld07JdyqNZL25u+f//732933q2wrp1vC0za+e+v7I+xDVbtSvc///lPnXPOOW7ufDjYXd9tAB+q53vLli267LLLXB0YK94NAPsinMcLwSic/6YHI/7m9s/v9AkJCb362Uzf60E2pcGyQjpWobfHOTk5ChcWQZ0wYYLWrl2rcOI/x+F+/o2lfNrPQ6j8P3DJJZfoP//5j9544w1XNNPPzqtNaSkpKQnZc767vnfG/niZ/n7e7UrQuHHjNHPmTLeikhUV/sMf/hAW53t3fQ/l820p6Vao+8ADD1R0dLRr9oXFikXbfbsKGOrnvSsY4wQ/xiGBF87jhWAVzn/TgxF/c/vnd/qcXv55ISjVw7/07Bfea6+91i6F1x63rckR6ioqKtyVc7uKHk5s6pr9ULY9/2VlZW71m3A6/2br1q2uplR//3/A6sjaANNSvV9//XV3jtuyn/eYmJh259ymM9n86/5+zvfU987YlUjT3897R/Z7vLa2NqTP9576Hsrn27K9bHqH9cffDjroIFdLwX8/3M57ZxjjBD/GIYETzuOF/iac/6YHA/7m9s/v9DN7++dln0ulo52///3vbpWThx56yPfll1/6vv/97/sGDBjgy8vL84Wqn/zkJ77Fixf7NmzY4Pvvf//rmz9/vi8rK8utPBKKK0UsWbLENfvxuf322939TZs2uedvueUWd77//e9/+5YtW+ZWpBs9erSvurraF6r9tueuvPJKt/KC/T/w6quv+g488EC3okZNTY2vP/vBD37gS0tLc/9/5+bmtrSqqqqWfS666CLfiBEjfK+//rrv448/9s2ZM8e1/m5PfV+7dq3vpptucn22827/z48ZM8b39a9/3def/fznP3erJVmf7GfYHkdERPheeeWVkD7fe+p7qJ7v3em40mAon/fuCMcxTrAJ13FIsAvn8UIwC+e/6f0Jf3P7x3f63jwvBKV6wZ133ulOWGxsrFs++f333/eFsu985zu+wYMHu/4OHTrUPbYvMKHojTfecIPAju2cc85pWY752muv9Q0aNMgN3I866ijfqlWrfKHcbxtwLViwwJedne2WCh05cqTvwgsvDIkvKZ312dqDDz7Yso8N9C+++GK3xHBiYqLvm9/8phuIhnrfN2/e7AISGRkZ7v/1cePG+X7605/6SktLff3Z+eef7/4ftt9n9v+0/Qz7B6+hfL731PdQPd9dHSCH8nnvrnAb4wSbcB2HBLtwHi8Es3D+m96f8De3f3yn783zEmH/2fd8KwAAAAAAAKDrqCkFAAAAAACAPkdQCgAAAAAAAH2OoBQAAAAAAAD6HEEpAAAAAAAA9DmCUgAAAAAAAOhzBKUAAAAAAADQ5whKAQAAAAAAoM8RlAIAAAAAAECfIygFAL0sIiJCzzzzTKAPAwAAoEcxxgGwrwhKAQhp5557rhswdWzHHntsoA8NAABgrzHGARAKogN9AADQ22xw9uCDD7bbFhcXF7DjAQAA6AmMcQD0d2RKAQh5NjjLyclp19LT091zdkXxz3/+s4477jglJCRozJgx+uc//9nu9Z9//rmOPPJI93xmZqa+//3vq6Kiot0+DzzwgKZMmeI+a/DgwbrkkkvaPV9YWKhvfvObSkxM1Pjx4/Xss8+2PFdcXKwzzjhD2dnZ7jPs+Y4DTAAAgI4Y4wDo7whKAQh71157rb71rW/ps88+cwOn7373u1qxYoV7rrKyUsccc4wb4H300Ud68skn9eqrr7YbkNmA74c//KEbyNngzgZj48aNa/cZN954o0477TQtW7ZMxx9/vPucoqKils//8ssv9eKLL7rPtffLysrq438FAAAQahjjAAh6PgAIYeecc44vKirKl5SU1K796le/cs/br8GLLrqo3WtmzZrl+8EPfuDu33vvvb709HRfRUVFy/PPP/+8LzIy0peXl+ceDxkyxHfNNdfs9hjsM37xi1+0PLb3sm0vvviie3ziiSf6zjvvvB7uOQAACGWMcQCEAmpKAQh58+bNc1fm2srIyGi5P2fOnHbP2eOlS5e6+3ZVb8aMGUpKSmp5fu7cuWpqatKqVatcavz27dt11FFHfeUxTJ8+veW+vVdqaqry8/Pd4x/84AfuKuann36qBQsWaOHChTrkkEP2sdcAACDUMcYB0N8RlAIQ8myA1DHVvKdYfYSuiImJaffYBno26DNW62HTpk164YUXtGjRIjf4s1T53/3ud71yzAAAIDQwxgHQ31FTCkDYe//993d5PGnSJHffbq0Og9Vd8Pvvf/+ryMhI7bfffkpJSdGoUaP02muv7dMxWAHQc845R4888ojuuOMO3Xvvvfv0fgAAAIxxAAQ7MqUAhLza2lrl5eW12xYdHd1SaNMKex500EE69NBD9eijj+rDDz/U/fff756zYp3XX3+9G0zdcMMNKigo0KWXXqqzzjpLgwYNcvvY9osuukgDBw50VwTLy8vdoM7264rrrrtOM2fOdCvb2LH+5z//aRkwAgAA7A5jHAD9HUEpACHvpZdecksYt2VXAFeuXNmyaszf//53XXzxxW6/xx9/XJMnT3bP2fLGL7/8si677DJ97Wtfc4+tNsLtt9/e8l42mKupqdHvf/97XXnllW4geOqpp3b5+GJjY3X11Vdr48aNLlX+sMMOc8cDAADwVRjjAOjvIqzaeaAPAgACxeoePP30067wJgAAQKhgjAOgP6CmFAAAAAAAAPocQSkAAAAAAAD0OabvAQAAAAAAoM+RKQUAAAAAAIA+R1AKAAAAAAAAfY6gFAAAAAAAAPocQSkAAAAAAAD0OYJSAAAAAAAA6HMEpQAAAAAAANDnCEoBAAAAAACgzxGUAgAAAAAAQJ8jKAUAAAAAAIA+R1AKAAAAAAAAfY6gFAAAAAAAAPocQSkAAAAAAAD0OYJSAAAAAAAA6HMEpQAAAAAAANDnCEoBQBc89NBDioiI0MaNG/e476hRo3Tuuef2yXEBAAAAQH9FUApAyAeSOms///nPA314LnjV2bFddNFFgT40AAAAAOh10b3/EQAQWDfddJNGjx7dbtvUqVMVDPbff3/95Cc/abdtwoQJATseAAAAAOgrBKUAhLzjjjtOBx10kILR0KFDdeaZZwb6MAAAAACgzzF9D0DYe/3113XYYYcpKSlJAwYM0Mknn6wVK1bs8XU+n08333yzhg0bpsTERM2bN09ffPFFtz+/rq5OlZWVe3n0AAAAANA/EZQCEPJKS0tVWFjYrvm9+uqrOuaYY5Sfn68bbrhBV1xxhd59913NnTt3j0XNr7vuOl177bWaMWOGbrvtNo0ZM0YLFizoVoDJAmIW0EpOTnY1pv7whz/sU18BAAAAoL9g+h6AkDd//vxOs5zMT3/6U2VkZOi9995zt2bhwoU64IADdP311+uvf/1rp+9ZUFCgW2+9VSeccIKee+45V6DcXHPNNfr1r3/dpeOaPn26Dj30UO23337auXOnK8z+4x//WNu3b9dvf/vbfegxAAAAAAQ/glIAQt7dd9/dafHw3NxcLV26VFdddVVLQMofLDr66KP1wgsv7PY9LcPKpt1deumlLQEpY0Glrgalnn322XaPzzvvPFf/6vbbb3fva9MCAQAAACBUMX0PQMg7+OCDXbZU22Y2bdrkbi1TqaNJkya5aX67m4rnf+348ePbbc/OzlZ6evpeHacFty6//HI1NDRo8eLFe/UeAAAAANBfEJQCgCAyfPhwd1tUVBToQwEAAACAXkVQCkDYGjlypLtdtWrVLs+tXLlSWVlZbkW+r3rtmjVrdqk1VVxcvNfHtH79+paMKwAAAAAIZQSlAIStwYMHa//993fFzEtKSlq2L1++XK+88oqOP/743b7WpgDGxMTozjvvbCmabu64444ufbZlQjU2NrbbVl9fr1tuuUWxsbGaN2/eXvUJAAAAAPoLCp0DCGu33XabKy4+Z84cXXDBBaqurnaBprS0NN1www27fZ1lMl155ZX6zW9+o2984xsugLVkyRK9+OKLLsOqK0XOb775Zp166qkaPXq0C1I99thjLiBmhdJzcnJ6uKcAAAAAEFwISgEIa5bx9NJLL+n666/Xdddd57KfDj/8cP32t791waKvYkGl+Ph43XPPPXrjjTc0a9Ysl2F1wgkn7PFzp02bpsmTJ+uRRx5xU/4sO8qytv7xj3/o29/+dg/2EAAAAACCU4Sv7bwTAAAAAAAAoA9QUwoAAAAAAAB9jqAUAAAAAAAA+hxBKQAAAAAAAPQ5glIAAAAAAADocwSlAAAAAAAA0OcISgEAAAAAAKDPRSvMNDU1afv27UpJSVFERESgDwcAAIQxn8+n8vJyDRkyRJGRXCsEAADhJeyCUhaQGj58eKAPAwAAoMWWLVs0bNiwQB8GAABAnwq7oJRlSPkHf6mpqb3yGfX19XrllVe0YMECxcTE9MpnoPs4L8GJ8xKcOC/BifMSeuelrKzMXSzzj08AAADCSdgFpfxT9iwg1ZtBqcTERPf+fGkIHpyX4MR5CU6cl+DEeQnd80JJAQAAEI4oXgAAAAAAAIA+R1AKAAAAAAAAfS7spu8BAID2q781NDSosbEx0IfSr6fvRUdHq6amZrf/jjatLyoqqs+PDQAAIJgRlAIAIEzV1dUpNzdXVVVVgT6Ufh/Yy8nJcYuo7K42lG231fWSk5P7/PgAAACCFUEpAADCUFNTkzZs2OCyd4YMGaLY2FiKbe/Dv2VFRYULOEVGRnYatCooKNDWrVs1fvx4MqYAAACaEZQCACBMs6QsmDJ8+HC3chz2nv072r9nfHx8p0Epk52drY0bN7qpfgSlAAAAPBQ6BwAgjO0uiIKeRRYaAADArhiJAgCAoLD//vu7NnnyZJdN5H/8ne98p8vv8eyzz+ryyy/v9mefe+65uuOOO7r9OgAAAOw9pu8BAICgsHTpUndr09wsGOV/3JatFGgr3e3OSSed5BoAAACCH5lSAADAFeOubWjs1WafsTdGjRqln/3sZzr44IN1zjnnKC8vT/PmzdPMmTM1ZcoUXXLJJa6uk3nooYe0cOFCd3/x4sWaOnWqLr74Ys2YMcPt+/HHH+/x86xo+fnnn+9ea+3GG29see7mm2/WpEmTWrK4Nm3apOrq6pb97XMWLFiwV/0EAAAIN2RKAQAA1TU26YZnv+zVz7jhpMmKi967It87d+7UBx984Goz1dTU6LnnnnOr3TU2Nurkk0/WP/7xD333u9/d5XUrV67U/fffrz/96U+65557dM011+jll1/+ys/65S9/qdraWi1btswFnA499FBNnDjRBZt+97vfKTc3VwkJCaqqqnI1uZ5//nmVlpZq+fLl7nFRUdFe9REAACDckCkFAACCntV88hcLt6woy5yyrKQDDjjAZT91NtXPjBs3TrNmzXL358yZo3Xr1u3xs1599VVdeOGFLsCUlJSks88+W4sWLVJqaqrGjx+vM888U//3f//ngk+24p4dx6pVq/TDH/5QTzzxhGJiYnq49wAAAKGJTCkAAKDYqEiXydTbn7G3LCvK7/bbb1d+fr7LnLKg0BVXXOGypzpjz/tZ8XSrSdVd/mCYvf7999/Xu+++66YGzp49W48//rjmzp3rtltw7PXXX9dVV13lgmTp6el71VcAAIBwQaYUAABwgRebWtebzR/c2VfFxcXKyclxASerL/Xkk0+qJ82fP99N+bMaWJWVlXr44Yfd1L3y8nLt2LFDhx12mK699lo3rW/JkiXaunWr65sVWLfpffa6LVu29OgxAQAAhCIypQAAQL9y2WWX6dRTT3WFy4cMGeKCSD3JAk4/+tGPNG3aNPf429/+tk477TQXfLLPtUCVBaFsKp8VXn/nnXf085//3E33s0yss846S9OnT+/RYwIAAAhFBKUAAEBQsdX2SkpKWh5v3Lix3fMjRozQhx9+uNvaU9bMEUcc0a7WlK2O1/G9/GzVvrZTBR944IFd9hk2bJibptfRcccd56bwWc0pC0wBAACgaxg5AQAAAAAAoM8RlAIAAAAAAECfIygFAAAAAACAPkdQCgAAAAAAAH2OoBQAAAAAAAD6HEEpAAAAAAAA9DmCUgAAAAAAAOhzBKUAAEBQOP7443XXXXftsn3GjBl66qmndvu6hx56SAsXLuz0uSOOOELPPPNMjx4nAAAAegZBKQAAEBQuuOACPfjgg+22ffzxx8rNzdWJJ54YsOMCAABA7yAoBQAAWjXU7r411u/9vl1w0kknacuWLVq2bFnLtgceeEBnn322du7cqf+/vfuAjrM42z5+qaxWvXe5Yxv3DtgYQnOhBEIIIQFCsRPyUkMghISPYDAJ5YUECKG9dBI6JLSEZsAUgyl2MODehIu6rN5X5Tszj1bFBSxj7a60/985c3b32aIRg0G6fM89Rx11lKZOnaqxY8fq4osvVmtra48+v7i4WKeccorGjx+vcePG6f/+7//sdfM55vNGjx5tq7LM12hoaFBJSYnmzJljXz9hwgTNmzevx98TAAAA9iz8G54DAADB5rUr9/xc+hjpkP/pfPzmH6SWpt2/NmW4dOglPfrSLpdLZ511lg2i7rjjDhsMPfXUU/roo4+UmJioV155RbGxsWppadEPfvADPfvss/rpT3+6159/ySWX6MADD7RbAU1AZcInE0K53W69/fbbWrVqlUJDQ1VZWamIiAg9/vjjGjp0qN588037/rKysh59PwAAAPhmVEoBAICA2sL3xBNPqKmpyYZHpnrJDFPN9Lvf/c6GSJMnT7bb+lasWNGjz37rrbf0P//jhGrp6em2aspcGzZsmJqbmzV//nw99thj8ng8NpyaPn26XnvtNf3mN7/RSy+9pJiYmF76rgEAAIITlVIAAKDTcbfs+bmQnf4ua86f9v61e2nMmDEaPny4rYoyFVMmpDJuu+02W930ySefKDIyUpdffrmtpPouQkJC7G1CQoJWrlyp9957T4sXL9ZVV12l999/XzNmzLDBlwmuTEB2zTXX6PPPP1dYWNh3+roAAABwUCkFAAA6hbv3PMJc+/7aHjBB1I033qhPP/1UP/nJT+y18vJyZWZm2kCqsLBQzz33XI8/d9asWXrggQfsfdMvygRNs2fPtvdra2tt/yjzdYcMGaLVq1crNzfXbhc87bTT9Le//U3r169XTU3NPn9fAAAA6I5QCgAABBQTRK1bt04//vGPbShkXHrppbZKyjQ5N32nTMDUU3feeafWrFljG5ebpulXX321DjnkENtc3YRTppm5aYBuxnHHHad3333X9p2aNGmSDj30UN166622qgoAAAD7B9v3AABAQImLi9ulImnQoEG2cmp3zj33XDt2xwRLXhkZGbY6amdTpkzR8uXLd7luTtvjxD0AAIDeQ6UUAAAAAAAAfI5QCgAAAAAAAD5HKAUAAAAAAACfI5QCACCItba2+nsKQaGtrc3fUwAAAAg4NDoHACAIRUREKDQ0VPn5+UpLS7OPQ0JC/D2tPhvsNTU1qaGhwf4z3V0gVVJSYv/5ulwuv8wRAAAgEPk1lHr//fft8crmxJuCggK98MILOvnkk7/xPY2Njbr++uv1+OOPq7CwUFlZWVqwYIHmz5/vs3kDANDXmfBk6NCh9v+/JpjCvjOhU319vaKiovYY7JnrAwYMUFhYmM/nBwAAEKj8GkrV1tZq4sSJNlA65ZRT9uo9p512moqKivTQQw9p+PDh9odpth4AANBzpjpq0KBBam5uVktLi7+n02d5PB77F23f+9739lgJZa4TSAEAAARQKHXcccfZsbdef/11vffee9q8ebOSk5PttSFDhvTiDAEA6N+8W8rYVrbvTNhkgr3IyEj+OQIAAPTXRucvv/yypk2bpltuuUU5OTkaOXKkrrjiClsyDwAAAAAAgL6jTzU6NxVSS5YssX8TafpPlZaW6sILL9SOHTv0yCOP7LEHlRleVVVVHaX2ZvQG7+f21udj37AugYl1CUysS2BiXfrfurCWAAAgmIW0BcgZxWb7wLc1Op8zZ44++OAD2+A8ISHBXvvXv/6lU0891fanMg1Gd3bddddp4cKFu1x/8sknFR0dvZ+/CwAAgL1XV1enM844Q5WVlYqPj/f3dAAAAHyqT1VKmZP2zLY9byBljB492p56s337do0YMWKX91x11VW6/PLLu1VKDRw40AZcvfXDn/lbz0WLFmn27Nn0lgggrEtgYl0CE+sSmFiX/rcu3gpuAACAYNSnQqmZM2fqueeeU01NjWJjY+219evX22OtzTHLu+N2u+3YmS+autI4NjCxLoGJdQlMrEtgYl36z7qwjgAAIJj5tdG5CZdWrFhhh5Gbm2vvb926taPK6eyzz+54vSlvT0lJ0bx587R69Wp7/PJvf/tbzZ8/f7db9wAAAAAAABCY/BpKLVu2TJMnT7bDMNvszP0FCxbYxwUFBR0BlWGqo0x5fEVFhT2F78wzz9SJJ56oO++802/fAwAAAAAAAPrY9r0jjzzS9oPak0cffXSXa6NGjbLBFAAAAAAAAPouv1ZKAQAAAAAAIDgRSgEAAAAAAMDnCKUAAAAAAADgc4RSAAAAAAAA8DlCKQAAAAAAAPgcoRQAAAAAAAB8jlAKAAAAAAAAPkcoBQAAAAAAAJ8jlAIAAAAAAIDPEUoBAAAAAADA5wilAAAAAAAA4HOEUgAAAAAAAPA5QikAAAAAAAD4HKEUAAAAAAAAfI5QCgAAAAAAAD5HKAUAAAAAAACfI5QCAAAAAACAzxFKAQAAAAAAwOcIpQAAAAAAAOBzhFIAAAAAAADwOUIpAAAAAAAA+ByhFAAAAAAAAHyOUAoAAAAAAACBH0pde+212rJlS+/MBgAAAAAAAEGhx6HUSy+9pAMOOEDHHHOMnnzySTU2NvbOzAAAAAAAANBv9TiUWrFihT777DONHTtWl156qTIzM3XBBRfYawAAAAAAAECv9ZSaPHmy7rzzTuXn5+uhhx7S9u3bNXPmTE2YMEF//etfVVlZuS8fCwAAAAAAgCDxnRqdt7W1yePxqKmpyd5PSkrSXXfdpYEDB+qZZ57Zf7MEAAAAAABAv7JPodTy5ct18cUXKysrS5dddpmtnFqzZo3ee+89bdiwQTfccIN+9atf7f/ZAgAAAAAAIDhDqfHjx2v69OnKzc21W/e2bdumm2++WcOHD+94zemnn66SkpL9PVcAAAAAAAD0E+E9fcNpp52m+fPnKycnZ4+vSU1NVWtr63edGwAAAAAAAPqpHodS11xzTcd900fKCAkJ2b+zAgAAAAAAQL+2Tz2lzLa9cePGKTIy0g5z/8EHH9z/swMAAAAAAEC/1ONKqQULFui2227TJZdcohkzZthrS5cutQ3Pt27dquuvv7435gkAAAAAAIBgDqXuvfdePfDAA7aZuddJJ52kCRMm2KCKUAoAAAAAAAD7ffuex+PRtGnTdrk+depUNTc39+iz3n//fZ144onKzs62falefPHFvX7vhx9+qPDwcE2aNKlHXxMAAAAAAAB9MJQ666yzbLXUzu6//36deeaZPfqs2tpaTZw4UXfffXeP3ldRUaGzzz5bxxxzTI/eBwAAAAAAgD66fc/b6PzNN9/U9OnT7eNPPvnE9pMyQdHll1/e8TrTe+qbHHfccXb01Pnnn68zzjhDYWFhPaquAgAAAAAAQB8NpVauXKkpU6bY+5s2bbK3qampdpjnvMx2vN7wyCOPaPPmzXr88cf1pz/96Vtf39jYaIdXVVVVxzZEM3qD93N76/Oxb1iXwMS6BCbWJTCxLv1vXVhLAAAQzHocSi1evFj+smHDBv3+97/XBx98YPtJ7Y2bbrpJCxcu3OW6qfSKjo5Wb1q0aFGvfj72DesSmFiXwMS6BCbWpf+sS11dXa/MBQAAoN9u3/Pavn27vR0wYIB6W0tLi92yZwKmkSNH7vX7rrrqqm5bCk2l1MCBAzVnzhzFx8f3ylzN33q++eYizZkzWy6Xq1e+BvZtXcwvDLNnsy6BhHUJTKxLYGJd+t+6eCu4AQAAglGPQ6nW1la7be4vf/mLampq7LW4uDj95je/0dVXX63Q0B73Tt8r1dXVWrZsmT7//HNdfPHFHXNpa2uzVVOm8unoo4/e5X1ut9uOnZkfGnvrB/qNxTV6Y3uIvtciRUfzS0Og6c21x75jXQIT6xKYWJf+sy6sIwAACGY9DqVM8GQand98882aOXOmvbZkyRJdd911amho0A033NAb87RVTV999VW3a/fcc4/eeecdPf/88xo6dKgCgQnJ3lhdrMqmED29bLv+54gRCgvtnf5aAAAAAAAAQRNKPfbYY3rwwQd10kkndVybMGGCcnJydOGFF/YolDKVVhs3bux4nJubqxUrVig5OVmDBg2yW+/y8vL097//3VZgjRs3rtv709PTFRkZuct1fzIN3n86LUf/XbVeW3bU641VhTp+fJa/pwUAAAAAABBQerzXrqysTKNGjdrlurlmnusJsx1v8uTJdhim95O5v2DBAvu4oKBAW7duVV+TEuvWIemt9v4HG0q1Mq/S31MCAAAAAADo26HUxIkTddddd+1y3Vwzz/XEkUceabe77TweffRR+7y5fffdd/f4frNl0FRWBaIBMdJhw1Ps/eeXb1dJdaO/pwQAAAAAANB3t+/dcsstOuGEE/TWW29pxowZ9trSpUu1bds2vfrqq70xxz5rzuh0FVQ1Kre0Tk98skUXHHmA3OFh/p4WAAAAAABA36uUOuKII7R+/Xr98Ic/VEVFhR2nnHKK1q1bp8MPP7x3ZtlHhYaG6PSDBykuMlxFVY168fM8WwkGAAAAAAAQ7HpUKeXxeHTsscfqvvvu67VT9vqbuEiXDaYe/GCzVmyr1KDkGM04wNnWBwAAAAAAEKx6VCnlcrn05Zdf9t5s+qmhqTE6bpxzAt9/vsrXtrI6f08JAAAAAACgb23f+9nPfqaHHnqod2bTj80cnqJxOfFqaZWe+GSrahqb/T0lAAAAAACAvtPovLm5WQ8//LBtdD516lTFxMR0e/62227bn/PrN0JCQvSjKQNUVLlRJTVNeuazbZp36BDbdwoAAAAAACDY9DiUWrlypaZMmWLvm4bn2HuRrjCdOX2w7lm8URuLa/T22mLNHpPh72kBAAAAAAAEfii1ePHi3plJkMiIj9TJk3P07LLtemdtsQYmR2lUZry/pwUAAAAAABDYPaXmz5+v6urqXa7X1tba5/DtJg9K0vRhyfb+s59tV1ltk7+nBAAAAAAAENih1GOPPab6+vpdrptrf//73/fXvPq9E8Zn2Sqpek+LHlqyWeUEUwAAAAAAIIjsdShVVVWlyspKtbW12Uop89g7ysvL9eqrryo9Pb13Z9uPhIeF6sxDBislJkJltR7d/8FmKqYAAAAAAEDQ2OueUomJifYEOTNGjhy5y/Pm+sKFC/f3/Pq1hCiXzvveMD30wWZ7It/972/WLw4fqtRYt7+nBgAAAAAAEBihlGlwbqqkjj76aP3zn/9UcrLTE8mIiIjQ4MGDlZ2d3Vvz7NfB1C9sMJWr4upGPfD+Zv388KFKj4v099QAAAAAAAD8H0odccQR9jY3N1cDBw5UaGiP21FhD+IjnYqpBz/YrKKqRj34Qa5+fthQe1IfAAAAAABAUIdSXqYiqqKiQp9++qmKi4vV2tra7fmzzz57f84vaMS6w3Xe4cP08JJc5Vc22IBq/mFDlZUQ5e+pAQAAAAAA+D+UeuWVV3TmmWeqpqZG8fHxtpeUl7lPKLXvYtzhduveIx9+re3l9R0VU9mJBFMAAAAAAKB/6fEevN/85jeaP3++DaVMxZQ5ec87ysrKemeWQSQ6IlzzZw7VwOQo1TW12GBqW1mdv6cFAAAAAADg31AqLy9Pv/rVrxQdHb1/Z4IOURFhNpganBKtek+LHlqSq607CKYAAAAAAEAQh1Jz587VsmXLemc26BDpCtO8mUM0NDVajc2tevjDXOWW1vp7WgAAAAAAAP7pKXXCCSfot7/9rVavXq3x48fL5XJ1e/6kk07aPzOD3OFhOufQIfrH0i3aVFKrh5Zs1okTsnXw0ORuvbwAAAAAAAD6fSh13nnn2dvrr79+l+dMUNLS0rJ/ZoZuwdSzy7ZpZV6VXlyRb5ugnzQpW66wHhe6AQAAAAAABIQepxqtra17HARSvcOET2ccPEhzx2bIFEgt21Ku+9/frMo6j7+nBgAAAAAAsE++U6lNQ0PDd3k7esBUoR15YLrmHTpEUa4wWy111+IN2lxS4++pAQAAAAAA9H4oZaqh/vjHPyonJ0exsbHavHmzvX7NNdfooYce6vkM0CMjMuJ08dHDlZUQqZpG52S+jzaWqq2tzd9TAwAAAAAA6L1Q6oYbbtCjjz6qW265RRERER3Xx40bpwcffLCnH4d9kBwTofOPOECTByaqtU165csCPbdsu5qaW/09NQAAAAAAgN4Jpf7+97/r/vvv15lnnqmwsLCO6xMnTtTatWt7+nHYRxHhofrxtAH6/oQshYZIn2+r0P+9t0nltU3+nhoAAAAAAMD+D6Xy8vI0fPjwXa6bRuceD423fd1naubwVP38sKGKdYcpv7JBdy3eqHWF1f6eGgAAAAAAwP4NpcaMGaMPPvhgl+vPP/+8Jk+e3NOPw34wLC1WFx81QgOSolTX1KJHP/paf1/6tYqraUQPAAAAAAACU3hP37BgwQKdc845tmLKVEf961//0rp16+y2vn//+9+9M0t8q4Rol375vWF6Y1Whlm7aoTUF1bZi6uChyTpmdIZi3T1eagAAAAAAgMCplPrBD36gV155RW+99ZZiYmJsSLVmzRp7bfbs2b0zS+wVV1iovj8hW5fOGqExWXG2CfrHm8v05zfWafG6YnlaaIQOAAAAAAACwz6Vzxx++OFatGjR/p8N9ov0uEidNWOINpfU6LWVhdpeXq83VxXpk81lmjM2w57aZ/pRAQAAAAAA9JlKqW3btmn79u0djz/99FP9+te/tifyIfB6TV145AH6yUEDlRjtUmW9R88t26673tmojcU1/p4eAAAAAAAIYj0Opc444wwtXrzY3i8sLNSsWbNsMHX11Vfr+uuv74054jswFVGTBibq8tkjdey4TLnDQ+0pfQ8tybXN0EtrGv09RQAAAAAAEIR6HEqtXLlSBx98sL3/7LPPavz48froo4/0xBNP6NFHH+2NOWI/9Zs6YmSafjv3QM04IEWhIbLN0P/61gYtWl1EvykAAAAAABDYoZTH45Hb7bb3TbPzk046yd4fNWqUCgoKevRZ77//vk488URlZ2fbip4XX3zxG19vTvozzdTT0tIUHx+vGTNm6I033ujptxDUYtzhOmlitn49a6RGpMequbVN76wt1u2L1mtNQZW/pwcAAAAAAIJEj0OpsWPH6r777tMHH3xgm50fe+yx9np+fr5SUlJ69Fm1tbWaOHGi7r777r0OsUwo9eqrr2r58uU66qijbKj1+eef9/TbCHppcW7NmzlEZx4ySAlRLpXXefT3pVvslr6y2iZ/Tw8AAAAAAPRzPT5973//93/1wx/+ULfeeqvOOeccGyoZL7/8cse2vr113HHH2bG37rjjjm6Pb7zxRr300kt65ZVXNHny5B59bTj9psblJGhERqwWry3Rko0ldkvfhqL1OvLANH1vZJrd9gcAAAAAAOD3UOrII49UaWmpqqqqlJSU1HH9l7/8paKjo+VLra2tqq6uVnJysk+/bn/jDg+zTdCnDE7UyyvytamkVm+tKdZ/t5brxInZGpUZ7+8pAgAAAACAYA+l6uvr1dbW1hFIbdmyRS+88IJGjx6tuXPnypf+/Oc/q6amRqeddtoeX9PY2GiHlwnTvL2xzOgN3s/trc/vLUmRYTr7kAFamV+l11YWqbS6UY8sydXozFjNHZuh1Finl1hf1VfXpb9jXQIT6xKYWJf+ty6sJQAACGYhbSZh6oE5c+bolFNO0fnnn6+Kigrb4Nzlctnqqdtuu00XXHDBvk0kJMSGWyeffPJevf7JJ5/UeeedZ7fvzZo1a4+vu+6667Rw4cLdvt/XlV19iadVWlUeovWVITL/hoSESEPj2jQ2qU3RPY4yAQDA7tTV1emMM85QZWWlPcQFAAAgmPQ4lEpNTdV7771nG54/+OCD+tvf/mYbjf/zn//UggULtGbNml4PpZ5++mnNnz9fzz33nE444YRvfO3uKqUGDhxoQ7Te+uHP/K2naQJvmrKbwK4vK65u1Juri7S2sMY+doWFaMawZB0+PFVREWHqS/rTuvQnrEtgYl0CE+vS/9bF/FxifrYilAIAAMEofF/+Ri8uLs7ef/PNN23VVGhoqKZPn2638vW2p556ygZSJpj6tkDKcLvdduzM/NDY2z/Q++Jr9LacZJfmHRar3NJavbGqUFt21GnJpnIt31plm6HPOCClzzVD7w/r0h+xLoGJdQlMrEv/WRfWEQAABLMepwnDhw/Xiy++qG3btumNN96w2/mM4uLiHv8Nn+kHtWLFCjuM3Nxce3/r1q328VVXXaWzzz6725Y78/gvf/mLDjnkEBUWFtph/nYRvWtoaoz+53vDdNb0wUqPc6ve06LXVhbqL2+u17Kvy9Ta2qOCOwAAAAAAEOR6HEqZLXpXXHGFhgwZooMPPlgzZszoqJqaPHlyjz5r2bJl9j3e911++eX2vvkaRkFBQUdAZdx///1qbm7WRRddpKysrI5x6aWX9vTbwD5usRyTHa9LjxmhU6fmKCHKpcp6j/753zz99e0NWplXaZvgAwAAAAAA7Pfte6eeeqoOO+wwGxhNnDix4/oxxxyjH/7whz36rCOPPPIbQ4xHH3202+N33323p9NFLwgNDdHUwcmaMCBRn2wu0+J1xbb31BOfbFVKTISmDk7SlEFJSohmSwIAAAAAANi9fTpHLTMz047t27fbxwMGDLBVUwguppfUYSNSNW1Ikt5fX6KPNu3Qjtom2xh90ZoijUiP1bTByRqdFafwPtZ3CgAAAAAA9K4eJwWtra26/vrrlZCQoMGDB9uRmJioP/7xj/Y5BJ9IV5jmjM3UVceP0o+nDdCw1BiZArj1RTV68tOtuum1tXrli3wVVNb7e6oAAAAAACBA9LhS6uqrr9ZDDz2km2++WTNnzrTXlixZouuuu04NDQ264YYbemOe6APc4WF2254ZpTWN+u8Wc0pfuarqm20VlRk5iZGaMjhJkwYmKjpinwr1AAAAAABAP9DjVOCxxx7Tgw8+qJNOOqnj2oQJE5STk6MLL7yQUApWaqzbVk/NGp2hjSU1WvZ1uVYXVCqvokF5FQV67atC2zR92uAkHZAWa/tUAQAAAACA4NHjUKqsrEyjRo3a5bq5Zp4DujJh08iMODtqG5v1xbYKLdtSroLKBn25vdIOc4rflEGJtkF6Sqzb31MGAAAAAACBGEqZE/fuuusu3Xnnnd2um2tdT+MDdhbjDtehw1PtyK+ot+HUiq0Vqqz3aPG6EjtMP6qpQ5I0NjvebgcEAAAAAAD9U49DqVtuuUUnnHCC3nrrLc2YMcNeW7p0qbZt26ZXX321N+aIfig7MUonJUbpuHGZWlNQpeVbyrWhuEabS2vteDk8VBMGJGjyoCQNTo5mex8AAAAAAMEeSh1xxBFav3697r77bq1du9ZeO+WUU2w/qezs7N6YI/oxV5gJnxLtqKzz6L9by7VsS5nKaj367OtyO2LdYbb/1JisBB2QFqPwsB4fGgkAAAAAAPpyKOXxeHTsscfqvvvuo6E59ruEaJeOGpWuIw9MU25pra2eWlNQrZrGFn2aW26HOzxUozLjNDY7QSMzY9niBwAAAABAMIRSLpdLX375Ze/NBpAUEhKiYWmxdrS0tim3tEar8qu0Or9KVQ3N+mJ7pR3hoSEakRFr+0+Nyoy3PasAAAAAAEDf0OPf4n/2s5/poYce0s0339w7MwK6CAsN0fD0ODtOmpitbWX1WpVfqdUFVSqtabKVVGaEhuTpgLRY24fKVFFFRVBBBQAAAABAvwqlmpub9fDDD9tG51OnTlVMTEy352+77bb9OT+gWwXVoJRoO44dl6miqkYbUJkqqoLKBtso3YwXV+RpRHqcxg9I0JiseEW6CKgAAAAAAOjzodTKlSs1ZcoUe980PN85NAB8wfy7lpkQaccxozNUWtOor7ZX6svtlSqsatDawmo7zBa/kZlxmpCToANSo/w9bQAAAAAAsK+h1OLFi3v6FqDXpca6bZN0M4qrGmw49WVepUqqG20vKjPCQtrUVBKiAdsrNXZAEhVUAAAAAAD0hVCqpaVFq1at0ogRIxQV1b3ipL6+Xhs2bNC4ceMUGhraG/ME9lp6fKRmjTEVVOl2i9+X2yv0VV6lDau214To2eV5iviiUMPTYzUuhybpAAAAAAD4w14nSP/4xz80f/58RURE7PZUPvPck08+ub/nB3znLX5zxmbq8tkjdeERQzU6qU2psRFqbm2z2/ueX56nG19dowc/2Kylm3aost7j72kDAAAAABAU9ro8xJy4d8UVVygsbNctT+Hh4bryyit111132dP5gEAMqLITozQhuU3HHX2AyhtanSbpeVXKr2zQppJaO17+Il+DkqM1NjvejpRYt7+nDgAAAABAcIdS69at0/Tp0/f4/EEHHaQ1a9bsr3kBvRpQZcRH2nH0qAyV1TZ1nOK3ZUedtpY547WVhcpOiNS4AQkal52gtDgCKgAAAAAAfB5K1dbWqqqqao/PV1dXq66ubn/NC/CZ5JgIHT4izQ6zfc80RTch1ebSWltFZcabq4qUEe/W+JwEjctJUHqcm9MmAQAAAADwRShlGpx/9NFHmjBhwm6fX7JkiX0N0JclRLk044AUO2oam7WmoEor8yq1sbjGNk0vqirWW2uKbdXUuOx4G1BlJUQSUAEAAAAA0Fuh1BlnnKE//OEPOvTQQ3cJpr744gstWLDA9pUC+otYd7gOGpJsR31Ti1YXOBVUG4pqVFLdqMXrSuxIi43QhAGJmjgwkS1+AAAAAADs71Dqsssu02uvvaapU6dq1qxZGjVqlL2+du1avfXWW5o5c6Z9DdAfRUWEaergJDsaPC325D5TQbW+qFolNU16e22xHTmJkU5ANSBRCdEuf08bAAAAAIC+H0q5XC69+eabuv322/Xkk0/q/fffV1tbm0aOHKkbbrhBv/71r+1rgP4u0hWmSQMT7TABldni98W2Cm0orlFeRYPyKgr1+qpCDUmJtuHU+AEJio7Y6z9qAAAAAAAEhR79pmxCJ7NFj216QGdANXlQkh21jc22euqL7RXKLa3rGC9/ka8R6bGaMDBRozPjbdUVAAAAAADBjvINYD+JcYfrkGEpdlTWeWw4ZSqozOl964pq7AgLlYanxdoG6aOz4u17AAAAAAAIRvxGDPQC00/qeyPT7DBN0U04tTK/0p7g5w2oQkPyNDQ1RuNzEjQmO15xkWx/BQAAAAAED0IpoJeZE/lmjcmwo7i6Qavyquw2P1NBtamk1o6Xvsi3PajGZSdobHYCTdIBAAAAAP0eoRTgQ+lxkUofFamjRqVrR02jVuY7AdX28vqOHlSvfFmgAUlRGpsdbwMqE2oBAAAAAKBgD6UWL16so446qndmAwSRlFi3jhiZZkdFXZNW5Vfpq7xKbS2rsyGVGW+sKlJ6nNtu7zMhVU5ilEJCQvw9dQAAAAAAfB9KHXvssRowYIDmzZunc845RwMHDvzuswCCXGJ0hGYOT7WjusGj1flVWl1QpU0lNSqublTxuhK9u65ECVGu9gqqeA1JiVFoKAEVAAAAACBIQqm8vDz94x//0GOPPaaFCxfq6KOP1s9//nOdfPLJioiI6J1ZAkHENDz3nuJX39SidUXVWpVfqQ1FNaqs9+ijTTvsiI4I04GZcRqTFa/h6bGKdIX5e+oAAAAAAOy1UPVQamqqLrvsMq1YsUKffPKJRo4cqQsvvFDZ2dn61a9+pS+++KKnHwlgD6IiwjRpYKLOPGSwrj5htM6aPlhTByfZQKquqUWfb63QE59s1Q3/WaNHPszVx5t3qLLO4+9pAwAAAADQu43Op0yZoszMTKWkpOjmm2/Www8/rHvuuUczZszQfffdp7Fjx36XjwfQhSss1PaWMqO1tU1byuq0pqDKjtKaJq0vqrHjJeUrOyFSo7PiNTo73t6nDxUAAAAAoF+EUh6PRy+99JINoRYtWqRp06bprrvu0umnn66SkhL94Q9/0I9//GOtXr16/88YgO0lNTQ1xo7jxmWqpKZRawqqbUBlGqXnVzbY8fbaYsVHheuAtFgdkBajYamxSophmy0AAAAAoA+GUpdccomeeuoptbW16ayzztItt9yicePGdTwfExOjP//5z3Y7H4DeZ6qg0uMi7TAn+dU0NmtdoamgqtbG4hpV1TfbbX5mGEnRLg1Li7WBlgmqTJN1AAAAAAACPpQy1U9/+9vfdMopp8jtdu+x79TixYu/9bPef/993XrrrVq+fLkKCgr0wgsv2Ibp3+Tdd9/V5ZdfrlWrVtmT/0xV1rnnntvTbwPot2Ld4Zo6ONkOT0urtuyo1aaSWm0uqdX28jqV13m0fEu5HUZyjEtDU2M1LC1GI9JjbaN1AAAAAAACKpQy2/YGDx6s6dOn7zGQsh8aHq4jjjjiWz+vtrZWEydO1Pz5823I9W1yc3N1wgkn6Pzzz9cTTzyht99+W7/4xS+UlZWluXPn9uRbAYKmD9Xw9Dg7jMbmFm3ZUWcDqs2lNcorr1dZrUdltU5IZVpPDUyKtn2rRmfF2eorAAAAAAD8Hkq5XC7985//1DXXXLNfvvhxxx1nx94yzdOHDh2qv/zlL/bx6NGjtWTJEt1+++2EUsBecIeHaWRGnB1Gg8cJqXJLa+xWv7yKBtuTyozXVxYqLTbCaZieFa9BydG2lxUAAAAAAH7Zvme217344ou67LLL5GtLly7VrFmzul0zYdSvf/1rn88F6A8iXWE6MDPODqOyzqM1th9VlTaV1KikpkklG0r1/oZSxbrNa+M1JiteB6TH2IALAAAAAACfhVIjRozQ9ddfrw8//FBTp061jc27+tWvfqXeUlhYqIyMjG7XzOOqqirV19crKipql/c0Njba4WVe692KaEZv8H5ub30+9g3r8u2iXdLUgfF2NHpatL64RmsLa7S+qFpV9R59lrvDjvDQEA1OidbwtBgNT49VZrzbNlzfF6xLYGJdAhPr0v/WhbUEAADBLKTNHKPXA2b73B4/LCREmzdv3reJhIR8a6PzkSNHat68ebrqqqs6rr366qu2z1RdXd1uQ6nrrrtOCxcu3OX6k08+qejo6H2aKxBsWtukkgYpvzZE2+tCVLfT71DuMCkjqk2Z0W3KiJKiexx3A0BwMj+/nHHGGaqsrFR8fLy/pwMAAOBTPf7V0TQb95fMzEwVFRV1u2Yemx/idhdIGSbAMqf1da2UMqf2zZkzp9d++DN/67lo0SLNnj3b9uFCYGBd9g+TY++obdLG4lptLKnR5tI6NTW3yqTbBWa0SRmRbg1Pj9HwtFgNSY22Ddf3hHUJTKxLYGJd+t+6eCu4AQAAglGfqmeYMWOGrYzqyvwQaK7viTklcHcnBZofGnv7B3pffA30HOvy3WVFRCgrKVaHH5ih5pZWbSuv14aiam2wzdLrVVLrUUluhZbmVtitfkNSYzQiPdY2WM/Yw1Y/1iUwsS6BiXXpP+vCOgIAgGC2T6HU9u3b9fLLL2vr1q1qamrq9txtt922159TU1OjjRs3dqvCWrFihZKTkzVo0CBb5ZSXl6e///3v9vnzzz9fd911l6688krNnz9f77zzjp599ln95z//2ZdvA8B+EB4WqqGpMXbMGSvVNTXbk/w2FNXYkKqy3mMfm/HaykLFR4bbPlQjMuLsrXvPRVQAAAAAgH6sx6HU22+/rZNOOknDhg3T2rVrNW7cOH399dd2S8+UKVN69FnLli3TUUcd1fHYu83unHPO0aOPPqqCggIbfHXtZ2UCKHPy31//+lcNGDBADz74oD2BD0BgiI4I14QBiXaY/y6UVDfacMpUUuWW1qqqoVn/3Vphh5EZF6HKHSEaUVyjAzLiOdUPAAAAAIJEj0MpU710xRVX2ObhcXFx+uc//6n09HSdeeaZOvbYY3v0WUceeaT9pXVPTDC1u/d8/vnnPZ02AD8w2/TS4yPtmDk81W71+3pHnTYWV9tKqvzKBju2VYTosaVbbdXVwORoDUuN0bC0WHvC3zf1owIAAAAABFEotWbNGj311FPOm8PDVV9fr9jYWF1//fX6wQ9+oAsuuKA35gmgHzChk9myZ8ax46TqBo/W5lfoxfItiot2qbKhRVt21NmxeF2J7Uc1MDlKw1JjNSwtxgZWhFQAAAAAEKShVExMTEcfqaysLG3atEljx461j0tLS/f/DPuoyKYdUsk6KXOMFMov0cDuxEW6NGlgovLT23T87BGqbmrTZnOiX0mtNpXWqKq+WbmldXa8vVYdIdWQFKeHlQmpIl1s9wMAAACAoAilpk+friVLlmj06NE6/vjj9Zvf/EZfffWV/vWvf9nn4Mio+lKhn30uRSVIOVOlAQdJ8TlmP5O/pwYErOSYCCXHJGvakGS7tXdHbZMNqGxQVVqr6obOkMpUUoWGSNmJTkg1JDXa3sa4+9ShogAAAAAQtHr825s5Xc+cmmeYvlLm/jPPPKMRI0b06OS9/q4pLEZyNUuN1dLmd50RlyUNmOaEVFFJ/p4iEPD9qFJj3XYcPNQJqUprmvT1jlrbMP3r0lqV13m0vbzejiXtB3mmx7ltFZXZInhAWqyiIqikAgAAAIB+EUqZU/e6buW777779vec+oWCpIPVeswchZVvlLZ/JhWtkqoLpDWvSHn/lY640t9TBPpcSJUW57bjoCHJ9lplnUe5O5yAygRVxdWNHeOT3DJbSTUoOVojM+I0IiNWOYlR9nMAAAAAAP63z/tcTF+p4uJitba2drs+aNCg/TGv/iE0XMoc74ymOqngCyegynB6cFmeBunLp53XZIyTwt3+nDHQpyREuzQpOtH2pTJqGps7AqoNRdUqsZVVdXa8ubpIMRFhNqAanhGrEemxtqcVAAAAAKCPhFLr16/Xz3/+c3300UfdrputNaYCoaWlZX/Or/+IiJYGz3BGW1vn9eJVUv7nzgh1SemjpKzJTnDlivTnjIE+J9YdrnE5CXYY5bVNWl9UrfXFNdpUXKPaphZ9vq3CDiMnMVIjTBVVeqytqDKnAwIAAAAAAjSUmjdvnsLDw/Xvf//bnr7HVph90PWfWcIgafhsqWCFVFsiFX7lDFNllTZKGn2iFJfpz9kCfVZSTIQOGZZiR0trm7aW1TkhVWG18isblFfhjHfXlcgdHqphaU4vqhHpcUqNjeC/bwAAAAAQSKHUihUrtHz5co0aNap3ZhRsYtOk0d+XRp0gVeU74VS+CaiKpaKV0vhTO19bXSi5oqRIpwoEwN4LCw2xDdDNmDs2U9UNHm0ortHGohptKK5WTWOL1hRU2yEVKCnaZftQmYCKhukAAAAAEACh1JgxY1RaWtoLUwlypiIjIccZBx7vBFBlm7uf0rfqRalkjZQ4SEof62zxSxjQvfIKwF4x/aSmDEqyw2w/LqhssCGV6UW1ZUedPdnv09xyO0zD9JykKA2zoVasBqdEK9JFSAUAAAAAPg2l/vd//1dXXnmlbrzxRo0fP14uV/dGwfHx8d9pQmgPqOKznOFl+lC1NDn3K7Y6Y/1rTtWUCahso/Qxfpsy0JeZbXrZiVF2HDEyTY3NLfq61NnqZ4KqkupGbSurt+O99aX2j2h2QqSGpMZoSIpTfRXj3udzIwAAAAAgKPX4t6hZs2bZ22OOOabbdRqd9zLzW/DMX0kNVVLxaqlolVSyTmqolLZ+JNXt6B5KmUqr2AyqqIB94A4P04GZcXYYFXVN2mxO9Sup1dc7alVa09TRj+rDjTvsazLi3TacMiGVqaRKiHLRkwoAAAAA9mcotXjx4p6+BftTZLw0aLozWpqlHRud3lOJgztfU18hvXuT5IqRUg6QUoY7Iz6bkArYB4nREZoyyAxnO21lvUdflzoB1eaSWhVXN6qoyhkfby6zr4mPCrcn+g1OjrG32YmRnO4HAAAAAN8llDriiCN6+hb0lrBwKX2UM7qqKZbC3JKnVir80hmGN6QacriUNtIvUwb6A1MFNXFgoh1GTWNzR0hl+lHlV9Srqr5ZK/Oq7DDCQ0NsXyoTUNmREq34yO7bnwEAAAAgmOxVKPXll19q3LhxCg0Ntfe/yYQJE/bX3LCvTOB07E1O36kdm5xqKtM03RtSZU/qfK058c9sBUwaKiUOlMLd/pw50CfFusM1LifBDsP0pMorr9fWsjptK6uzQVVtU4u9NcMrOcZlG6cPSYm2/alSYiLY8gcAAAAgaOxVKDVp0iQVFhYqPT3d3je/NJkeUjujp1QACQ2Tkoc6Y8QsqbVFqtzmBFQpIzpfV7RaWvtv535IqBSf47zHhFTmtuvpfwD2uifVsLRYOwzz38sdtU02pNq6o87eFlY1qKzWo7Laci3fUm5fFxcZbvtRDU2JsSFVZnykQs3RfwAAAAAQrKFUbm6u0tLSOu6jj4ZUSUOc0VVcppQ92amkMk3TTXBlRu77zvOH/0ZKHNS5LbDFI8WmS2FsOwL2lgnsU2Pddnj7UjV4Wmw4lVtqtvzV2pP9qhu6b/lzh4fakMrbPH1AUrQiwulLBQAAACCIQqnBgwfv9j76gcxxzjDqy51wqixXKv/aCaHisjtfu/Etadsn5ldsKTpZis10Aqq49lvTbN2EXwC+VaQrTCMz4uwwPC2tdstfrulLZftT1amxuVXri2rsMEzRVHZiVEdIZUYcfakAAAAA9FE9bnS+Y8cOpaSk2Pvbtm3TAw88oPr6ep100kk6/PDDe2OO8BWzVS9nqjMMc7qfaabuFRImuaIlT51Ut8MZxas6nz/u1s5QKm+51FjTGVhFJnLyH/ANXGGhdsueGTpQam1ts1v8vM3Tza1pnr69vN6OJRud95k+VKZpugmqTG+qtDg3fakAAAAA9K9Q6quvvtKJJ55og6gRI0bo6aef1rHHHqva2lrbAP3222/X888/r5NPPrl3Zwzf6RpIGRN/Ik04TWqsdqqoaoqkmkKpukhqaZLCIzpf+/WHUtmmzsfhkU44FZvhBFUHHENIBXwD00vKVEWZcegBTl+qijqPttjG6U5QZUIr06vKjM+3Vtj3RbnCbAWVN6gakBRlAy8AAAAA6LOh1JVXXqnx48friSee0D/+8Q99//vf1wknnGArpYxLLrlEN998M6FUf2eCpMh4Z6QO3/PrMsZIEdFOYFVXKjU3OKcBmhGZIA2f1fnaL591qq9MYOUNrWJM36oeF/IB/ZapfkqKibBj0sBEe62+qUXbyuv0te1LVWfv13tatLaw2g7D5FE5ic5Wv0HJzil/5rRAAAAAAPC3vf7N5LPPPtM777yjCRMmaOLEibr//vt14YUX2iopbyg1ffr03pwr+pKuoZPZBmiCqepCp8Jq5wqpopVOk/VuQqSYVCl5mDTpjM7Lpu9VRByBFWCqoiK696VqaW1TfkW9baButvuZk/6qGpqdU//K6jreZ7b8mQqqgcnRGpgUrazESKqpAAAAAPjcXv9mX1ZWpszMTHs/NjZWMTExSkpyTpEyzP3qaudv5oFuTIBkqp/M2FlbmzThp1J1Qft2wCKnuqq5Xqotkdzx3V//4V+l+gopKlGKTnWCK+/tnr4GECTCQkOcoCk5WjOHp9otf+Vmy1/7dj8ziqo7t/x9sd0Jg00elZUQ1RFUmdtENyEVAAAAgN7Vo3KTnZvn0kwX35n5d8hs9TOja1BlKqd2rqpqbZE89eYFTsWUGTs2dD6fNFQ67Nedj9f+R4qIcbYCxqRJETsFXEA/Z/4bnRwTYcfkQUkdW/7yKuq0razebvfbVlanmsaWjgbqH28us6+LCJOqCkLkXlus4RnxGpAUbU8MBAAAAAC/hFLnnnuu3G63vd/Q0KDzzz/fVkwZjY2N+21SCHImiDKVUGZ0ZU72O/Zmp9G62Q5Yu6P9ttS5TRzYfcvghkVOgOV9e1uIRhWUKXRZgZQxWhp2ROfrW1tNZ2lffHeA37f8DU+Ps8PwNlB3AionqDJbABs8LSqqC9HidaV6b0OZ/WOZFR9pG6gPTonR4ORoJUa7+MsJAAAAAL0fSp1zzjndHv/sZz/b5TVnn332vs8E6GmjddNvak9am52+VrXmlMASZytgc6PcniqpeJXkjuny2hbp9d9LkYlORZXZCmhGVLIUnezcuiJ98u0B/mygPmFAYkdvqryyGj376hZlD4jX9opGuw0wv7LBDm81VXxUuAYnx9gG6hnxbqXFuZUQRVAFAAAAYD+HUo888sjevhTwPxMijf5+5+O2NrVWl2jTa89rwLixUlxG53N1ZVJLkxNgmbGznGnSlLM6K7BWvyhFJTnDhFamp5XZJsgv4uhHvamyEiI1IqFNx08dIJfLpcp6j22cvqXM6U9lqqmq6pv1VV6lHV6usBClxToBlRmpsZ23EeFUIwIAAADoxBFmCKItgUmqicxR26BDJZer8zlTFXXMtZ3bAE1VlRl17X2rTPDkZXpdff3Brp/vipaiU6SBB0tDv9fZG6uplsAK/YKpgBo/IMEOo6m5VdvLTUhVp7zyepVUN2pHbaM8LW0dFVU7S4p2KScpqqO6KjsxUuGc+gcAAAAELUIpwARGtuLJhE8jd33ehEtdTxIcPluqL3MqrExo1VAheeqkyjopfXTna81zby+UwqPaTwk0WwGTnG2CkQlSwkApNs033yOwn5mqp2FpsXZ4tba2qayuyQZUHaPGua1rarFbAM1YmVdlXx8eGqLsxCgNTom2IZU5+c+EXwAAAACCA6EU8G26VjmZMKnrtkCjxeNUWZnqKtOTqmsoZTTXS5XbnNHViLnSqOOd+ybgWv6o09zdhFbeW/P1TJDljncCMSCAhYaG2G16ZozO6v5cbWOziqoatLXMOfHPbAGsbWqxj83oWk1lAipz2p+ppDKhFaf+AQAAAP0Tv+UC31WYS4rPckZXKQdIx/+5M7DyVlXVVzi3O/e1qtjijN3pGmCZ95uTBU1g5Y7bdZj5AAEmxh3erbLKnPq3o7bJCaV2OMFUYVVDezVVpb7Y3tmnKjU2QlkJUTakykk0t1H28wAAAAD0bfxUD/gjsNpZXKY0bX5nYGV6V3W9byqnvEzItWXJnj9r1PelEbOd+yYI2/CWc1qhDa3aTy50t49Q+vnAP8wJfd6qqimDkuy1Bk+L7VNlAqq8igbbTL2izqPSmiY7ujZUN9v8chIjlZkQZUMrb2N1dzhVVQAAAEBfQSgFBAJ3rJQ1cffPmZ5WXftamQqpEXOcsKqxunM01UitzU7T9b0KsEKcrYjDZzkPTQiW+74TXpngKqL91jw2n0mzdvQys01veHqcHV51Tc02nPKGVGaYgMqcBmjG6oLqbp9hwqquIVW6uY2NVHxUuA3CAAAAAAQOQikg0JlfpLv+Mm2ao486YdfXmeDKUy+FdqkUMX2pTIDlDa5skFXl3G9r3SnAKpE2vb2HOYRJo0+UDjjKedxQJW3/1Ol3FWWaxKc44RW/9GM/i44I3yWoMhVVBeaEv4p6FVc3dDRVr2ls6QirNpXUdvscd3hox9Y/cwKguW/CK4IqAAAAwH8IpYD+wvxyHdElZPq2AMtUVoV26T9lQqWhR7QHWCa4qnFuzcmCbS1SuLvztdWF0ppXun+m+SwTUpmAashMKXO8c7250QmxTNVV188AvkNF1dDUGDu6qm9qaT/xrz2oqnFOAtxR06jG5lZtLq21o2tQ5W2mbkIqJ6hy24btAAAAAIIklLr77rt16623qrCwUBMnTtTf/vY3HXzwwXt8/R133KF7771XW7duVWpqqk499VTddNNNioyM9Om8gT4dYJkQaue+VuNO2fW1Lc1SU7UU1iVQckVJAw5yGrTX7XAqsFrNKYTFzsie1Pna8q+lj+9x7odHOdsP7amC7acLpo7ure8SQSYqIkyDUqLt6Kqltc2GU3kVTq+qvPJ6FVTW26Aqt7TODq+IsBClxDpb/1JiIpRqt/85va/M5wMAAADoR6HUM888o8svv1z33XefDjnkEBs4zZ07V+vWrVN6evour3/yySf1+9//Xg8//LAOPfRQrV+/Xueee67dgnHbbbf55XsA+rWwcKcCqqvEgdLkn3U+bm1xelLVm5CqzDl50Ku5wQm0Whql5nqpxozCjqdDIhI6X1u2WfriaSk2XYpJl2IznGovcxvRvSoG2FthoSHKTDBN0SM1dbBzrdUEVTWN2l5u+lU5vaoKKurV1NJmtwaasbOYiDAbUjkN2iOUHhep9Hi3kqMjqK4CAAAA+mIoZYKk8847T/PmzbOPTTj1n//8x4ZOJnza2UcffaSZM2fqjDPOsI+HDBmi008/XZ988onP5w6gneljFZPijJ2ZBu6ZE5xwylRUdZws6PS3aovPkbSjc1tgTZEzdhYRK004rbMhvHlt8Rrnugms7Gi/b7YJ0isI38CESBnxkXZMHZzUEVTtqDUn/Zktf86tGSa8qqpvVm1Ti2p31GnLjs7KKsMVFmKrqUxAlR4faZurm8DKVFoRVgEAAAABGko1NTVp+fLluuqqqzquhYaGatasWVq6dOlu32Oqox5//HF9+umndovf5s2b9eqrr+qss87a7esbGxvt8KqqqrK3Ho/Hjt7g/dze+nzsG9bF38KlyBRnJO5hXcxWvqnnKaR9G2BIjbktkRpMiFWl1hCXeaF9fUjJRoWs/Nfuv1RouNomnK627MnO4/pyqSrP6XcVnSqFdemlhd0K1j8viZGhSoyM0vDUqG7XzVa/svbAypz+Z26Lq53bRk+rtpfX2dFVeGiIrahKiY1QUnSEkmNctqoqKSZCiVEuW8HVU8G6LoHuu6wLawkAAIJZSFtb17PmfSs/P185OTm2+mnGjBkd16+88kq99957e6x+uvPOO3XFFVfITL25uVnnn3++7TG1O9ddd50WLly4222A0dE7NYUGEJBCWz1yN1eqMTxBre3N2WMb8pRcu1HhLQ0Kb21UWGuDvR9qmrJL2ph+rGojs+z95Jp1Glj2UcfnecKi1Rgep6bwOHu/LGaEmlzx7V+rSSFtrWoJpdoK3661TaprliqbpKqmEFV6zK1U5QlRS+ue32f+1YoOl2LC2xTrkh3mfoy55pLcofzrFyzq6ups9XdlZaXi453/DgEAAAQLv2/f66l3331XN954o+655x7bg2rjxo269NJL9cc//lHXXHPNLq83VVimZ1XXSqmBAwdqzpw5vfbDn/lbz0WLFmn27NlyuajICBSsS5CsS0uTPTkwxzRyb6+ICsnLVEiuSQ92OH2tOpgqyka1HjJNShnuvHbrRwpZ+bwUEtq+JTBOcseqzR0vRSaqLWea0/PKaDOpQ0i/TA/48/LdmL80Ka/z2AbrZXVNKq/12FtTbWWue1o6/z7I1MmUtw+rVYoIDVVSpEtJMS5bVWWqq5KiXYp1hWjFxx/ouLmsS3/58+Kt4AYAAAhGfg2lzMl5YWFhKirq3j/GPM7MzNzte0zwZLbq/eIXv7CPx48fr9raWv3yl7/U1Vdfbbf/deV2u+3Ymfmhsbd/oPfF10DPsS79fF3MZ0Tu1BR9yCHOMIWhnjqptlSqK5Vqd9i+VmEJmc77jDaP2Ufs3PfUOqO2y2dlju187dcfSqv+1X6aYJINreyt2SYYkyolDJRcfftUUP687LuMiAhlJMbsNrCqamhWeW2T7WFlbk1YZcOruibbv6q5VSqp9djRVWtrq7ZtDdXG975WTlKMshIilZUQZW8To1320A/0rT8v/PkCAADBzK+hVEREhKZOnaq3335bJ598cscP3ObxxRdfvMcy952DJxNsGX7ciQigLzC/sHuboie1H8O2s+GzpKFHSk01zmistpVXamxv0G7CJi/T66q12anAMmNnMy6WUkc490vWSYVfOe/39raKSpTCI/tlpRX2zARHCVEuO4ak7hpaeVpaVVHnsQGVCazsbZ3HBlc7qp1TActqPaqor9Kq/M4qm0hXqA2nMttDqsz4SNvPKjqizxVFAwAAIEj4/SdVs7XunHPO0bRp02zj8jvuuMNWPnlP4zv77LNt36mbbrrJPj7xxBPtiX2TJ0/u2L5nqqfMdW84BQDfSVi4ExiZ8U1GzJUGzXAaqZuAyoRW5r63EsuET16lG6SvP9jN13I7X2fquVJ8tnOtqsAJucx1U4VlThUkuAoarrBQpcW57djdNrEXXtmkCdMHq7S2WfmV9SqsbFBxdYMaPK3KLa2zo6soV5gNp8xpgMkxTuP15Bi3vY1zh1NdBQAAgOANpX7yk5+opKRECxYsUGFhoSZNmqTXX39dGRkZ9vmtW7d2q4z6wx/+YH+ANrd5eXlKS0uzgdQNN9zgx+8CQNCGV9HJzvg2qSOdHlTebYP1Zc5WwpZGqabICae88pZLGxd1PjbVVKayylRZxaRJQw779sAM/ZY7TDogLUajsju3fTW3tKqkplEFlQ0qqGhQQWW9iqsbVd3QrHpPi7aX19uxs4iwEBtQeUOw9Pbb1Fi3IsK7VyUDAAAA/S6UMsxWvT1t1zONzbsKDw/XtddeawcA9BlpI53RVXOj1NC+LbBryOSOdfpRmeors32wuUGq2u4Mw1RneW14S8r/rxNYmWbspqrKvN/bpN1sU2xv+I7+KzzMbN0z2/aipEGd1xubW2yT9dKaRqdvVXsfqx01jaqo96ippU2FVQ127Mw0Vu8MqyLtram0io+kugoAAAD9KJQCgKAU7nZO8vOe5uc17EhnGC0eZyuf2RJYW9K+rS+p87XV+VJVnjN2Z9Z1na9f+6oTYNnAyhtceUeslDWpszG76ZVFn74+zx0epswEM3ZtuG+qq0wwZQKr0uomuwXQnBZoKqzqmlpsHysz1hfVdHtfeGiIPQ0wOdo5FdAEVUnRzq0ZkS620gMAAGDvEEoBQCAzVU5xmc7YnVHfl3KmOYGVqapqqm1v0t5+a8ImL7Nl0LzOjN1JG9URSoWs+48mbH9Coe9+KcV6m7O3b1WMSnYqucz2RfTp6iqzTc8M7fSvV21jsw2nSjpGg90eaBqwN7e2dVzfneiIMPuZZitgRnyk0uPdyoiLVHwUFVYAAADojt8oAKAv29ueVsaBxztb/zpCq64BVp1TMeXVVKsQUylVVyI17PjmCqyvP5TKNu+mAqv9vqkEC6V6pi+JcYdrqBk7nQ7Y0tqmynrnJMCy9pMBO+7XNqm2qcVWWW0tq7OjK3d4qBNSdQmrTHhltgOagAwAAADBh1AKAIJFDwKstvGnafWWMOUcMlVhTVVOlZXZOlhX5vS6cid0vnjHRmdb4J7M+ZPkjnPur39DKlopubpuHYyRXNHObcY4KTziu36n6CVhoSEd2/R2p8Fjtv01OdsAqxpVVN1gb80Wwcbm1t2GVaZ4KtYdroQolxKjXc5tVETH/Xgz6GMFAADQLxFKAQB2FRouT3iclDJccn1Lo/SBh0gJA5yKK3OiYLdKrFongPKqLpQqtn5zgOUNpUwPrMIvne2CdttgUuc2QnPNhFgEFQHF9JPqaLi+U/8q02C9qKqhW1hlKqzMdkBzSqAZuzsh0HCFhdjPzE6M1IAkcxtltwSGhrL+AAAAfRmhFADgu0kf5Yy9MWKOlDPF2S7oDa9skLWbAKumUKoucMbuzFrYeWrhts+c0wnNCYSRCe238c6tK6p7eGW2JZpG7qaJfKtHaml2br3N3eOz2W64n5nteWbLnhldtbW12S1/ZktgRV2Tva2s89gG7M41j6obPPK0tO1SZWWCKtPAPScxyg4bVMVH2mouAAAA9A2EUgAA34nPcsbeGHOyNHhm57ZBc2u3EZZJnnonfPIq+koq+GL3nxPqkmZfL0VEO4+XP7Ln1xpzb+zsr7XqBSn/c2d7oQm3zG14pHM/MlEafGjn55pAi8qtHjFb8szWPTNMsLQ7ra1ttsoqv6JeeWaUO7dmO+C2sno7up4MmBIbobQ402jd6V9l7pveVRHh9K0CAAAINIRSAIC+1wPLVDd1DYCyJjlb+xqqpMYqqaHSud9cL7W1OiFS15CqQ4hzwmFouDPMZ4Z3eW2D97Mqdz+PQdM775sAK2+5E1aZCi6z3dAEZ7ZnVpTTL8t8LTt/jxQSJoUSlHwbs0XPBEtmTByY2FFhZYIqE1B1hFUV9WrwtKrIbA+sMicDVnV8hlnWxChXR1jlBFVOeGUCMfpVAQAA+AehFACg7wnb6X9fZkugGTsz4U9jdfcAa/yPnWECopDQb65uGvMD6YCjJE+Ds82wuf3WbD804VfXEwvry9u3JNY4Wwl3NvemzlBq5b+krR85VVe28so0em9v9h4RJ406vvOza3c4X9c8DnV3VmWZYK6tRQqL6PweGmuc+bW2ONdMg3nz2f0sdDEhkql+MqNrUFVe57FN1m2j9eqG9ttGeyKgec6M9UU1u5wKaMKplJgI5zPbAytz3/TIAgAAQO8hlAIA9F8mBNq52srVva/RN7IVT+19q77NxNOlkcc64ZSprLK3Fc5WQxMUmfDJy1Rw2dsGZ5jXdTXqhM77m96Wtnxo74a2tmrCtu0Kfe2tziqrrtsN1/7HCbu6MsGbCadM2HXQzzv/eZRvkepKpYhY5zWmasy+vv02cVBniGZPXax0Kr5s5VdMwFV5maDKezLggZntpz22q21stuFU18DKnAhoQiqzDdA0WN9dk/W4yHBlJ0Tq3JlDffidAAAABA9CKQAA9gdb6RQtJeR8+2snnyWNO9UJrExAZW69jd9NtVO37YbhTnBknjPhi6mS6spURXmZkwvN9kPTqN1sWzRhmLn1bkH0hkzG9s+krz/Y8xyPubYzwMp9X9q8uPvz5ut4q7vM9xOb7lwvy5XKNndWoXkDL+/jrImdIZr5Xk2TebPlsReruWLc4RpqRmrMLqcCmhMAS2vMaOwymjpOBKx2N/favAAAAIIdoRQAAL5mQiN3rDO+zbhTnNHWpta6Sq16/VXlHHOswiIinc8x2/e8xv7QGV5mi19TtbOF0QRAJtzyikmVUoY7WxFNcGW1OVsDDRsmtTMhUlRy5/ZFw4RpZpgG9KY/llfRSmnjW3v+fhIHd4ZS2z6R1rzsbDGMM03ws6X4HOc2LlMKb9+u2IunAqbHR9qxswZPiw2omlt2CgEBAACw3xBKAQDQF5hKoogYNYfHtPeK6tqw/Rt6b5mG62bsbNiRztgbI2Y7w2htr8AylVueWuc2Mr7ztbGZ0oCDnHDLhl3tt97HXavAzOeY8Mvclm1yRuc3LH3vt52VZ8VrpZpCp1G9CeLCvLdmhEvxAzp7jZmgzVRg2eqssPbb9mGCvL2oyjL9pAYktZ+sCAAAgF5BKAUAAPae6SX1TVVeAw9yxt4YfaI08jippkiqypeq86XKPOfWVHZ5twQa+Z9L2z7e82fNWtjZ/2vdq9+8NfHoa5xKMcNUdW35qD3saj+J0Rt6mdd0rTwDAADAfkUoBQAA/MdUN5lqqJ17cZkKrK49sJIGSy1NTgWUOVXR3G/pcr/rNkbLVEPtYetd162JZmuj2YK4OwkD9/W7AgAAwF4glAIAAIHH23fKa/Chztgb4091hnfLoHfYpvBtTpN2L7OFMWuS1NrsBFze0Ms87npiIgAAAPY7QikAANA/2dP/TBP2Lo3Yd7annlsAAADodV3q1wEAAAAAAADfIJQCAAAAAACAzxFKAQAAAAAAwOcIpQAAAAAAAOBzhFIAAAAAAADwOUIpAAAAAAAA+ByhFAAAAAAAAHyOUAoAAAAAAAA+RygFAAAAAAAAnyOUAgAAAAAAgM8RSgEAAAAAAMDnCKUAAAAAAADgc4RSAAAAAAAA8DlCKQAAAAAAAPgcoRQAAAAAAAB8jlAKAAAAAAAAPkcoBQAAAAAAgOAMpe6++24NGTJEkZGROuSQQ/Tpp59+4+srKip00UUXKSsrS263WyNHjtSrr77qs/kCAAAAAADguwmXnz3zzDO6/PLLdd9999lA6o477tDcuXO1bt06paen7/L6pqYmzZ492z73/PPPKycnR1u2bFFiYqJf5g8AAAAAAIA+GErddtttOu+88zRv3jz72IRT//nPf/Twww/r97///S6vN9fLysr00UcfyeVy2WumygoAAAAAAAB9h1+375mqp+XLl2vWrFmdEwoNtY+XLl262/e8/PLLmjFjht2+l5GRoXHjxunGG29US0uLD2cOAAAAAACAPlspVVpaasMkEy51ZR6vXbt2t+/ZvHmz3nnnHZ155pm2j9TGjRt14YUXyuPx6Nprr93l9Y2NjXZ4VVVV2VvzejN6g/dze+vzsW9Yl8DEugQm1iUwsS79b11YSwAAEMz8vn2vp1pbW20/qfvvv19hYWGaOnWq8vLydOutt+42lLrpppu0cOHCXa6/+eabio6O7tW5Llq0qFc/H/uGdQlMrEtgYl0CE+vSf9alrq6uV+YCAADQF/g1lEpNTbXBUlFRUbfr5nFmZuZu32NO3DO9pMz7vEaPHq3CwkK7HTAiIqLb66+66irbSL1rpdTAgQM1Z84cxcfHqzeYv/U0P5iahuzevlfwP9YlMLEugYl1CUysS/9bF28FNwAAQDDyayhlAiRT6fT222/r5JNP7qiEMo8vvvji3b5n5syZevLJJ+3rTP8pY/369Tas2jmQMtxutx07Mz809vYP9L74Gug51iUwsS6BiXUJTKxL/1kX1hEAAAQzvzY6N0wV0wMPPKDHHntMa9as0QUXXKDa2tqO0/jOPvtsW+3kZZ43p+9deumlNowyJ/WZRuem8TkAAAAAAAD6Br/3lPrJT36ikpISLViwwG7BmzRpkl5//fWO5udbt27tqIgyzNa7N954Q5dddpkmTJignJwcG1D97ne/8+N3AQAAAAAAgD4VShlmq96etuu9++67u1ybMWOGPv74Yx/MDAAAAAAAAP1y+x4AAAAAAACCD6EUAAAAAAAAfI5QCgAAAAAAAD5HKAUAAAAAAACfI5QCAAAAAACAzxFKAQAAAAAAwOcIpQAAAAAAAOBz4QoybW1t9raqqqrXvobH41FdXZ39Gi6Xq9e+DnqGdQlMrEtgYl0CE+vS/9bF+/OI9+cTAACAYBJ0oVR1dbW9HThwoL+nAgAA0PHzSUJCgr+nAQAA4FMhbUH2V3Otra3Kz89XXFycQkJCeuVrmL/1NKHXtm3bFB8f3ytfAz3HugQm1iUwsS6BiXXpf+tifgwzgVR2drZCQ+mqAAAAgkvQVUqZH/gGDBjgk69lfjDll4bAw7oEJtYlMLEugYl16V/rQoUUAAAIVvyVHAAAAAAAAHyOUAoAAAAAAAA+RyjVC9xut6699lp7i8DBugQm1iUwsS6BiXUJTKwLAADAvgm6RucAAAAAAADwPyqlAAAAAAAA4HOEUgAAAAAAAPA5QikAAAAAAAD4HKFUL7j77rs1ZMgQRUZG6pBDDtGnn37q7ykFlffff18nnniisrOzFRISohdffLHb86aN2oIFC5SVlaWoqCjNmjVLGzZs8Nt8g8FNN92kgw46SHFxcUpPT9fJJ5+sdevWdXtNQ0ODLrroIqWkpCg2NlY/+tGPVFRU5Lc5B4N7771XEyZMUHx8vB0zZszQa6+91vE8axIYbr75Zvvfsl//+tcd11gb37vuuuvsOnQdo0aN6nieNQEAAOg5Qqn97JlnntHll19uT+H573//q4kTJ2ru3LkqLi7299SCRm1trf3nbsLB3bnlllt055136r777tMnn3yimJgYu0bmFwr0jvfee8/+svbxxx9r0aJF8ng8mjNnjl0rr8suu0yvvPKKnnvuOfv6/Px8nXLKKX6dd383YMAAG3gsX75cy5Yt09FHH60f/OAHWrVqlX2eNfG/zz77TP/3f/9nw8OuWBv/GDt2rAoKCjrGkiVLOp5jTQAAAPaBOX0P+8/BBx/cdtFFF3U8bmlpacvOzm676aab/DqvYGX+FX/hhRc6Hre2trZlZma23XrrrR3XKioq2txud9tTTz3lp1kGn+LiYrs27733XscauFyutueee67jNWvWrLGvWbp0qR9nGnySkpLaHnzwQdYkAFRXV7eNGDGibdGiRW1HHHFE26WXXmqvszb+ce2117ZNnDhxt8+xJgAAAPuGSqn9qKmpyVYcmO1gXqGhofbx0qVL/To3OHJzc1VYWNhtjRISEuw2S9bIdyorK+1tcnKyvTV/bkz1VNd1MdtiBg0axLr4SEtLi55++mlbvWa28bEm/meqC0844YRua2CwNv5jtnqbreHDhg3TmWeeqa1bt9rrrAkAAMC+Cd/H92E3SktL7S92GRkZ3a6bx2vXrvXbvNDJBFLG7tbI+xx6V2trq+2NM3PmTI0bN85eM//sIyIilJiY2O21rEvv++qrr2wIZbavmj44L7zwgsaMGaMVK1awJn5kAkKzBdxs39sZf178w/zlxaOPPqoDDzzQbt1buHChDj/8cK1cuZI1AQAA2EeEUgB8Xv1hfonr2osF/mN+wTYBlKlee/7553XOOefYfjjwn23btunSSy+1/dfMgRkIDMcdd1zHfdPjy4RUgwcP1rPPPmsPzQAAAEDPsX1vP0pNTVVYWNgup+2Yx5mZmX6bFzp514E18o+LL75Y//73v7V48WLbZNvL/LM3218rKiq6vZ516X2mumP48OGaOnWqPSXRHBLw17/+lTXxI7MVzByOMWXKFIWHh9thgkJzQIO5b6pvWBv/M1VRI0eO1MaNG/nzAgAAsI8IpfbzL3fmF7u3336721Yl89hsj4H/DR061P6C0HWNqqqq7Cl8rFHvMT3nTSBltoa98847dh26Mn9uXC5Xt3VZt26d7dfCuviW+W9WY2Mja+JHxxxzjN1WaSrYvGPatGm2h5H3PmvjfzU1Ndq0aZOysrL48wIAALCP2L63n11++eV2+4v5peHggw/WHXfcYRsHz5s3z99TC6pfFMzfXHdtbm5+kTNNtU3TWdPP6E9/+pNGjBhhw5FrrrnGNq49+eST/Trv/r5l78knn9RLL72kuLi4jh4rpsm82fZibn/+85/bPz9mneLj43XJJZfYX+amT5/u7+n3W1dddZXdkmT+XFRXV9s1evfdd/XGG2+wJn5k/ox4+615xcTEKCUlpeM6a+N7V1xxhU488US7ZS8/P1/XXnutrY4+/fTT+fMCAACwjwil9rOf/OQnKikp0YIFC+wv3pMmTdLrr7++S2Nt9J5ly5bpqKOO6nhsfkkwTFhomtReeeWVNij85S9/abdaHHbYYXaN6N3Se+699157e+SRR3a7/sgjj+jcc8+192+//XZ7WuWPfvQjW6kzd+5c3XPPPX6Zb7AwW8TOPvts27TZ/FJt+uSYQGr27Nn2edYkcLE2vrd9+3YbQO3YsUNpaWn2/x0ff/yxvW+wJgAAAD0X0mb21QAAAAAAAAA+RE8pAAAAAAAA+ByhFAAAAAAAAHyOUAoAAAAAAAA+RygFAAAAAAAAnyOUAgAAAAAAgM8RSgEAAAAAAMDnCKUAAAAAAADgc4RSAAAAAAAA8DlCKQDoZSEhIXrxxRf9PQ0AAAAACCiEUgD6tXPPPdeGQjuPY4891t9TAwAAAICgFu7vCQBAbzMB1COPPNLtmtvt9tt8AAAAAABUSgEIAiaAyszM7DaSkpLsc6Zq6t5779Vxxx2nqKgoDRs2TM8//3y393/11Vc6+uij7fMpKSn65S9/qZqamm6vefjhhzV27Fj7tbKysnTxxRd3e760tFQ//OEPFR0drREjRujll1/ueK68vFxnnnmm0tLS7Ncwz+8cogEAAABAf0MoBSDoXXPNNfrRj36kL774woZDP/3pT7VmzRr7XG1trebOnWtDrM8++0zPPfec3nrrrW6hkwm1LrroIhtWmQDLBE7Dhw/v9jUWLlyo0047TV9++aWOP/54+3XKyso6vv7q1av12muv2a9rPi81NdXH/xQAAAAAwLdC2tra2nz8NQHApz2lHn/8cUVGRna7/v/+3/+zw1RKnX/++TYI8po+fbqmTJmie+65Rw888IB+97vfadu2bYqJibHPv/rqqzrxxBOVn5+vjIwM5eTkaN68efrTn/602zmYr/GHP/xBf/zjHzuCrtjYWBtCma2FJ510kg2hTLUVAAAAAAQLekoB6PeOOuqobqGTkZyc3HF/xowZ3Z4zj1esWGHvm8qliRMndgRSxsyZM9Xa2qp169bZwMmEU8ccc8w3zmHChAkd981nxcfHq7i42D6+4IILbKXWf//7X82ZM0cnn3yyDj300O/4XQMAAABAYCOUAtDvmRBo5+10+4vpAbU3XC5Xt8cmzDLBlmH6WW3ZssVWYC1atMgGXGY74J///OdemTMAAAAABAJ6SgEIeh9//PEuj0ePHm3vm1vTa8psufP68MMPFRoaqgMPPFBxcXEaMmSI3n777e80B9Pk/JxzzrFbDe+44w7df//93+nzAAAAACDQUSkFoN9rbGxUYWFht2vh4eEdzcRN8/Jp06bpsMMO0xNPPKFPP/1UDz30kH3ONCS/9tprbWB03XXXqaSkRJdcconOOuss20/KMNdNX6r09HRb9VRdXW2DK/O6vbFgwQJNnTrVnt5n5vrvf/+7IxQDAAAAgP6KUApAv/f6668rKyur2zVT5bR27dqOk/GefvppXXjhhfZ1Tz31lMaMGWOfi46O1htvvKFLL71UBx10kH1s+j/ddtttHZ9lAquGhgbdfvvtuuKKK2zYdeqpp+71/CIiInTVVVfp66+/ttsBDz/8cDsfAAAAAOjPOH0PQFAzvZ1eeOEF21wcAAAAAOA79JQCAAAAAACAzxFKAQAAAAAAwOfoKQUgqLGDGQAAAAD8g0opAAAAAAAA+ByhFAAAAAAAAHyOUAoAAAAAAAA+RygFAAAAAAAAnyOUAgAAAAAAgM8RSgEAAAAAAMDnCKUAAAAAAADgc4RSAAAAAAAA8DlCKQAAAAAAAMjX/j+ksJccbe1WawAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAASdCAYAAACRlO+LAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Qd4W9X5P/Cvhzwk771HbGfvhAwCGSQBEkgYbSmEvfoDym5L4Q+lrDJboIyWlj1KC6VACVAII2ElJGST5cSO4723LA/Z0v95z7Vs2bETO7Gs4e/neU4kXV1JR7pyfPze97zHy2q1WkFERERERERERDSMvIfzxYiIiIiIiIiIiASDUkRERERERERENOwYlCIiIiIiIiIiomHHoBQREREREREREQ07BqWIiIiIiIiIiGjYMShFRERERERERETDjkEpIiIiIiIiIiIadgxKERERERERERHRsGNQioiIqNO2bdvwwAMPoLGx0dldISIiIiLyeAxKERERASgvL8fKlSsRFxeH4OBgZ3eHiIiIiMjjeVmtVquzO0FERORsH3/8Merr63HBBRc4uytERERERCMCM6WIiIgALF++fFgDUl5eXrjnnnuG9DlfeeUV9byHDh2Cqxjq95mWlobLLrvMZZ9vpJDjev3118PTPfbYYxg1ahR8fHwwderUQT124cKFqh3NunXr1Ocpl0RERCMNg1JERDRi2YI4/bXvv/8erujBBx/E+++/7+xuEHm0NWvW4LbbbsO8efPw8ssvq587IiIiGlq+Q/x8REREbue+++5Denr6YdszMzPhiuSP45/+9Kc4++yze2y/+OKLcf7558Pf399pfSPyFF9++SW8vb3x4osvws/Pz9ndISIi8kgMShER0Yi3bNkyzJw5E+5OphhJIzqSlpYWFWSRgAv1r6KiAoGBgQxIERERORBHI0REREdgNpsRERGByy+//LD7GhoaEBAQgF//+tc9/pC98sorERsbq+6bMmUKXn311aO+jtQ1kvpGvUk9JplKaCPXm5qa1HPaphnaaiL1V1PqL3/5CyZMmKAyqBISEvDLX/4SdXV1PfaR2jcTJ07Enj17sGjRIuj1eiQmJuLRRx8d0OfU2tqKW265BdHR0Wr1QlnJsKioqM99i4uLccUVV6jPSPokfXvppZdwLGpqatTnP2nSJAQFBSEkJEQFGXfs2IFjdfDgQfzsZz9Tx10+hzlz5uCjjz46bL+nn35a9V32CQ8PV4HNN998s+v+xsZG3Hzzzeq4yvuMiYnB0qVLsXXr1iO+/kAe118trN51jGz1iv71r3/hrrvuUsdU+ivf3f5YLBb8+c9/Vp+pfIflmJ5++unYvHnzYfvKNFL53tiO4yeffNLj/vz8fFx33XUYM2aMCvBERkaqz7avume7d+/GKaecovZLSkrCAw88oL4Xvb/T/dUp6+szke+5fJbJycmqj5L9+Mgjj6j3eCTyGjJlT37WbD9n8vMl2tvbcf/99yMjI0M9p7zu//t//0/9DByN/ExIhqPBYFDHVX5mBvI4IiIiT8VMKSIiGvFk1b2qqqoe2+SPUPkDWqfT4ZxzzsG7776Lv/3tbz2yJuQPcvmDUqbMiebmZhUQyMnJUUWgZUrgv//9b/WHsvxxfNNNNx13X19//XVcddVVmDVrFn7xi1+obfLHcX/kj/d7770XS5YswbXXXovs7Gz89a9/xQ8//IDvvvtOvT+b2tpaFXw499xzcd555+Gdd97Bb3/7WxWckEDPkUif3njjDaxatQonnniimvp0xhlnHLZfeXm5CvLYCmVLwON///ufCuRJoEQCCIMNIMlxkECHfN7y/HKcFixYoAJsEoQbDHm89N9kMuHGG29U3wEJAEqQTT4P+S6I559/Xt0v0yjluEr20c6dO7Fx40b1GYhrrrlGPUbe5/jx41FdXY1vv/0We/fuxfTp0/vtw7E+7kgkiCLfXQngyXf2SNk/ciwkACPHXI6rBGG++eYbVWPNPqNQ+iQ/FxJ0kkDkU089hZ/85CcoKChQn5uQ79n69evVz4gEmiS4JN8/+TmR4yMBMlFWVqaCofJat99+uwra/P3vf1cBqmMlx1C+BxIE/b//+z+kpKSovtxxxx0oLS3Fk08+ecSfM3n9TZs24YUXXlDb5Hsh5DOR74Qc+1/96lfqmD/00EPq+Lz33nv9Pqf8/7B48WL1+ch3R76b8jrys0JERDRiWYmIiEaol19+2Sq/Cvtq/v7+Xft9+umnatvq1at7PH758uXWUaNGdd1+8skn1X5vvPFG17a2tjbr3LlzrUFBQdaGhoau7bLf73//+67bl156qTU1NfWwPso+vX9dGwwGtX9/7ycvL0/drqiosPr5+VlPPfVUa0dHR9d+zzzzjNrvpZde6tq2YMECte21117r2tba2mqNi4uz/uQnPzni57h9+3b12Ouuu67H9lWrVh32Pq+88kprfHy8taqqqse+559/vjU0NNRqMpmO+FryGdm/95aWlh7vTcj7l+N33333HfG5+nq+m2++WfX5m2++6drW2NhoTU9Pt6alpXW91llnnWWdMGHCEZ9b3s8vf/nLo/bhWB7Xu9/2x1Gazdq1a9X7ke/p0T5b8eWXX6r9b7zxxsPus1gsXddlH/lu5eTkdG3bsWOH2v700093bevrNTds2HDYd832uW/cuLFrm3x/5bOw/07bXtv+O9XfZ3L//fern5X9+/f32O/222+3+vj4WAsKCo74WchzyeP7+q5fddVVPbb/+te/Vtvl8+vvWNj+f3j77be7tjU1NVkzMzPVdjlWREREIw2n7xER0Yj37LPP4rPPPuvRJHvHRqYURUVF4a233uqRVST7/fznP+/a9vHHHyMuLg4XXHBB1zbJRJKsCKPRiK+++moY3xXw+eefo62tTWUf2dcPuvrqq9U0t95T0mT620UXXdR1W7JpJCNLspGORN63kPdpr3fWk8QT/vOf/2DFihXqumSn2dppp52mMtaONrWtN5k+ZXtvHR0dKqtI3odMFxvsc9nei7znk046qWubPJ9kpUmWj2T3iLCwMDUVSzKB+iP7SBZNSUnJoPpwrI87kksvvXRAWUdyfCSL7fe///1h99lPIxWSfWefpTd58mT1vbL/vti/pkyFleMjU+jkPdofH/ncJYNOPnsbyaK78MILcawkS/Hkk09WUyvtv2vSb/mufP3114N+Ttt3/dZbb+2xXTKmRF/TPO0fGx8frzKsbCRTzJbxSERENBJx+h4REY148ofwkQqd+/r6qmlJUi9Ipj5JIESmLckf2fZBKamfk5WVdVgB6XHjxnXdP5xsrycBGnsSbBo1atRh/ZHpVb0DD/IHvUxLO9rryHvuPY2w9+tWVlaqaYwyLUpaX6Qm12DY6h9J3ay8vDwVbLCxTSEbDHkvs2fPPmy7/TGUGkoyrVGCfvLdkSDLqaeeqqbtzZs3r+sxUo9LgkFSz2jGjBlYvnw5LrnkEvXZH8mxPu5I+lpdsi+5ublqWpnU0zoamQ7Xm3xfJGBrP2VNprZJfSaZRqclOmkkCHm0z733d2gwDhw4oL67Etwaiu+a/Xe998qcEoyWQNuRfsblPnlc75+x43mPRERE7o6ZUkRERAMgNXGkALUtg+rtt9/G2LFjVSHzodD7D1Ub+yCLo/W3cp99IOF42IpLSzZW78w0W7MP6gzEgw8+qLJW5s+fr2paffrpp+p5pOj20YpZHw8JUkl9LikgLllVkmEkl/YZRlKXS7KGpCC6BHoee+wx1S/7LLy+DORxg/2+HE9tpuP5vtxwww34wx/+oN6T/MysWbNGHR8JGA718en93uX5pUB8f981CTQfq/4+fyIiIhocZkoRERENgAQ9ZOqNTOGT4IMUJ77zzjt77JOamqoyM+SPYftsqX379nXd3x/JMOm9Ip7oK/NioH8Q215Pgif2WTYypU+yimQa01CQ15H3LFk29lkf8rr2bCvzSfBgqF5bCoJLgewXX3yxx3b5LGXK5bG8l9797u8YSjFuyZSTJp+pFIiXAIwU0pZV64R8Z6QQuDTJzJFC5bLP0QrHH+1xR/q+HE9GlWS7SWBPVjUcSLbUQI6PZH396U9/6tomReF7910+V8ls6q2vY9HXe5fPX4qX934vMm12qL5r9t916aste85WIF/6dKSfcblv165dKmhn/zPc13skIiIaKZgpRURENAASZJJaMKtXr1YrZskqYfZT94RMs5JVxOxrT8l+kvEidYlkJbD+yB/QMp3Jfqqc/JHd12peEgzpKyDRm/wxLlP1ZFU0++wVCeDIa/W1Ot6xsAVK5HXs9V7dTDJrJDtFsorkj/PeZHrfYMlz9s7kklpCMlXsWMgxlBXXNmzY0LWtqalJTTdMS0tTq+EJqY1kTz5nuU/6ItM6JfBmPz1NxMTEqMwnmQLan4E+Tr4vshqeBGNsPvzwQxQWFuJ4yPGR9yArNg5Fxlxfx0d+HnpnNcnnLu9HPnv778M//vGPw55T3nvvelByfHo/p2RnyXGUIFtv8vMjP5uDJf3s67v9+OOPq8sj/UzJY6VOmATq7FcI7G8qKxER0UjATCkiIhrxZFqULRPGniwBb591IkEo+YNapmhNmjSpR6aEkILFf/vb33DZZZdhy5YtKoghf4B+99136o9YyRI60vRAqVN0zjnnqILh8sfqX//6V4wePfqwgt1SZ0jqGckfwhKskHpBfdXjkcwkydqRAMPpp5+OlStXqqwMqb90wgkn9ChqfjymTp2qirvL80pART63L774Ajk5OYft+/DDD2Pt2rWqv1JwXQI5kpUj71Hek1wfjDPPPBP33XcfLr/8cvW6P/74owpkHGu20O23345//vOfKtAmx0GyhV599VWVWSbBNFsGnNSQkjpCMt0wNjYWe/fuxTPPPKOCEnKcJeghNbokkClTPCUoKe9PCqPbZw31JlNEB/K4q666Sn235LhK8EWy1GT6Yu+6XoMlWWcXX3yxCjBKNpA8v2QGffPNN+q+66+/ftDHR4K4oaGh6lhLkEjeT+96X7fddpvaT17vpptuUoFXCdbYsg/tyXu/5pprVABNpuft2LFDBZ56Z8b95je/wQcffKD6ID+T8nMjAUb5jshnJ4XrB5tNJ8dEMr+kb3KMJdAsgTT5jpx99tnqM+qPfN/lOyL1weT/B8mGk/csxc6JiIhGLGcv/0dEROQsL7/8slqKvb8m99uzWCzW5ORkdd8DDzzQ53OWl5dbL7/8cmtUVJTVz8/POmnSpMOep79l7desWWOdOHGietyYMWOsb7zxhtqn96/rffv2WefPn28NDAxU98nS9fbvJy8vr8f+zzzzjHXs2LFWnU5njY2NtV577bXW2traHvvI0vUTJkw4rJ/y3KmpqUf9LJubm6033nijNTIy0mowGKwrVqywFhYW9vk+5TP65S9/qT5L6VNcXJx18eLF1r///e9HfR3pi+39ipaWFuuvfvUra3x8vPo85s2bZ92wYYN6P9IG+3wiNzfX+tOf/tQaFhZmDQgIsM6aNcv64Ycf9tjnb3/7mzoG8n79/f2tGRkZ1t/85jfW+vp6dX9ra6u6PWXKFGtwcLD6TOT6X/7ylyP2ZzCP+9Of/mRNTExUry/ve/PmzYe977Vr16pj8O9//9s6UO3t7dbHHntMfWfkuxgdHW1dtmyZdcuWLV37yHPKMTza5ynfM9vPQ1BQkPW0005T39++PvedO3eqvstnLu/r/vvvt7744ouHfac7Ojqsv/3tb9Vz6vV69Zw5OTl9PmdjY6P1jjvusGZmZqr3Io858cQTrX/84x+tbW1tR/wc5Lnk8+/NbDZb7733Xmt6err6/sr3WF5Dvov2+voO5ufnW1euXKn6LX256aabrJ988ol6j3KsiIiIRhov+cfZgTEiIiIiot5eeeUVlQUnmWqSeUhERESehTWliIiIiIiIiIho2DEoRUREREREREREw45BKSIiIiIiIiIiGnasKUVERERERERERMOOmVJERERERERERDTsGJQiIiIiIiIiIqJhx6AUERERERERERENOwaliIiIiIiIiIho2DEoRUREREREREREw45BKSIiIiIiIiIiGnYMShERERERERER0bBjUIqIiIiIiIiIiIYdg1JERERERERERDTsGJQiIiIiIiIiIqJhx6AUERERERERERENOwaliIiIiIiIiIho2DEoRUREREREREREw45BKSIiIiIiIiIiGnYMShERERERERER0bBjUIqIiIiIiIiIiIYdg1JERERERERERDTsGJQiIiIiIiIiIqJhx6AUERERERERERENOwaliIiIiIiIiIho2DEoRUREREREREREw45BKSIiIiIiIiIiGnYMShERERERERER0bBjUIqIiIiIiIiIiIYdg1JERERERERERDTsGJQiIiIiIiIiIqJhx6AUERERERERERENOwaliIiIiIiIiIho2DEoRUREREREREREw45BKSIiIiIiIiIiGnYMShERERERERER0bBjUIqIiIiIiIiIiIYdg1JERERERERERDTsGJQiIiIiIiIiIqJhx6AUERERERERERENOwaliIiIiIiIiIho2DEoRUREREREREREw45BKSIiIiIiIiIiGnYMShERERERERER0bBjUIqIiIiIiIiIiIYdg1JERERERERERDTsGJQiIiIiIiIiIqJhx6AUERERERERERENOwaliIiIiIiIiIho2DEoRUREREREREREw45BKSIiIiIiIiIiGnYMShERERERERER0bBjUIqIiIiIiIiIiIYdg1JERERERERERDTsGJQiIiIiIiIiIqJhx6AUERERERERERENOwaliIiIiIiIiIho2DEoRUREREREREREw45BKSKiI3jllVfg5eWFQ4cOHXXftLQ0XHbZZcPSLyIiIqKhxDEPETkDg1JE5LGDqr7a7bff7uzu4a233sJFF12ErKws1aeFCxc6u0tERETkhlx5zFNdXY3HHnsM8+fPR3R0NMLCwjBnzhw1DiIisvHtukZE5GHuu+8+pKen99g2ceJEONtf//pXbNmyBSeccIIasBERERF52phnw4YNuPPOO7F8+XLcdddd8PX1xX/+8x+cf/752LNnD+69916n9o+IXAODUkTksZYtW4aZM2fC1bz++utITEyEt7e30weMRERE5P5cccwzYcIEHDhwAKmpqV3brrvuOixZsgSPPPIIbrvtNhgMBqf2kYicj9P3iGjE+vLLL3HyySerAZGklJ911lnYu3fvUR9ntVrxwAMPICkpCXq9HosWLcLu3bsH/LrJyckqIEVERETkqWMeydyyD0gJmVZ49tlno7W1FQcPHjzm90NEnoOZUkTkserr61FVVdVjW1RUlLr8/PPP1VnFUaNG4Z577kFzczOefvppzJs3D1u3blUFPPtz9913qwGapKNLk/1PPfVUtLW1Ofw9EREREbnzmKesrKxH/4hoZGNQiog8lqSH93XGT/zmN79BRESEqncgl0LO3E2bNg2///3v8eqrr/b5nJWVlXj00UdxxhlnYPXq1eqMn5CaCQ8++KBD3w8RERGRO495ampq8MILL6isrfj4+GN6DiLyLAxKEZHHevbZZzF69OjDtpeWlmL79u2qloFtcCYmT56MpUuX4uOPP+73OeVso5wdvOGGG7oGZ+Lmm29mUIqIiIicwh3GPBaLBRdeeCHq6upUphYRkWBQiog81qxZs/os+pmfn68ux4wZc9h948aNw6effoqmpqY+i2/aHpuVldVjuyx1HB4ePoS9JyIiIvKcMY8Etz755BO89tprmDJlyqAfT0SeiZV2iYiIiIiIyGHuvfde/OUvf8HDDz+Miy++2NndISIXwqAUEY04tpVgsrOzD7tv3759qvBmf0sU2x4rSxz3rrtQW1vrkP4SERERueuYR6YWSoF1mfb329/+dpDvgIg8HYNSRDTiSGHNqVOnqsKeUtfAZteuXVizZo1aXeZIhUR1Op2qhWArICqefPJJh/ebiIiIyJ3GPG+99RZuvPFGVUvq8ccfP453QkSeijWliGhEeuyxx9TyyHPnzsWVV17ZtTxyaGioOpvXH6mj8Otf/xoPPfQQzjzzTDWY27ZtG/73v/8NeGnjr7/+WjXb2Uap5SDLLYv58+erRkREROTOY55NmzbhkksuQWRkJBYvXox//OMfPe4/8cQTMWrUqCF5j0TkvhiUIqIRSc7+SbFNWQr57rvvVmcCFyxYgEceeQTp6elHfKwEkAICAvDcc89h7dq1mD17tjrbKEsmD8SXX36paivY+93vfqcupT8MShEREZG7j3n27NmjVu+TE3BXXHHFYfe//PLLDEoREbys9rmYREREREREREREw4A1pYiIiIiIiIiIaNgxKEVERERERERERMOOQSkiIiIiIiIiIhp2DEoREREREREREdGwY1CKiIiIiIiIiIiGHYNSREREREREREQ07BiUIiIiIiIiIiKiYeeLEcZisaCkpATBwcHw8vJydneIiIhoBLFarWhsbERCQgK8vR17bpBjHiIiInL1Mc+IC0rJ4Cw5OdnZ3SAiIqIRrLCwEElJSQ59DY55iIiIyNXHPCMuKCVnC20fTEhIiENew2w2Y82aNTj11FOh0+kc8hrkWDyG7o/H0L3x+Lk/HsO+NTQ0qECRbTziSBzzjEw8Jq6Jx8X18Ji4Hh4TzzomAx3zjLiglC19XQZnjhyg6fV69fz8YXJPPIbuj8fQvfH4uT8ewyMbjul0HPOMTDwmronHxfXwmLgeHhPPPCZHG/Ow0DkREREREREREQ27EZcpRURENNJJAey2tjaHn1nz9fVFS0sLOjo6MNL4+fk5vJA5EREROX/M48nMAxjPHe+Yh0EpIiKiEUQGZnl5eWqQ5ugVV+Li4lQ9o5G48psMztLT09VAjYiIiDx3zOPJrAMYzx3vmIdBKSIiohE0sCgtLYWPj48qPOnITB4ZABqNRgQFBY24jCF577LynXzWKSkpIzIoR0RENFLGPJ7McpTx3FCMeRiUIiIiGiHa29thMpmQkJCgilYOR7p8QEDAiBwIRkdHq0GafOYs1kpEROS5Yx5PZhnAeO54xzwjb5RIREQ0QtlqAXBKmePZPuORWE+LiIjI2TjmcZ8xD4NSREREIwynkzkeP2MiIiLn4+9j1/+MGZQiIiIip5g6dapq48ePVzUfbLd//vOfD/g5PvjgA9xyyy2Dfu3LLrsMTz755KAfR0RERDRYHPP0jzWlHKC13YKiJmf3goiIyLVt375dXR46dEgNzGy37Ul9AlmKuD8rV65UjYiIiMhVcczTP2ZKDTFzhwWPf3YA35V5o7S+xdndISIi6ndVmtb2Doc2eY1jkZaWht/+9reYNWsWLr30UpSVlWHRokWYMWMGJkyYgOuvv75reedXXnkFZ599trq+bt06TJw4Eddddx2mTJmi9t28efNRX09WlbniiivUY6Xde++9Xfc98MADGDduXNcZzfz8fDQ3N6szm3K2U17n1FNPPab3SURERI7HMc/xjXls+ztqzOPUTKmvv/4ajz32GLZs2aKWEHzvvfe6PuSj+e6777BgwQL14fQVZXQWnY830qMM2JcDbM6vRUpUsLO7REREdJi2Dgvu+WCP417AasUtC5KO+eHV1dXYuHGjqlPQ0tKC1atXq+WIpYjmWWedhbfffhvnn3/+YY/bt28fXnzxRfzlL3/Bc889hzvvvBOffvrpEV/r/vvvR2trK3bu3KkGXyeddBLGjh2rBl5//OMf1RglMDBQreIjK8/873//Q11dHfbs0T6/mpqaY36fRERE5OZjHgD3rBwPf18fjxvzfPTRR6ivr8euXbvUbUeMeZyaKdXU1KSibc8+++ygHicDwUsuuQSLFy+GK5qZGqYudxTVq8wpIiIiGnz9A1vhTDlDKGcRZcwwbdo0dSawvxNSmZmZmD17tro+d+5c5ObmHvW1Pv/8c1x99dVqsGUwGNQY47PPPkNISAiysrJw0UUX4W9/+5saiMmSyNKPvXv3qrOTb7311jEtf0xERETkDmOe7Oxs/PKXv3TYmMepmVLLli1TbbCuueYarFq1ShUIe//99+FqMqIN0OuAFrMFPxbXY3pKuLO7RERE1IOfj7c6q+coMqhqaTIe8+PlDKHN448/joqKCnUWUQZIt956qzqT2Be530bGCVKfYbBsA0N5/Pfff4/169erNPk5c+bgn//8J04++WSVJfXll1+qwd1tt92mBozh4fx9T0RENNLGPLbX8MQxz7x589R2CY7JuMcRYx63K3T+8ssv4+DBg3jjjTfUnMejkdQ0aTYNDQ3q0mw2q+YI8mUYFWxFrcWCjblVmBTf/SUj92D7bjjqO0KOx2Po3nj8HEM+T6l5IAEjudR5O26ZZKuXN1q9vLpe70hs99vvJ9dtt+VsXWxsLPz8/FBSUoJ///vfOPfcc7v2sb1G7+fp63m7+me1dj1OMq9feOEFFWySdPXXX38dv/nNb1S6emNjoxqQSZPU9a1btyI1NVUNxs4880yV7i4nyKTuQmhoaI/+y/PLZy4DPRtHfqedMebhz6rr4TFxTTwurofHxLOPyXCOeezHFUfjbmOelJQUVXx9xYoVOP300x0y5nGroNSBAwdw++2345tvvjliVXp7Dz30UI/iXTZr1qyBXq+Ho6QHA7sKilBcBARV7UGIn8NeihxIUhnJvfEYujcev6Elvzvj4uJUkcu2trZheU0Z4ByN9EcGM7YgigxuZIq/7fbll1+uUtuliKf0f/78+ar/cr+cPZSTQXJdBldSf8H2OHleeS7bbXsyUJLHyn033nijGl9InUoh9S1l4FVUVKReV/oiZxIzMjLUfXL28r777lN9ltf72c9+pgqV2r+O9E9qNUj9TPszl9JHR3HWmEfwZ9X18Ji4Jh4X18Nj4pnHxBljnoFwtzHPpk2bHD7m8bIea5n4ISZv/EiFzuUDkBSyK6+8Uk3fE/fcc4+K1B2p0HlfZw2Tk5NRVVWl5k06ghx0+UGqDBuHA5XNmJcRgWUT4xzyWgSHHsOlS5eyVoib4jF0bzx+jiEDksLCQjWYsE/5dgQZXkhAKjg4uCs1fKR91rLss4w57D9rGYdERUWpM5JDPQ5x5piHP6uug8fENfG4uB4eE88+JsM55vFk1gGM5453zOM2mVLyQcg8xm3btqllEe3TxCQKKmcBTznllMMe5+/vr1pv8iV39H8+s0dFIbe6GDuLG7F8ciJ8j2OeKTnHcHxPyLF4DN0bj9/QkhM8MqCQ4pbSHMmWPm57vZFG3rO8997fYUd+n5055uHPquvhMXFNPC6uh8fEM4/JcI55PJllAOO54x3zuE1QSiJrP/74Y49tsvShFNt65513kJ6eDlczOiYIIYG+aGhux97SRkxK6p53SUREREREREQ0kjk1KCXzHnNycrpu5+Xlqal4ERERqqDWHXfcgeLiYrz22msq+mab92gTExOj0sN6b3cV3t5emJESjrXZldh0qIZBKSIiIiIiIiKiTk7NY5PpeNOmTVNNyHKHcv3uu+9Wt0tLS1FQUAB3NjMtQl3mVBhR0+Q6BdaIiIiIiIiIiEZsptTChQuPuGziK6+8csTHS6Fzaa4swuCHzJggFZTafKgGp05gwXMiIiIiIiIiIlb8GgYnpIWryy0FtbBYXGKxQyIiIiIiIiIip2JQahiMjw+Bwc9HFTzPLm90dneIiIhcwvLly/HMM88ctn3KlCl49913j5hJffbZZ/ebhf3+++8PaT+JiIiIjgfHPP1jUGoY+Pp4Y3qqli31w6EaZ3eHiIjIJVx55ZV4+eWXD6s3KTUlV6xY4bR+EREREQ0ljnn6x6DUMJnZOYVvX1kj6pvNzu4OERGR061cuRKFhYXYuXNn17aXXnoJl1xyCaqrq7Fo0SLMmDEDEyZMwPXXXw+LxTKo56+oqMC5556LSZMmqZV6//a3v6nt8jzyfOPGjVNnKOU1WlpaUFlZiVNPPVXtP3nyZFx++eVD/p6JiIho5OGYx0ULnY8kMcEBSIvU41C1CVvza7FobIyzu0RERAS0t/Z/n5c34KM7tn0HQKfT4eKLL1aDsieffFINkv75z39i/fr1CAsLw+rVqxEUFISOjg6cddZZePvtt3H++ecP+PlvuOEGjBkzRqXFy2BNBmIyIPP398cXX3yB3bt3w9vbG/X19fDz88Mbb7yB9PR0rFmzRj2+pobZzURERB6DYx644piHQalhdEJ6hApKyRS+hWOi4eXl5ewuERHRSPe/2/q/L2Y8MPv/um+vuQvoaOt738hM4MQbjimdfcGCBXj00UfVQErO5EkzmUz47W9/i2+//Vat1CsDLDnzN5gB2ueff44tW7ZobyUmRp1BlG0ycGtvb8cVV1yhzkyeccYZaqA2Z84cPPHEE/jVr36F+fPn4/TTTx/0+yEiIiIXxTEPXHHMw+l7w2hiQigCdN6oNZmRW2l0dneIiIicbvz48cjMzFRnCOXsoQzYxOOPP64GZRs3blSp7qtWrVJnFY+H7WRQaGgodu3apZ5z3759Km09JycHc+fOxfbt2zF79mw1WDzhhBPUGUsiIiKi48UxT9+YKTWM/Hy9MTU5DN8frMGmvFpkxgQ7u0tERDTSLXv0yOnp9k59YOD7DoIMyh588EEcOHCgaxWZ2tpaxMXFISAgAGVlZfj3v/+Nn/zkJ4N63iVLluD555/HH/7wB1U7QQZd8jxy3cfHR9VSWLp0Kb766ivs2bNHbUtMTMR5552nzhjKmUaj0agGdEREROTmOOaBK455GJQaZrPSI1RQak9pPYyt7Qjy5yEgIiIn8vV3zL6D8POf/xw333yzupR6CuKmm27CT3/6U1XwMyEhQQ22Buupp57Ctddeq4p4Sjr8nXfeqc4Ibt26FVdffTXMZrM6Kzhv3jwsW7ZM1VeQs5UyUJNU98cee4wBKSIiIk/BMQ9ccczDiMgwiw8NRFJ4IIpqm7GtoBYnZ0U7u0tEREROFRwcrM7O2UtJScGmTZv63P+yyy5TrS/r1q3ruh4bG6vOFPY2ffr0rroL9mTlGa64R0RERI7CMc/hWFPKCU5Ii1CXP+TVqCgmEREREREREdFIw6CUE0xOCoW/rzcqjW1qNT4iIiIiIiIiopGGQSknCND5YFKiNl/zh0M1zu4OEREREREREdGwY1DKyVP4dhXXo7mNy00TERERERER0cjCoJSTJEcEIjbEH+YOK7YX1jm7O0RENIKwnqHj8TMmIiJyPv4+dv3PmKvvOYmXlxdmpUVg9c5SNYVvzqgItY2IiMhRdDqd+l1TWVmJ6Ohoh/7esVgsaGtrQ0tLC7y9vUfc4Ew+Y/l85TP3ZO0dFlQ0O7sXREREzhvzeDLLUcZzQzHmYVDKiaamhOF/u8pQWt+CotpmJEfond0lIiLyYD4+PkhKSkJRUREOHTrk0NeSQUpzczMCAwNH5EBQ3rN81vKZeyopP/DEFznYXeqNlU1tiA3z7AAcERG5j+Ec83gy6wDGc8c75mFQyon0fr6q4Pm2wjqsy67AxXPTnN0lIiLycEFBQcjKyoLZbHbo68jzf/3115g/f77HZwv1Rd6zJwekRKCfD6KD/SFZ+9/mVOMnMw3O7hIREdGwj3k8mXkA47njHfMwKOVkC8dEY0dRHfaUNmJ/eSNGxwY7u0tEROThZODg6ICJPH97ezsCAgJGZFBqpFiQFYW1m4GtBXVYOjEeIQE81kRENLLGPJ7MZxjGcyOryIMLigkJwIkZUer6hztKVG0GIiIiIneQFqlHVIAV7RYrvjtQ5ezuEBERkZthUMoFLB4XgyB/H1Qa27DhYLWzu0NEREQ0IFJHYlyYturOxrwamNrand0lIiIiciNODUrJ3MQVK1YgISFBDWref//9I+7/7bffYt68eYiMjFSFtsaOHYsnnngC7i5A54PTJsSp61/srUBjC+e8EhERkXuI1wNxIf5obbdgQy5PrhEREZGbBKWampowZcoUPPvsswPa32Aw4Prrr1fBrL179+Kuu+5S7e9//zvc3YzUcCSFB6oB3ae7y53dHSIiIqIBkcV4FozWShGsz61Ga3uHs7tEREREbsKphc6XLVum2kBNmzZNNZu0tDS8++67+Oabb/CLX/wC7kwyxVZOScBf1uViS34tZqdHIDlC7+xuERERER3VhPgQrA2qRpWxDT/k1eKkLC1IRUREROSxNaW2bduG9evXY8GCBfAEEoSSjCnxwY4SWGWNZSIiIiIX5+3thQWjo9X1b3IquXALERERuX6m1LFKSkpCZWWlWprwnnvuwVVXXdXvvq2trarZNDQ0qEuz2ayaI9ie91ie/5TRkdhZWIuC6iZsOliF6SlhDughOfIYkmvgMXRvPH7uj8ewb478PJw95pkQZ8Cnft6oa2pTY5gT0rQTbTS8+LPnmnhcXA+PievhMfGsYzLQx3hZXSQdR6avvffeezj77LOPum9eXh6MRiO+//573H777XjmmWdwwQUX9LmvBK3uvffew7a/+eab0Otdc3rcvjov7Kj2gr8PsDzZAj8fZ/eIiIiIhoLJZMKqVatQX1+PkJCQIX1uVxjzZNd7YXuVF4J0wLJkC7y9huVliYiIyE3HPG4ZlLL3wAMP4PXXX0d2dvaAzxomJyejqqpqyAeD9hHBzz77DEuXLoVOpxv04yXl/Zl1B1VdhnkZEVg2UVuZj4bP8R5Dcj4eQ/fG4+f+eAz7JuOQqKgohwSlXGHMIwu2/OmzAzC1deC8GYmYnBTqkNel/vFnzzXxuLgeHhPXw2PiWcdkoGMet5y+Z89isfQYgPXm7++vWm/ygTr6i36sryEPOWtaEl7+7hA2HqrDnIxoxIQEOKSPdGTD8T0hx+IxdG88fu6Px7AnR34WrjDmkZeZPzoGa/aU45vcGkxPi1QnHmn48WfPNfG4uB4eE9fDY+IZx2Sg+zu10LlMwdu+fbtqtml5cr2goEDdvuOOO3DJJZd07f/ss89i9erVOHDggGovvvgi/vjHP+Kiiy6CpxkdG4zx8cGwWIHVO0tZ9JyIiIjcwpxRkfD39UZ5Qyv2lTU6uztERETkwpyaKbV582YsWrSo6/att96qLi+99FK88sorKC0t7QpQ2bKiJFAlwStfX19kZGTgkUcewf/93//BEy2fFI/95UbkVBixp7QBExKYAk9ERESuLdDPB3NGReCr/VVYm12BsXHBzJYiIiIi1wtKLVy48IgZQBKYsnfDDTeoNlJEBvnj5KworM2uxEc7S1X2lM7HqcltREREREc1LzMK63OrUVjTjINVTciIDnJ2l4iIiMgFMcLh4haMiUZIoC9qTWZ8e6DK2d0hIiIiOqrgAB1mpIar6+uyK53dHSIiInJRDEq5OH9fHyyfGK+uSwp8vcns7C4RERERHdX8rGh4e0GVISisMTm7O0REROSCGJRyA7KccnqUHuYOKz7eVers7hAREREdVbjBD1OSw9T1dfuZLUVERESHY1DKDUhx0DMnJ0BqhO4sqsfBSqOzu0RERER0VAtHR6vxy56SBlQ0tDi7O0RERORiGJRyEwlhgZidHqGuf7CjBB2W/gvEExEREbmCmJAAjI8PUdeZLUVERES9MSjlRpaOj4XezwflDa3YkFvt7O4QERERHdXCMdHqckdhHaqNrc7uDhEREbkQBqXciN7PF8smxqnrn+8tZ9FzIiIicnlJ4XqMjg2CJHlLtrfVymxvIiIi0jAo5WZkeeWUCD1a2y346EcWPSciIiLXd8bkePh6e2F/uVHVxyQiIiISDEq5YdHzs6dpRc9/LK7HgfJGZ3eJiIiI6IhiggO6pvF9uLMEprZ2Z3eJiIiIXACDUm4oPjQQJ2ZEquuSBm/usDi7S0RERERHtGB0NGKC/WFs7cD/fixzdneIiIjIBTAo5aaWjItFSIAvqoxt+OYAV7MhIiIi1+br441zpiWq65vza3Gw0ujsLhEREZGTMSjlpgJ0Plg+KV5dX5ddiZqmNmd3iYiIiOiI0qIMmJUerq6/v62Y2d5EREQjHINSbmxyUigyog0wd1jxwfZirmZDRERELu/0CfEIDvBFpbENX2Uz25uIiGgkY1DKzYuenzU1ET7eQHa5EXtKG5zdJSIiIqIjCvTzwYrJCer6uv0VqGhocXaXiIiIyEkYlHJz0cH+ODlLW81m9Y5StLZ3OLtLREREREc0MTEE4+KDIbP33t3GbG8iIqKRikEpD7BoTAzC9TrUN5uxdh/T4ImIiMj1s71XTkmAv6838qtN+OFQrbO7RERERE7AoJQH8PP1xoopWhq8rMTHNHgiIiJydWF6PywdH6uu/29XKRpazM7uEhEREQ0zBqU8xLh4LQ3eYgX+u72EafBERETk8uaOikRSeCBazBZ8uKPU2d0hIiIiVw9K/f73v0d+fr5jekPH5czJCdD5eOFgVRN2FNU7uztERERER+Tt7YVzpiXC2wv4sbgee7loCxER0Ygy6KDUf//7X2RkZGDx4sV488030dra6pie0aBFGPywaGyMuv7xj6VoMbPoOREREbm2hLBAnJQZpa5LtjcXbSEiIho5Bh2U2r59O3744QdMmDABN910E+Li4nDttdeqbeR8J2dGITrID40t7Vizp9zZ3SEiIiI6qlPGxSDCoC3a8hnHL0RERCPGMdWUmjZtGp566imUlJTgxRdfRFFREebNm4fJkyfjz3/+M+rrBzZ17Ouvv8aKFSuQkJCgVmF5//33j7j/u+++i6VLlyI6OhohISGYO3cuPv3002N5Cx7L18cbK6cmquvfH6xGcV2zs7tEREREdET+vj44q3P8sj63GvnVTc7uEhEREbl6oXMppm02m9HW1qauh4eH45lnnkFycjLeeuutoz6+qakJU6ZMwbPPPjvgIJYEpT7++GNs2bIFixYtUkGtbdu2Hc/b8DiZMUGYkhQKqXX+/rZiWKT6OREREZELGx0bjGnJYWr88ur6fJRzNWEiIiKP53ssD5KA0Msvv4x//vOf8Pf3xyWXXKICS5mZmer+p59+GjfeeCN+/vOfH/F5li1bptpAPfnkkz1uP/jgg6rG1erVq1X2FnVbNike+8oaUVTbjP/tKsMZk+Od3SUiIiKiIzprWgKqmlpRWNOMl77LwzXzMxBu8HN2t4iIiMhVMqUmTZqEOXPmIC8vT03dKywsxMMPP9wVkBIXXHABKisr4WgWiwWNjY2IiIhw+Gu5m9BAHX46I0ld/zanCtsL65zdJSIiIqKjTuO77MQ0xAT7o6G5XQWmGlvMzu4WERERuUqm1HnnnYcrrrgCiYnavP++REVFqYCRo/3xj3+E0WhUfeqPrA5ov0JgQ4O21LBMO5TmCLbnddTzD9SYGD1OzojAVweq8M7mAkQE+iA+NMCpfXIXrnIM6djxGLo3Hj/3x2PYN0d+Hp4y5tF5AZfMTsLz3x5CRUMLXvzmIK6cl4oAnc+QvYYn48+ea+JxcT08Jq6Hx8SzjslAH+NllWJQx8j2UClSfrzkOd577z2cffbZA9r/zTffxNVXX62m7y1ZsqTf/e655x7ce++9fT5er9fD00k5qW/KvFBm8oJBByxNtMCfYzoiIiKnMJlMWLVqlVoURhZtGUqeNuZpNANfFHujtQOIDrRiQZwVPsdVDZWIiIhcbcxzTEEpmbb3xBNP4MCBA+p2VlYWbr75Zlx11VXDEpT617/+pbK1/v3vf+OMM84Y9FlDKcReVVU15INB+4jgZ599poqy63Q6OJuprR3PfZWHGpMZmTEGXDI7Bd7exx9I9GSudgxp8HgM3RuPn/vjMeybjEMko9wRQSlPHPOU1rfghW8PobXdgrFxQbjghGT4cAxzRPzZc008Lq6Hx8T18Jh41jEZ6Jhn0NP37r77bjz++OO44YYbMHfuXLVtw4YNuOWWW1BQUID77rsPjiTF1SUgJYGpowWkhBRil9abfKCO/qIPx2sMRKhOh0vmpeO5dbk4WNWMtQdqcPrEOGd3yy24yjGkY8dj6N54/Nwfj2FPjvwsPHHMkxKlw+UnjcLL3+Vhf4UJH/xYjp/NSBqSLH1Px58918Tj4np4TFwPj4lnHJOB7j/ooNRf//pXPP/886qYuc3KlSsxefJkFagaTFBK6kHl5OR03Zbi6du3b1eFy1NSUnDHHXeguLgYr732Wlf6+aWXXoo///nPmD17NsrKytT2wMBAhIaGDvatjCjxoYE4d3oS/vVDIb7aX4mk8EBMTORnRkRERK4tPcqAC2al4I3v87GtoA56Px+cMSmegSkiIiIP4H0s6VszZ848bPuMGTPQ3t4+qOfavHkzpk2bppq49dZb1XXJxhKlpaUq+8rm73//u3qNX/7yl4iPj+9qN91002Dfxog0JTkMJ2dFqevvbClCeUOLs7tEREREdFTj4kO6VhX+Lqca67Idv8ozEREROd6gM6UuvvhilS0lU/jsScDowgsvHNRzLVy4sKtYel9eeeWVHrfXrVs3yN5Sb6dPiENJXTNyK5vUGcfrFmYi0I+Vz4mIiMi1TUsJR3NbB1bvLMWaPeVq/DJnVKSzu0VERETDGZSyFTpfs2YN5syZo25v3LhRZTRdcsklKtvJpnfgipxPCpyfPysFz67NQZWxDf/eUoiL56QyBZ6IiIhc3omZUTC1deCLfRX4YEcJvL28MCs9wtndIiIiouEKSu3atQvTp09X13Nzc9WlVFSXJvfZMMjhuoL8fXHh7BT87auD2FvaiC/2VmDJ+Fhnd4uIiIjoqBaPi0FTWzu+P1iD97YVo6KxBcsnxnNlYSIiopEQlFq7dq1jekLDKilcj3OmJ+Lfm4vU2cbE8EBVr4GIiIjIlcmJz5VTEtRJts/3VqgaU+UNrVg1K4UlCYiIiDy90Lm9oqIi1cg9TU8Jx9wMrRbDWz8UorKx1dldIiIiIhpQYGrxuFiV+e3n44WcCiP+si5HZU0RERGRBwelLBYL7rvvPoSGhiI1NVW1sLAw3H///eo+ci+ypHJ6lB6t7RZV+FwKiBIRERG5g4mJofi/BRkI0+tUrcy/rsvF/vJGZ3eLiIiIHBWUuvPOO/HMM8/g4YcfxrZt21R78MEH8fTTT+N3v/vdYJ+OnMzH2wsXzEpBSKAvKhpb8cI3B2FsbXd2t4iIiIgGJCEsEL9clInUSD1azBa8sv4Qvj1QdcQVnomIiMhNg1KvvvoqXnjhBVx77bWYPHmyatdddx2ef/55vPLKK47pJTlUcIAOl52YhiB/H5TUt+DvX+Wi3mR2dreIiIiIBkTqS111UjpmpoZDYlEf/ViK/2wtRnsHs/iJiIg8KihVU1ODsWPHHrZdtsl95J7iQwPxi/kZCA3UodLYhue+zkWVkTWmiIiIyD34+njj3OmJOHNyPGQR6C35tXjh2zw0tvBEGxERkccEpaZMmaKm7/Um2+Q+cl/Rwf64ZsEoRAf5oc5kxt+/PojS+mZnd4uIiIhowAXQ52VG4fIT0xCo80F+tQnPrs1FUa3J2V0jIiKiPvhikB599FGcccYZ+PzzzzF37ly1bcOGDSgsLMTHH3882KcjFxOm98PV80fh5e8OobS+Bc9/naem9qVE6p3dNSIiIqIByYoNxrULM/D6hkNaBvhXuThtQhxOyoxSgSsiIiJy00ypBQsWYP/+/TjnnHNQV1en2rnnnovs7GycfPLJjuklDXuNqatPHqUKhjabO/DSd3nIqeBKNkREROReGeDXLszEhIQQSGmpj38sUyfdOJ2PiIjITTOlzGYzTj/9dDz33HP4wx/+4LhekdMF+vng8nlp+Mf3BThQYcSr6/Nx/qxkTEgIdXbXiIiIiAY8nrlwdgo25dWo4ucypnnqiwP46YxkjIkLdnb3iIiIRrxBZUrpdDrs3LnTcb0hl+Lv64NL5qaqM4ztFive3FiArQW1zu4WERER0YDJdL3ZoyJx/aJMxIcGwNjagVfWH8KHO0u4Oh8REZG7Td+76KKL8OKLLzqmN+SSK9msmpWCGanhsFiBf28uwobcamd3i4iIiGhQYkICVJ2pEzMi1e3vcqrxl3W5qGhocXbXiIiIRqxBFzpvb2/HSy+9pAqdz5gxAwaDocf9jz/++FD2j1yAt7cXfjI9Ef6+3lifW40PdpSgpb0DC0dHs1goERERuQ2djzdWTElAVmwQ3tlcpBZ1eWZtDs6cnIAT0sI5riEiInL1oNSuXbswffp0dV0KntPIIIO0MyfHq+WVv9hXgTW7y1FnalODOBngEREREbmLsXEhuHFJlsoAz6kw4r1txThQ0YhzpyWpOlRERETkokGptWvXOqYn5BaBqSXjYxGg88HHu0qxKa8WBdXNuGBWskqJJyIiInIXIQE6XDEvDd8cqMKaPWXYVdyAQ1XZOH1iHKanMGuKiIhoOAw6xeWKK65AY2PjYdubmprUfeT5TsqKUoO44ABflDW04Nm1Odh8qAZWq9XZXSMiIiIaMAk8zR8djWsWZCA62F8VQX9nSzH++lUuCmtMzu4eERGRxxt0UOrVV19Fc3PzYdtl22uvvTZU/SIXlxkTjBtOyURmTBDaOqz4z9ZivL25EC3mDmd3jYiIiGhQksL1uPGUTCybGKdqaBbWNKvA1H+2FMHY2u7s7hEREXmsAU/fa2hoUJkw0iRTKiCge7pWR0cHPv74Y8TExDiqn+SCgjvT3tftr8Tne8qxvbAeRbXNOH9WChLDAp3dPSIiIqJBrTgsWVNTU8Lwya4ybCuow+b8WuwqqcfScbGYMypSLf5CRERETghKhYWFqRRnaaNHjz7sftl+7733DmHXyB3IcV80Jgajogz456ZCVBnb8Ny6XHWmcW5GJOsxEBERkdvVmjpvZjJmp0fgg+0lKKlvweqdpdh0qAYrpyRgVHSQs7tIREQ08oJSUuBcsqROOeUU/Oc//0FERETXfX5+fkhNTUVCQoKj+kkuLjXSgBsXZ6ppfHtKGtTgLbfSiJ/MSILeb9D19ImIiIicPrb55aJMlS316e4ylDe04vlv8jA5KVSdfAvT+zm7i0RERCOnptSCBQuwcOFC5OXl4ayzzlK3bW3u3LnHFJD6+uuvsWLFCvVYyah5//33j7h/aWkpVq1apTK1vL29cfPNNw/6NclxJPh00ewUrJgSD19vL+wpbcRTX+TgUFWTs7tGRERENGgyXW9WegR+depozBkVAUkA31lUjz+t2Y//bi9GnanN2V0kIiJya4NOYZGMqLq6OmzatAkVFRWwWCw97r/kkksG/FyyYt+UKVPUqn3nnnvuUfdvbW1FdHQ07rrrLjzxxBOD7ToNAwkunpgRhbRImc5XoKbzPf/NQSwZF4sFo6NZi4GIiIjc8sTbWVMTVYDqI5UN3oTvD9bgh0M1mJEajgWjYxBhYOYUERGRw4NSq1evxoUXXgij0YiQkJAeNYPk+mCCUsuWLVNtoNLS0vDnP/9ZXX/ppZcG2XMaTglhgSrlXWoxbCusw5o95ThQ0Yifz0xBqF7n7O4RERERDVp8aCCuOnkU8qqa8MXechWc2pRXi82HajE9JRwLx0QjMsjf2d0kIiLy3KDUr371K5XZ9OCDD0Kv18PVSXaVNPtVBIXZbFbNEWzP66jndxc+AM6eEou0iACs/rEMuRVGPPHZPpw9NQETEkLgyngM3R+PoXvj8XN/PIZ9c+TnwTHP8EkK9cOlc5KRX2PCuuxKHKiQ4FQ1Nh+qVjWnFo6OQpSTglMj9Zi4Oh4X18Nj4np4TDzrmAz0MV5WqV4+CAaDAT/++CNGjRo16E4dsSNeXnjvvfdw9tlnD2h/qW81depUPPnkk0fc75577ulzVcA333zTLYJqnqLRDHxf4YWaFi2zblSIFdMirfAdcFUzIiIi92cymVR9zPr6epVxPpQ45nGe6hZgd60XSk2dMwi8gBSDFePDrQjlrD4iIhqBTAMc8ww6KCW1n84//3ycd955Q9FPhwel+jprmJycjKqqqiEfDNpHBD/77DMsXboUOh2nqtl0WKz4cl8lvs6pgnzrooL8cN6MRDXVz9XwGLo/HkP3xuPn/ngM+ybjkKioKIcEpTjmcb7iumaVObW3zKhuS5WLCfEhWDA6CvGhAcPSBx4T18Tj4np4TFwPj4lnHZOBjnkGPX3vjDPOwG9+8xvs2bMHkyZNOqxjK1euhCvx9/dXrTfpt6O/6MPxGu5EPonlUxIxJiEUb28uRI2pHc9/l49Tx8fh5KyoHvXJXAWPofvjMXRvPH7uj8ewJ0d+FhzzOF9atA6XRYegpK4ZX+6rwO6SBuwpM6o2Pj4YC8fEIDlieLLWeExcE4+L6+ExcT08Jp5xTAa6/6CDUldffbW6vO+++w67T4IKHR0dg31KGmEyooNw0+IsvLu1WA3W/rerDAcqjPjZzCSEBPA/HyIiInJvkgV+0ZxUlDe0YO2+Cuwsrsee0kbVRscGYdGYGKRFGZzdTSIiIqcbdFDKYrEM2YvLCn45OTldt/Py8rB9+3ZEREQgJSUFd9xxB4qLi/Haa6917SP32x5bWVmpbvv5+WH8+PFD1i8anqWVL5ydgh8O1eLDnSXIqTDiqc8P4CczkjAu3rWLoBMRERENRGxIAM6flYLFja1Yl12B7YV12F9uVG1UlAGLxsYgI9rgktniRERELhmUstfS0oKAgGOfH79582YsWrSo6/att96qLi+99FK88sorKC0tRUFBQY/HTJs2rev6li1bVPHO1NRUHDp06Jj7Qc4hA7BZ6RFIi9LjrU2FKKlvwWsb8jE7PQKnTYhDoJ+s30dERETk3qKD/fGzmclYPC4WX+2vwJb8WhysasLBb/OQEqHHorHRGBMbzOAUERGNOIMOSsn0vAcffBDPPfccysvLsX//frUS3+9+9zukpaXhyiuvHPBzSbHyI9VZl8BUb4Osy05uICY4ANcuzMCnu8vxbU4VNubV4MfiepwyNkYFqHx9uEQfERERub8Igx/OmZaEU8bE4usDlfjhUA0Kakx4dX0+ooP8MCcjEjNSw+HvyxNzREQ0Mgz6r/0//OEPKlj06KOPqmlzNhMnTsQLL7ww1P2jEUICT2dMjseVJ6UjNsQfprYOfLizFH/+4gB2l9QzGElEREQeI1Svw4opCfjNaWMwPysKATpvVBrbsHpHKR76eB8+2lmKmqY2Z3eTiIjI9YJSUt/p73//Oy688EL4+HSfxZkyZQr27ds31P2jESYzJgg3npKFc6YlIsjfB1XGNrzxfQFe+CYPRbUmZ3ePiIiIaMgEB+iwbFI8bl82FiunJKhsqdZ2i8oc/+OabLy+4RByK408OUdERB5r0NP3pPB4ZmZmnwXQzWbzUPWLRjBvb63W1OSkUHy1vxLf5VSpugvPrs3FtJQwnDY+Tp1hJCIiIvIEMl1vbkYk5oyKUEXQ1+dWqUvbin1xIQE4MTMSU5PDoGNZAyIiGslBKVnl7ptvvlHFxe298847PYqQEx2vAJ2PKngudaXW7C7HtsI6bCuow67iepyUGYUFY6JZc4GIiIg8hhQ6HxMXrFpFYws25FZja34tyhpa8O7WYnyyqwwnpEWo4FWYvruMBhER0YgJSt19991qdTzJmJLsqHfffRfZ2dlqWt+HH37omF7SiCaDrvNOSFZnEP+3qxR5VSasza7E5vxaLB0fixkp4Sq7ioiIiMiTFoI5a2oiTh0fh835NSpAVWsyqyxyKZI+Pj4EJ2ZEIj3KwFX7iIho5ASlzjrrLKxevRr33XcfDAaDClJNnz5dbVu6dKljekkEIDlCj6tPHoXdJQ34dHeZqjclZw2/3l+JRWNjMDUpjMEpIiIi8iiBfj44OSsa8zKisK+sUU3ty61sUuMhaTK1T07cydQ+P19O7SMiIg8PSomTTz4Zn3322dD3hugo5EzgxMRQjI0Lxsa8GqzdV6GCU//eXKSuLxwTg2nJDE4RERGRZ5GxzfiEENXKG7SpfdsKtKl9722zTe0Lx4yUEGd3lYiIyHFBqcLCQhUYSEpKUrc3bdqEN998U9Wa+sUvfjHYpyM6Jr4+3piXGYWZaeHYeLBGZUtJcOqdLVpwatHYaExL5rQ+IiIi8jyxIQE4e1qiqr25Jb8WGw5WoabJjK8PVOGr/RVor/JCZnkjxiVwLERERK5t0Dm+q1atwtq1a9X1srIyLFmyRAWm7rzzTjWlj2g4SaHz+aOj8ZvTx2DZxDgE+fugukmCU8X402fZ2JJfgw4Ll1EmIiIiz5zad1JWFH61dAwumZuKzJggWK1ASZMXXvu+EI9+mo3P95SjtqnN2V0lIiIamqDUrl27MGvWLHX97bffxqRJk7B+/Xr84x//wCuvvDLYpyMa0uDUr0/rDk7JGUMJTj3+WTY2H2JwioiIiDyTZEONiw/BlSel48ZTMpAVaoXezwf1zWZ8sa8Cj63Jxovf5mFnUR3aOyzO7i4REdGxT98zm83w9/dX1z///HOsXLlSXR87dixKS0sH+3REDglOzR4VgU152rQ+CU79Z2sx1mZX4KTMaExLCUOAzsfZXSUiIiIacjHB/pgeZcXSU7NwoLJZrVacU2HsahKskrHQCWkRahogERGRWwWlJkyYgOeeew5nnHGGKnZ+//33q+0lJSWIjIx0RB+Jjik4JSvVzE6PVMEpqa8gwakPdpSolftmpIZjzqhIRAdrAVYiIiIiT6Lz8caU5DDVapraVO2pzfk1aGhux3c51aolRwRiRko4JieFqamARERELh+UeuSRR3DOOefgsccew6WXXoopU6ao7R988EHXtD4iVyFLI0uthVnpEWog9n1uNSqNbVifW63a6NggtYzymNhgVcCfiIiIyNNEGPywdHwsFo+NwYEKI344VIO9pQ0orGlW7cOdpRgbH4zpKeEYHRsMHxZHJyIiVw1KLVy4EFVVVWhoaEB4eHjXdll5T6/XD3X/iIYsOHViRhTmjopUqesbDlZjX1kj9pcbVYs0+KnMKcmg4plCIiIi8tTaU2PiglVrbDFje2EdthXUobS+BbuKG1Qz+Pmo7CqZ4pcYFsiTdkRE5FpBqebmZlit1q6AVH5+Pt577z2MGzcOp512miP6SDRkZGCVFRusWrWxFd8frFHp7LJi30c/luKzPWWYlhKOmSkhzu4qERERkcMEB+hUqQNppfXN2Jpfhx1FdWhsae/KKFf1qVLDMTU5DKGBOmd3mYiIPNCgg1JnnXUWzj33XFxzzTWoq6vD7NmzodPpVPbU448/jmuvvdYxPSUaYpFB/jhjcjyWjI/BjsJ6rM+tQnlDKzbm1WBDbhXMVV44obEVCREchBEREfVH31oBNNcBumhnd4WOUXxoIM6YHKhWMJbpfVsLarGnpAEVja34ZFeZqseZFqnHhIRQTEgIQZjez9ldJiIiD+E92Ads3boVJ598srr+zjvvIDY2VmVLvfbaa3jqqacc0UcihxdFl5pTNy3OwtUnp6vBlmSql5m88My6XHyyqxQt5g5nd5OIiMj1NNchvfJzeH/3OFCV4+ze0BBN77tgVgr+3/JxOHd6ItKj9LBagbwqk6o99cgn2Xh2bY5a1biysdXZXSYiopGWKWUymRAcHKyur1mzRmVNeXt7Y86cOSo4ReTOU/tGRQepVlYbicfeykeHBfhqfxW2FdZh+cR4TE4KZW0FIiIiG2sHzL56oM0IfP8sMG4lMGqh/FJ1ds/oOEmNzRPSIlSrbWrDntIG7C6px6FqE4pqm1Vbs7tcTfGTE3oTE0MRHxrAcRIRETk2KJWZmYn3339frcD36aef4pZbblHbKyoqEBLCOjzkOVP75sdbMWp6Mj7ZU4GaJjP+9UMhNuXVYOXUBMSGBDi7i0RERM6nj8SBmDORldAIlG0D9rwP1OUDUy4AfP2d3TsaIuEGP8zLjFJNCqTvLW1UAarcSqOa4leRXYm12ZUI1+swPiEE4+NDkBZpUJlXREREQxqUuvvuu7Fq1SoVjDrllFMwd+7crqypadOmDfbpiFza2LhgjE0Iw9f7K/HV/kocrGrCU18cUCv5LR4XgwAdV+ojIqKRzertC+uUVUDUKGD3e0DJNqCxDJh5JRDEOlOeWCBdyh5Ia27rwL4yyaBqwP7yRtSazPgup1o1vZ+PGkeNiw9BVmyQKpdARER03EGpn/70pzjppJNQWlqKKVOmdG1fvHixyp4i8jQ6H28sHheL6Snh+PDHUlX489ucKrVCzekT4zAtOYyp6kRENLLJ78H0+UBIIrDlZaCxFDi4Fph8nrN7Rg6e4ierFktra7eowNTe0gbsK2uEqa0DWwvqVNP5eCEzJkhlUI2ND0GQ/6D/BCEiIg816ELnIi4uTmVFlZSUoKioSG2bNWsWxo4dO6jn+frrr7FixQokJCSoP+plWuDRrFu3DtOnT4e/v7+aSvjKK68cy1sgOqbU9YvnpOLyeWmICvJTSyb/e3MR/vb1QZTUNTu7e0RERM4XmQHM/w2QMhcYf7aze0PDyM/XW9WV+tnMZNy5fJxaPOakzChEGHQwd1jVlL//bC3Ggx/vxd++ylUZ6OUNLbBKFXUiIhqxBh2UslgsuO+++xAaGorU1FTVwsLCcP/996v7BqOpqUllWz377LMD2j8vLw9nnHEGFi1ahO3bt+Pmm2/GVVddpWpbEQ2X0bHBaqW+UyfEws/HC/nVJjz9ZQ5e+OYgthfWwSzV0YmIiEaqgFBgyvmAr592W4IOBz4D2kzO7hkNE6klJQvHnDE5Hr8+dYwaNy0dH4Ok8ED1dZBi6Z/sKsOTnx/AY59m47/bi5Fd1sgxFBHRCDTo3Nk777wTL774Ih5++GHMmzdPbfv2229xzz33oKWlBX/4wx8G/FzLli1TbaCee+45pKen409/+pO6PW7cOPXaTzzxBE477bTBvhWiY+br441FY2IwPTkcH+8qxY/FUuyzSbVAnaSyh6nVauJCWRCdiIhGuJzPgX0fAgUbgMnnA9Gjnd0jGkYyG0LGQ9JOGRuLepNZreSXXdagxk1Sh+r7gzWqyTS/UVEGjIkLUfWoJEudiIg826CDUq+++ipeeOEFrFy5smvb5MmTkZiYiOuuu25QQanB2rBhA5YsWdJjmwSjJGOqP62trarZNDQ0qEuz2ayaI9ie11HPT4430GOo1wE/nRaPJWOisLWwDlvya1HfbMa3BypVSw4PxIzUMExKDIW/7zHNlqVjxJ9D98bj5/54DPvmyM/DZcc8EVnw9g8HjJXA+qdhjZ8K69iVQGCYQ/o00rn6z56MnWamhKgmdahkEZnscqOqR1Xf3K5qUkkTMcF+yIoJQmZ0EFIj9WqKoLty9eMyEvGYuB4eE886JgN9jJd1kBO5AwICsHPnTowe3fMsV3Z2NqZOnYrm5uZjPovy3nvv4eyz+68/IK95+eWX44477uja9vHHH6spfSaTCYGBgYc9RjK47r333sO2v/nmm9Dr9cfUV6L+WKxAeTNwsNELxU1eKkVdyBgqJciKUcFWRPhr9WCJiGjkkfGKrGJcX1+PkJCQIX1uVx7z+FhaEVe/DZGNeyG/Ai3evigLmYKq4AmwenFVNtJmeTaYgRKTF0pNQFVL9zhKeHsBUQFWxAYCcXorwvy0bURE5N5jnkFnSkkNqGeeeQZPPfVUj+2yzX41PlchAaxbb721x1nD5ORknHrqqUM+GLSPCH722WdYunQpdDqdQ16DHGsojqEUQt9eJNlTdagytkHixNkAYvX+OCE1HFOSQtWqNeQY/Dl0bzx+7o/HsG+27KWROeY5B2gohvfu/wC1h5CKClgTU2GdcoFD+jZSecrPXnNbBw5UGJFTaVTT/CSLStR1Nr23D9Kj9CqLKiPagAgXn+rnKcfFk/CYuB4eE886JgMd8ww6KPXoo4+qzKTPP/8cc+fO7ZpWV1hYqLKWHElW/SsvL++xTW7LQKuvLCkhq/RJ600+UEd/0YfjNQguewwjdDqcMi4Qi8bGqYKePxyqwa7ielQazfh4dwU+21eJyUlhmJUWgeSIQJUtSEOPP4fujcfP/fEY9uTIz8ItxjyRacDJtwJFPwB7VwNZi+XBDu3bSOXuP3vS9xnpAZiRHqVW6JMTfDkSpKpoVEGqlnYL9pY1qSZkZeQJCSFqBcDEMNcdV7n7cfFEPCauh8fEM47JQPcfdFBqwYIF2L9/v1oxb9++fWrbueeeq+pJJSQkwJEkCNY78CVRO1twjMgVyaAoPcqg2orJCdhWWItNeTUob2hVNaikxYcGqMLoUiA9QMfsKSIi8mASLEieBSRMB3zshqLZ/wN8dED6wp7bacSTsVR0sL9qczMiYbFYUVTbjAMqQGVUKyFL0Oqr/VWqRRh0mJgQqgJUsuKfqwaoiIhokEEpSd06/fTT1Sp4Q1HQ3Gg0Iicnp+t2Xl4etm/fjoiICKSkpKg09OLiYrz22mvq/muuuUZNE7zttttwxRVX4Msvv8Tbb7+Njz766Lj7QjQcZLreiRlRmDsqEgU1JhWckpX7Sutb8MGOEnyyq1TLnkqP4CCKiIg8m33gSYqgH1gDWC1A4SZg3EogdgKLMFKfvL29kBKpV23xuFi0mDtUoXQZU2WXNaKmyYyvD1SpFqbXAlSy6Awz04mI3DwoJelXUuR8qGzevBmLFi3qum2rg3DppZfilVdeQWlpKQoKCrruT09PVwGoW265BX/+85+RlJSkVgKUFfiI3IkMiFIjDaqdKdlTBbXYmFeDisZWbM6vVS0hNEAFpyRIxdpTRETk0QxRgNSW2vNfwFgO/PA8EJ4OjFsBRGY4u3fk4iTLXMZL0lrbO3Cg3NgVoKozmfFtTpVqoYE6TEwMwdi4YKRFGuDr476r+REReYpB50ZfdNFFePHFF/Hwww8f94svXLhQzRHvjwSm+nrMtm3bjvu1iVwqeyozSqWjS/r5pkM1+LGoHiX1LXh/e4nKoJKpf+MTQjAuLgThLl7Ik4iI6Jin9MVOBHK/AA5+BdTmAeufAqLHAZPPA/QRzu4luQF/Xx81bU9aW7tFZVBJTc99ZY2obzbju5xq1fx9vVWB9DFxIRgTG4xQPevXEBG5RVCqvb0dL730kip0PmPGDBgMhh73P/7440PZP6IRlT2VFmVQ7czJ8dhWUKeKo0vtKSnoKW31jlJVf2pcfAjGxQe7dCFPIiKiQfPTa9lRaScDBz4DCtZrwSkfnpChwfPz9e4KUJk7LCqDak9pgwpUySrJe0obVRMyvhodG4wxccFIjdCrKYJEROSCQaldu3Zh+vTp6roUPLfHP46JhobezxfzMqNUqzK2Yl9pI/aWNiCvuknVn5L25b4KhAT6YrwKUIVgVBTT0ImIyEMEhgGTfwZkLAIaSgD/IG27ZNgfXAckTNP2IRognY+3yjqXJjM1JCN9f1mjyqAqrDV1ja++2l+JQJ0PsmKDkBUjjVlUREQuFZRau3atY3pCRH2KCvLHSVnSomBqa1eDJwlQydm+huZ2fH+wRjVJQ5caCTNSw5ERHcQzfERE5Bm1pqTZVO0H9rwP7PsISD8ZSJ4DBMWwIDoNipxIl2xzaYvGxqCptV1lT2nNCFNbB3YW1asmZNW/TBWgClIlFbhSMhGRE4JSHR0d2L17N7KyshAYGNjjvubmZhw4cAATJ06EtzczNYgcmUE1PSVcNUlDP1jZpAJU0hpa2rGjqF41WWlmhuyXGo4I1qAiIiJPoQvUCqDLlL7cL7UWEAZEjwWiRwMxEwBdgLN7SW7G4O+LaSnhqlksVhTVNiO7vBE5FUaVRVXZ2KrahtxqyDm/1Ei9yqCSQJUEtngikIhoGIJSr7/+Op555hls3Lixz1X5rrjiCtx8882qEDoRDU8autQ9kHbW1AQ1gNpWWIftBXVqpZkv9lWoJkU8JXtK6inIY4iIiNxWWAow7yagYo9WDL0mF2ipAwq/19rCOwBdnLZvSwOg0wM+g54YQCOYBJhSIvWqLR0fi+a2DuRWGlWA6kBFI2qazMirMqm2Zk+5muqXHm1QZRRGRRsQFxLAkiZERIMw4N/SsuLer3/9a/j4HJ6u6uvri9tuu00FrRiUIhp+MvhJjtCrtmxinMqc2nyoFjmVxq4i6bKK35SkMBWgSgpngXQiInJT8vsrdoLW2tuAmoNA5T6t9lRQbPd+u98Dyn4EIjO1feMmsQ4VHdMqybZi6aLa2NoZoJIxlhHN5g7sKWlQTe3PIBURkWOCUtnZ2ZgzZ06/959wwgnYu3fv4F6diIacZENNTgpTrbapDVsLarElvxa1JjM25tWoFhvij5mpEarYJ6f3ERGR2/L1A2LGaq23xjLAYgYq92pt1ztAeBoQN1lrQdHO6DG5ucggf9Vmj4pUU/2K65pxsKoJeZVGHKo2HRak0vv5qJWVU8L80Wh2du+JiNw4KNXU1ISGBu0/1740NjbCZDINVb+IaAiEG/yweFwsThkbo7KltubXYldJPcobWvHRj6WqSYBKVu+TVfyYQUVERB5jwW1AYylQsRco2wnUHupuxVu0+4mOc6qfLVN9wejoPoNUUjRdAlS7iiwoLPBG+Zc5mJgUjgkJIaoeFcddRDTSDTgoJQXO169fj8mTJ/d5/7fffqv2ISLXIwMeKcYpbUVbAnYU1eHHonocqm5SAaryhkqsy65EcIAvxsQGqyCV7OvnyxpURETkpuSP/ZAErWUuBprrgPJdQOlOIMpuzNreCnz7hFYsPWEqEJbK1fxoSIJUHRYrSjqDVNml9SgqBCoa29SYS1pooA7j4oMxISFUrernw4LpRDQCDTgotWrVKtx111048cQTDwtM7dixA3fffbeqK0VErl8bYc6oSNVMbe3ILmvEvrJGddnY0o7N+bWq6Xy0QNbYuBCMjQ9GSIDO2V0nIiI6dlJPKu0krdmTTCrJqJJ2cC2gjwISZwCJ04HgzqLpRMfAxy5IdWJ6GMKrdyN9WiL2V5iwv7wR9c1mfH+wRjWpRTU2LliVVsiKDYK/7+F1fImIRnRQ6pZbbsH//vc/zJgxA0uWLMHYsdrc/X379uHzzz/HvHnz1D5E5D70ft1LILd3WFTm1J7SRuwrbVA1qPaWNqqGbUByRCAmJoSqdHOppUBEROQRYsYBMy4HSndomVSmKuDAp1oLSQIm/RSISHd2L8kD+PkAU5JCMTM9CuYOiyqUvru4AfvKGmBs7VCrKEuTxZLTIg3aKsuxwYgO9uc0PyLyWAMOSul0OqxZswZPPPEE3nzzTXz99dewWq0YPXo0/vCHP+Dmm29W+xCRe/L18UZmTLBqKybHq2l9sorf3rIGFNY0d7X/7SpDfGiACk7JSjQxHCgREZE78/XXpu1Jk6l8Epgq3gpU7AEaigD/kO59jZWAnx7wMzizx+QhC9OobPS4EFWLqqDGhD2lWoH06qa2rtWTP/6xDOF6nQpQjY4NViv6MYuKiEZkUEpI0Emm6HGaHpFnkyBTXGiAaovGxqChxawGSbtLGnCw0ojS+hbVPt9bgaggPxWgknoILJRORERuH6BSU/dmAG1NQNUBwBDZff+e97XpfpEZQIS0UUB4qvY4ouOoRSUr9ElbNjEOVcY2Nb1PSivkVTWp7HXbND/fzn0lg2p0bBCzqIhoZAWliGhkknpS9nWoJINKAlQHyo1q4PTV/irVpGCn1EKQlfzSIvUq+4qIiMgtSTaUZE/ZWCxAawNg7QCq9mtNeHkDIYnaNMCxZzitu+QZJMAkgSZp8zKj0NregYOVTV1BKglQ5VQYVfvoRyAk0BeZ0dpiNhkxQawBSkRuh0EpIhp0HaoZqRGqtZg71CBJAlQyUJKCnRtyq1Xz9/VGRrRBpZpLCzf4ObvrREREx87bGzj5V0BjOVCdA9Qc1FpzDVBfCOj0Pfff818tWBU/BfBhoICOjUzVk1WRpUnplEpjK/aXGZFd3ohDVU1oaG7H1oI61URsiH/Xisuyoh+n+hGRq2NQioiOWYDOB5OTwlSTgp1y1k4CVBKokpX8pGi6NCFn/CTVfExckCreySwqIiJyS8GxWkubp91urtWCU76B3fu0NgK5X2rXd/1Hmw6YOg8IiXdOn8ljsqhiggNUOylLK5aeX92kxl9Sf6q4rlnVBJX2XU41vL2A1Eg9RkUFqSl/KRF6+Ply/EVEroVBKSIasoKd9mfySupbsL+sUQWopHhnZWOrat/mVMHPx0ulmGfFBKvlj5lFRUREbiswXAs62bNagcylQPEWLZPq0DdaC08DUk4EEqYBvvzdR8c/9rItUiOaWtvVVL+cykYVqKppMiOvyqSakCBVUrhelVhQNawiDQiUJQGJiNwpKLV27VosWrTIMb3xIEEtJUD1ASAsCfAPllMbzu4S0bCeyUsMC1RNCqU3t3WowZGkmh8ob0RDi9SlalTtgx1Qq/lJMEvqUSWEBrBgJxERubeAEGDcmVqNqcp9QP56bVW/2kNaEymznd1L8jAGf19MSgpVTdQ0talx16HqJhWYkjILcqJQ2tcHqtSfJ7HBAUiL0qupftKCWZOKiFw9KHX66acjKSkJl19+OS699FIkJyc7pmduLr5uC7w37tHqD+gMWpp3UFxnync8ED3G2V0kGjZyFs42SJIsqrKGFlWDSrKo8qtNXav5fbmvwq5YejDSo4LgI6f1iIiI3JH81S8F0KW1NACFm4CSbT0LqMvtViMQmQkEx/FEJg2ZCIMfZo+KVE3GX3UmM/Kqm1QtKmmVxjY1JpMmK/uJ5IhAtWCNNK7sR0QuGZQqLi7G66+/jldffRX33nsvTjnlFFx55ZU4++yz4efHNGSbVl0IoA8DWmoAc1N3MUyhjwQW39298/41gNmkFcjUBdpdBgJ+QUBQdP8vJOnhlnago0277h/UfV9tvuwA+Ido2VosskkuQAY38aGBqi0cE6NW89tX1og9ajW/nsXSA3U+qgbV+PhQZMUGqRpWREREbps9lbVEazYydsv+BDCWabelLpVM8YtIB8KlpQK+/k7rMnnW+EvKJUibnhKutjW2mNXJQZVJVdmkSi8U1jSr9unuckQH+XVlsieH6+HNE4VE5ApBqaioKNxyyy2qbd26FS+//DKuu+461VatWqUCVFOmTMFIVxC5ABMXLoeq5Wys0AYbjZ0tQEup7RqMHFynBa76Iqu2LLit+/Z3fwaaKoGOdsBi1gJSXfsmAQt+031766uAqbr7tm+AFpySQJeciZtyfvd91bndyxqr5tV93VvXMzAmZ/qsFrtOWu2uewGBYd03m+sAS0d3kI1nW6iP1fxkcCTNVixdAlT7yhpgbO3A9sJ61Xy9vTAq2oAxccGqFlVUkB/P3hERkXuT8VTyLKBiL1CXD7Q3A5V7tdbXiUwpoC5jOaIhIFP1JiaGqiYaWszYW9KAvaUNqnC6ZFJVHqhSU/2C/LtXAZSV/aSeFRGR0wudT58+HXFxcYiMjMTDDz+Ml156CX/5y18wd+5cPPfcc5gwYcKAnufZZ5/FY489hrKyMhXQevrppzFr1qw+9zWbzXjooYdUppZkbY0ZMwaPPPKImlbokiQ7KTRRa32RoFTGIqCtCTA3axlT7S1Am0m7LsUz7UmAq83Yz3N19LwdFKsFhGR/CV7J80qToFZ7a899d77dfZauN30UsPh33bc3Pgc0FPe9rwTclt7XfXvLy921E3z8tfslaBUQpl2OWd4dqJI++fgxcDWC2RdLt1isKKw1qQDVntIGVBnbsL/cqBpQinC9DqNjg1UGVUY0s6iIiMgNefsAmYu1JmM2GV/JuKkmD6jNA8JSe44Z1z6onWSUqX5RWdqlPsKZ74A8SEiArmu6X4u5Q5VZkACVZLTLicIfDtWqJgvWSKF0CU5JiwthPVAiGuaglASG/vvf/6og1GeffYaZM2fimWeewQUXXIDKykrcdddd+NnPfoY9e/Yc9bneeust3HrrrSqINXv2bDz55JM47bTTkJ2djZiYmMP2l+d+44038Pzzz2Ps2LH49NNPcc4552D9+vWYNm0a3I7UnMpaOvD951zXHezy9u281GnBHHkue7P/r3sQIwEvCU7JGbbWBsCr1x/wEvySoJacsZP91WVn89P33NeWRdW9oTuQ1Pt5pW/SJKuroxVoqtCakDN9UgDUZtPz2gDMz6A9jwzUbNlasu3EG7r33fWulnWmgn5J2qAtLKXn9EVya5IinhppUO30iXFq5b69ZVqhdEkzrzWZsTGvRjXbksdZEqSKCVIF1omIiNyKjHtkLCMtfb62rcPcfb+pRju5KCctizZpTQRGaAEqWdFPalcRDQE52Tc5KUy19g6LGnvt7jxR2NDcbneiECqLSk4Q2oJUYXqWdCEiBwalbrjhBvzzn/9UxfIuvvhiPProo5g4cWLX/QaDAX/84x+RkJAwoOd7/PHHcfXVV6vC6UKCUx999JEKeN1+++2H7S/1rO68804sX75c3b722mvx+eef409/+pMKVnm8/jKujkQCRhJYkhZ0eKBPmXPNwJ9vvt0UwaM58Xrtsr0NaKnXWnMt0FKnBbPsyTbJ6JJ9euudql5f2F2jS1azsZE0d6nBMO0iZlx5EDn7FhMSoNqC0dFobe9QSx4fqDCqIJVkUdmWPF6zu1wNjtIj9ahs1JZHDtOxnhoREbkh+3qghkjg9Ie1LKrqHG2V57oCoLkGKNyo1RDtDEp5W9rgVbwZiB17eNY90SD5+ngjMyZYtZVTElDe0KrKLeRUNCKvqkllUe0oqldNSC2qjM4AFbPZiWjIg1KS/STT684991z4+/v3W3dq7dq1R32utrY2bNmyBXfccUfXNm9vbyxZsgQbNmzo8zGtra0ICAjosS0wMBDffvvtYN8KDSdfP60u1ZGKti+4XQtISX0tla3V0VnIvaNXZhaA0adrWV9ytlAGZNKM5VoNrd5TAHf8S8sqC03WioyqzLLO7DKpc2VfA4vcgr9vd10D25LHkmIuASqpgWAbHBVWeKP00/1IjQxSBdNlup9kUTHFnIiI3JIUPY8ZqzVb6QM5SSdBqrjuk8RBrWXw2vG1lkVviAYis4CoTG26n31tU6JBkjFUXGiAaidlRaksqsLa5s4glVGVXlC1qIw1akU/yWZPizRgdFwwxsQGIzaEK/oR0XEEpWTaXmpqKubMmdNvQEo9qa8vFixYcNTnq6qqQkdHB2JjY3tsl9v79u3r8zEytU+yq+bPn4+MjAx88cUXePfdd9Xz9BfEkmbT0NDQ9V6kOYLteR31/B7NL0RrfbH/PMNGdV9Pmtt5vwmoL9JS3W37WjrgXbBJmz7Yl4gMWOb8suum9xe/17K6vHwwprQM1u/z0R4UBQSEwyrF4WO7B3zkOoL9vDAjOUS1js5aVHtL6vFJeT46JOW8yqjap7vKVBbV6NggNTDKiDbw7J2L4v+j7o/HsG+O/Dw45hmJvIHwTK2JzmNthRc6ghOBxhKgsVxrhzpP4BpiYJn0MzUGouHjyT8rSaF+SAqNwMKsCFWLSjLXcyuNOFDRhOqmNpVRJe1jmfQR6KtKLUjLjDbA34njME8+Ju6Kx8SzjslAH+NllXl4gxAaGort27cjPT0dx6ukpASJiYmqHpQUR7e57bbb8NVXX2Hjxo2HPUZqVsl0v9WrV6souwSmJLNKpvs1Nzcftv8999yDe++997Dtb775JvT6XrWSyON4WTsQ0lwAfWsl9OZq+Eg6u7UD3tZ2eFs70OQfi0NRp3TtP6nodXjbr2hop8k/Bjmx3TWwMsrlV6sX2nyDYPbRo8NbB4uXDhZvHdp8DGgKiO/a17e9CVZvX3R46Q7P+iKHMrUDpSZpXihv9kK73cKRcqIuKsCKeD0QH2hFKOvsE5GDmUwmtVpxfX09QkL6OQlzjDjmod5kGp9kTQW1lCGotRQBbTWqeMK++HPRqtMypsKbchHcUqzGOU1+0WjRhXOsQkOm0QyUmbzUWKyi2Qsd1r7HYZH+VoT7Azp+9YhG3Jhn0EGpSy+9FFOnTsUtt9xy3J2U6XsySHrnnXdw9tln93iNuro6VUy9Py0tLaiurla1q6T21Icffojdu3cP6KxhcnKyytIa6sGgfURQCsAvXboUOtaycS8tDUBHG9pbTVi/7lPMmzYevuYGrQ6WIRrWzM6i9FYLvD+5TSsE35fILFhmX9t10/uzO7Vi8+qGTku/9w1Ul9bQJFgnnde1r1fO5/IC2mqFugBYg+K0Yu4cIB73z6GkmOfXNKupflKcU9LL7Rn8fJAeZcCoaD1GRRkQafBjirmT8P9R98dj2DcZh0iZA0cEpTjmoaMeE1ntWVb3ixnfdRbGa9tr8Crd3r2PjD9kbBKWBmt4KhA9ViuDQMeFPyuAWWWvm7C/QiuSLllUvcnYKyEsAAmhAYjvbAZ/x3z/eExcD4+JZx2TgY55Bv0TnpWVhfvuuw/fffcdZsyYoQqb27vxxhsH/Fx+fn7qOWQKni0oZbFY1O3rr+8skN0PqSslWVbyIf3nP//Beed1/1FvT6YZ9jXVUD5QR3/Rh+M1aIjpIrVLsxnGgET4pM+Db1/H0GIB5t2oBatU4fZ6FcxSq+JIfYeQRPj0flzX6ogdQLtJa8LfIF+W7v3yv9HqavXol5xCytCmD6bMGdK37Onsfw7lYmyCP8YmhHXVotpX1oD9ZVqhzuZ2K/aUGVUTIYG+qkCnTPOTS64mM/z4/6j74zHsyZGfBcc8dNRjogsDDFN7bhu1AAiJ14JVdfnaWKYuT2v53sDpjwC+nc9TuV9bJVBOlskJNhq0kfyzIm97fJI/xidpxferja3I7qwHWlLXjDqTGbXN7ahtNmJ3qTYWE6GBOiRKoCosUI3HUiL0apXmoevXyD0mrorHxDOOyUD3H3RQ6sUXX0RYWJgqUC7NnmQUDCYoJW699VaVGTVz5kzMmjULTz75JJqamrpW47vkkktU8Omhhx5St2VKX3FxscrWkktJVZdAlkz5Ixo2EmCSINFALX8U6GgHOlq1oJUKXnUGsKTgur3UuUCbBK2atUsp4i71ssp+1Iq+2welircCEelcWecYRRj8cGJGlGqSRVVc16xqIORWNKGgxqSWPN5WUKea7exdRowWoMqKCUagH+tRERGRm5MC6NJsJ91k4RgJUEmTcYssVmOz9wNtBWSZBCi1NsNSultwAuDDjCoauMggf5woLSNK3ZYVk0vrm1Fc16KCVNJkheX6ZrNqe0ob8fneCgTqfNQCNmPiQlSdUL0fv3dE7mzQP8F5eXlD2oGf//znqk7U3XffjbKyMhVs+uSTT7qKnxcUFKgV+eyn7d111104ePAggoKCsHz5crz++usqUEbk0mSgJs2vZ3bhYcat6HlbBogyAKzar62gY2OqAba+ql2X7VGjtVV1wtO0IBWnnQ16uePUSINqp4zVUszzq7VCnQcrm1BUa1Jp5tV5bdiUV6tWk5GpfuPjQzA2PkQFuIiIiNyajLkla0qanCSzJxU/DFFAa4OWId5YqrXCjd1jkVPuckq3yTPINL3MmGDVbKRwemm9FqSSE4YHyo1oNndge2G9ajLclcypMXHBGBcXwtX9iNyQS4SVZapef9P11q1b1+O2rOq3Z8+eYeoZkYsMEKWmg7TedSHCUrVMqqZKreV/p93nHwKMPRNIme2ULnsCnY83MmVlmJigrkHRoeomlUUlNakqGltVurm01TtLERcSgHHxwRgXH4Kk8EAOiIiIyLPI77UZl2nXJSgl4w/VCrXLkISeAaz1T2vT/OKnABGjeLKMjomskiwnAaXNU+dqrSo4JeUX9pU1oryhVZ1ElLZmd7ma6jc2TgJbQUiN1CM4gFPAiDwyKFVUVIQPPvhAZTFJsXJ7jz/++FD1jYiOJCwZOPlWbYpfTS5Qma2l2jcUa2cxfex+CVfnArvf07KobE0fyQHiIAdFY+NCVDsD8agytmJfaSP2ljaoYFVZQ4tqa7MrERzgqwJUsq8MiiTARURE5DECQoG4SVqzBaGkJIGNZHjL2ERa3leAfzAQN0ULUElWt90sCKLBkFpSaVEG1U6fGI/apjZVlyq7TGpTGdU0v415NaqJqCA/lQWfHqVXl1zEhsgDglJShHzlypUYNWoU9u3bh4kTJ+LQoUOQRfymT5/umF4SUf/89D0Hhu1t2mBQaj3Y1BzUtkk79I22zTcA0AVqq+xMu1CrByEkuFWyTat1pVYJ9Nf2CQzTpgUaYnrWlxihooL8cVKWtCiY2trVYEjO2MllY0u7muInTefjpTKnJLU8JcKAlEg9ghy0igwREZFTyB/5uoDu28HxwMwrgdIdQPluoLURyP9WazoDMPFcIGmmM3tMHiLc4Ic5oyJVk9ILUnJBsqgkc0pOFkpNKmlb8mvV/nLiUDKo0iINSAz1g2VQ69ATkSMM+i+jO+64A7/+9a9x7733Ijg4WK18FxMTgwsvvBCnn366QzpJRIMgAaPeRdiTZ2mZUbaVdeqLuout9yaBq4IN/T//rP8DYsdr16tygLIdQGAEoI/ovpTVAkfQWSgpsDktJVw1KZgumVN7OrOoZCWZvCqTakCV2j/CoFNBqmQVqNIjPjQQPkO4igwREZFTSbZ2/GStyUIvUhezbKe2aEubUcu0sqkvBhpKtLHF0epuEh2BZKZLbSlpormtQ031k3HZoSqpD9qsThzuKm5QTRbLKi3yRv3GAoyOD1WL2EhmFTOpiFw8KLV3717885//1B7s64vm5mZVcPy+++7DWWedhWuvvdYR/SSi4yGDv8TpWhMyQDRVd64G2KZlP9lEZABjzuheKbCjDTA3A821WpOgk30GVt7Xh7+el7eWiTX7mu5aWKU7gaIfOrOz/DoztaQZtICZTEeU+zygYLqtSOeKyfGobGxVAyJbk1pUNU1m1DRpBTqFfTaVTPdLjwpikIqIiDyDLPIiASdpk87Txg5SY8qm8HttLCFjBxmD2LK/7ccbRMdAVkm2D1JJJpUUTM+ralKZVHmVjWi3AHvLjMiukJOHpaomlYzFMqIN6pI1qYhcMChlMBi66kjFx8cjNzcXEyZMULerqrQsACJygwFisLbC5WEi0rU2ELJfxmKguUYLcsmKgHIG1GoBzCbA2+6/mMYy7Sxpf+b8EogerV2v2AuUbNeCVapJBlakVpPCjc5eyZm2mJAA1WamRXQVTC+0C1IV1jSrVWRs2VRf7a9SSx1Lkc7xCSHIig2Cv6+Ps98KERHR8ZNaUlGZPbfJqn3BCUBjCVB9QGu73wVCkoC4iUDmku46mTIN0FunlRZwo/EAuU4mlW2lZdHa2oY3/3sQKeNjkFfdrAJVUpNKpvrZpvvJan5akEornC7Z8UQ0tAb9UzVnzhx8++23GDduHJYvX45f/epX+PHHH/Huu++q+4hoBInK0pq9DrO2MqBkWdmf5YwZp2VCyXbb1EHJwpIBpgS0ZJlpGzmLKmdOe5Mgl0wNlAys0ERtm9SqkKYyr/Taa0gGlpcfAtokG6wN0OlcqmB6VmywakLq8dmyqQ5Vm5Bd1gBjawe2FdapJllUMhiakKAVWZflkomIiDxG+nytNVV3T/GTcUBDkXaia7RdeZD1zwDGMjnt01330jdQu5Tal9MvYxF1GlTR9Ah/YH5WFBaP16lMqvzqJuRUGFUrqW9Rq/tJ+y6nuitIJfWobHWppKYVER2fQf91I6vrGY1GdV3qSsn1t956C1lZWVx5j4i0s5kyMOxNpudJGwgJYEkASmVfdbbmOsDSfvjKgrX5QP53hz2Ft8WCMWVS3H0eEDBG2yjZV8WbgYAwwD9Em9YY0HkpQS3ZJllkQqYs9qi5ZXdG1jb10AHZVLaljneXNGBPab2a6rdX1adqhJdXMdIjDSqDanx8CAdCRETkOQyRQMYirbUatRNOknltnxElJ5oUq11tTG0qvBoj2Aek9n2k1aiKzAJCEphZRQPKpLKVYBBNre2qcHpOZSPyKptQaWzrClLZVveT6X5pEqCSFQEjDSpoxZpURA4OSsmqe/ZT+Z577rnBPgUR0ZFJrQn7ehO2OlgSkJJpgVJQ3SZqtFaHQrbL4FQuzS1ASyPMPpW9iqkWaWdg+zP/tu4MLKlvkf1xPzt6ATMv15a2duBSx8snxamVY/ZIgKqkQZ2xO1jVpNqHO0vVwGdUdBBGde7PVf2IiMgj+AcBKbMP3774bi34pE4cSeZ156Xclmwp+6zt3C+1fYXUr5RFYCIztcuguO6TUET9kOz0SUmhqglja7sqmC7T/KR4utSnkul+O4rqVRNSgiE92qDGZqOiDYgLCWCQiugojvl/Y6krVVFRoVYtsJeS0rmsPBHRUJLBo5oO2KvwqdSm6F2fQk6Yms3Y0/gx0qQWlY0EkSSLq6UeaGnQLiXQJVlYcvbVftAggS5bTSyrbb3gzks5cxvWWcDdloHVWKoVZg1JHLKzsTKIkZX5pC0eF4vapjbsKdUCVHnVTV1n6zbkainlMcH+SI8yqCZBKjl7R0RE5DHk96tkS9tnTPfF0gGMWaatEixTAc1NnVMDO2tbJkwHZlzaua8FqNijZVMFhjOjivolJ/8mJoaqJlrbpU6o1KJqUsXTpWao1Am1nUwUBj9bkEornh4dzEwqouMOSu3fvx9XXnkl1q9f32O71EWRH7COjo7BPiUR0fAYzBTCrKVa64sEs+wzsPLXA1XZwP5PtAGtWjlosraK0BDWtpDpevMyo1STlPK8zqwpSSmXjCpZ2U+aLaVcljWWVHIZDMm0P073IyKiEUGm2EuBdGkSoKorAKpzgeocoPaQFoCykRIBPzyvXZf6VMFx2v3B8Vq9S7nsqywBjXiyEI3U/ZQmOixWlT2VW2lU0/4kWNXU1oFdxQ2qiSB/H5XlLuMzWXk5LjRATRskGskGHZS6/PLL4evriw8//FCtvsdILxGNOPYBKZE8W5s2IKsGNtdqU/+kyXQBCVBNOX/Iz7waep2tM7VpQSrVKptQ2tCCKmObaps7V5CRzKn0KL1adYZ1D4iIaETw9uleWThriZb9LIEqG5n2L6v/SQF1mQ5Ym6c1m9HLgDGdxdZlleF9H3avDizlBNRlmPY6NKL5eHshOUKv2sIxQHuHBcV1zSpAJYEqqRkqi9nsLKpXTXh7SfH0ACSGBSIxPFBdMlBFI82gg1Lbt2/Hli1bMHbsWMf0iIjI3STN0Fp7m5YxJXWrpECrrBokQSr7wE/5HiA8DfDTD2kXZIniCQmhqonmtg7k12gBKsmmstU92F5Yr5qt7kFqV3FOvRoI+XIQREREHj8F0O5PoPBUYOFvtdqVTRVAQynQWAI0lmlBqKCY7n2N5UDxlr6eVDthNWZ5dy0sWYlYMrQkg1oa+Pt1pJExlZwIlLZobIwKUhXWSpBKC1AV1zarTKrS+hbVbCcReweqpD4Vp/2RJxt0UGr8+PGoqqpyTG+IiNyZr1/n1L1JWo0KOdNqP4CQ2lWb/gZ4+WgF2uMnA7ETtRUAh1ignw/GxoWodqS6B/vKGlVT3Vdn+ALV4CklQq+aZGQRERF5PAlUybQ9NbVvRt/7GKKBcSu0YJVqsjpwjVZQvaVOq0dpIwGpjd0LQnn7BiKzvAZeu5qAsCQgehwQFD0Mb4xcKUhlq/1pK38jJwyLapvVyUPJqpJLyabqHagKCfRFRrTUpQpCZnQQQvWsG0qeY9B/bTzyyCO47bbb8OCDD2LSpEnQ6Xr+QISEDP0fV0REbkdqSckKP/ZkwCor/sgUgcq9WsPb2kqDEqCKn+qwuhV91T0orW/GoSptBRkJVskgKK/KpJqN1KVSqejhMu1Pr1aRkRUCiYiIRhypMSV1quzJdMDWRi04Zb+4ipBpgbJdVgdua4KhtQJeBRuAIm9gyqruoFR9MVD4vVa/SlpQ7JBnVJPrkcynML2farZyDBKoamhuR1GdlkklGVWy2p9s21ZQp5qIDvJDRowWpJJV/iRjnshdDfrbu2SJ9h/x4sWLe2xnoXMioqOQaXuL7gAay7UVgEp3APWFQE2u1vyCgKSZ2r4yBbDge8A/GPAzaPepJtcNWiFW2/LXshR2mwmwdmgrA6paGZ01M+S27KsL1PaVpbMt7fDx8UdSuF61k7Ki1P/hUn9KglOHqk1qEFTZ2NpVl8o2CPLz8VKPkUCVyqaK1KvVaIiIiEYkyYiWjOfeWc8x47Qm2kywNFYg/9N3kZSRAZgqgNCk7n0ls1pqUdqT3/kSnJLpg+nzexZnJ48lf09LFlSovrskg7nDogJTUpcqp8KoMqoqjW2oNNbg+4M16iuYEBrQGaAKUicRA3SscUbuY9B/Saxdu9YxPSEiGimCY4HgztX9JP1f1aDaBcSM796noUTb1p+5NwBRmdr1/O+AvasHtq/Uwtj5lnbdW6cFtnSB8PL1R7RvAKLHnoGZaaPU3c3NLSisa0ZBbZsKUhXWmtBitqgaVdJsIg1+XXWp5FJus+4BERFRJ8l6CklEnSEDVqk71WumidyHUQu1OlaNpdoqv1KXskZaLpB0Qve+BRuBnM+1YJVMJ5RLCV7JdTmRxd+/HkeKntuy3U+boNUNlVIMOZVG5FYY1crLxXUtqn19oErVpLLVorIFqSRjnshjglILFixwTE+IiEYifQQwaoHW7MVO0M6SSqFUGZh2XRqBViPgr03D6wou+fhrtSxU89JWAbLdlqmENh1t3dctZqBNmrF7mxRr7xRYvQujd/wLo8NSgMh0WDPTUalLREEjVJBKmgyEqpvaVNvSWfcgOMBXre6XFqVXl5zyR0REdAS21QFtzC1a0XVjpXYpU/psJGgl26T15hsIzL0OkN/bwtQ5dTAgDPAN6DkeILcldUPHJ4SoJqQulRRPl1X+DlYZUdNkVnVEpX21XwtSSYa7LUglme5+vvwukJsFpXbu3ImJEyfC29tbXT+SyZMnD1XfiIhGLknrt0/tP5K+glr97rsQSJuvDVLtm7nz0n56gEwtlMBV5/RCCSvJGkQxQXGYKXWwTlyKZt9QFZw6VNWA/MpGlNQ2w2Rqwx6TCXsLrepp/HXeSIoMQ1p0kCruyVX+iIiIjkAXoAWWbMElexmnaJnVshJgUyVg7AxQqQBUM+BvN43w0LdA7hfdt20Z0qoFACdcpZ0cE5K1XZvfOf5I1rYz68othAbqMC0lXDVRZ2pDrgSoJFBV1YQ6k1lN/5O2NruyK5MqvXNlQDmJyJpU5EwD+vZNnToVZWVliImJUddlWobUH+mNNaWIiNyAnCmVqQRHK6I6/mwgdR5Qc7Cz5XWeuS3T2phl6mzdmLhgjCl5DzBuQYevFU2tHWhsMcPY0o7G1nZVVP0j843IrtCm/I1u2oLR3sUwRMYjIiYZMfHJCAiP1wbSHAATERH1z1a/Knp0z+0dZqCpCgjQ6hB10ekBs6nvDGn737nVOcDBdT0fJ9MKQ6Ula6sFS7CMXJ4UTp+RKi1c/c1ea7LPpGpSmVW2TCocqFKPiQ3xVycOVaZ7pIGr+5HrBaXy8vIQHR3ddZ2IiEYAGayqWhUxQMocbZusMFR7CGgoPbyoq6yo7eWFkABf1YScv2hqa4dlYhxy66RQZxPCqgvh27wfrdX7ULofKOtMRdfrDdCHx0M//5fQ6zunJ8qZX6m9IYNsmZJIREREh/PRASF20/zE+JVa62gHOlq1xU66sqRbAb/g7n2jxmhT+CVLWqYISiCr+oDWxNL7u4NSFXu1RVYka9pBqwbT0JCkkQiDHyIMEZiZFqGCVJI5lScL21RpTYqmlze0qiaF00W4XqeCU1KPSrKpJGjFeqHk1KBUampqn9eJiGiEkSKqcZO0Zm/KBcCk83plOnmpAYyEl+Z6+2JuZ5ZtTckFqCzKQW1FMZpritX0A2tbPUxtDbDUN2F1WwFCAnWor/DCxO/+hYTmAwjw84WX1NGS4JTUxrBdyjQGH9/ugJmsOKjqaflol96+3XW2aOSwWLTsvrpDQF2B9r1Q35nOJgWBIzOc3UsiouEhvyelyeq9/YkdrzUhQSzJiK4v0lpzbc8TUQe/Air3atcDI7TglGrpWv0r/s51WTIuCzf4qTa9c7qfsbVdC1BVN6kpfrK6n2RX1ZrqsK1QW305QOetalFJoEpWXk4KD2TxdBoyg548Wl1djcjISHW9sLAQzz//PJqbm7Fy5UqcfPLJQ9czIiJyrzO00gYwGIpMzFTNpqHFjILKBpSWFKKiohxo91aDocJGL+woqkdlayN0XlYEBzQgOKBSFVKX2gfeEnSSFQxttr8JVOzp54W9gTMe7x4o7/sIqM7VBtkybVBd2oIWIYAhhgVhjxTwUQX3G7svZdpI6tzufba+Du/KbIwvzoH3d/uBoCitPon88SKX0eOG7vOVgJOsViln7e2ns2z6W8/C/vbC04GTbu6+/d1Tncu6hwIZi7XpKkREI5UEsI5U2zIsGWhrBOqLgeYaoFjaZu0+OWG05J7u37eSMs0glUsL8vfFxMRQ1USLuQOFNVoNKglUFdU2q9WX95cbVRNSlyohLFAFqlQ2VQSn/NEwBKV+/PFHrFixQgWisrKy8K9//Qunn346mpqaVAH0J554Au+88w7OPvvsQXfi2WefxWOPPabqVk2ZMgVPP/00Zs2a1e/+Tz75JP7617+ioKAAUVFR+OlPf4qHHnoIAQGc50xE5G5CAnSYmBypmm0wlFfRgP805qMi/QJsr2uBt7kJAR2NCOwwIsBkRHCTETEGb2BvhSrQKavK+Espdgk+WS19v5D9oFjO/EoB9/4sewzw9tOuS40Nma4YFK1l2EjAyhA1oCDcEcmKikJWTrRle7kKKXwvS5IHx3Zv2/YGULUfaGmQvzJ67i8Fc+2DUjLto6Ueuo4WoL4AaCzqWWh3+WPdt/d8oBXrlYCQfKa2LDc5lj5+QMai7n3Ld2tBMPkjR6aX1OVrfxRJnZSgOGDRHZ2v4a2tYCnfBSkULCtSyfuxNfspLvJctXnd3xupo0ZERP0be4bW5HeF/D9sqzsp0/tlyr/979tv/qj9jojMAiIzgfDU4//9SQ4VoPNBVmywasJisaK0oUWVYLAVTJe6VBKskrY+t7qr4LoEqCRQJS0+NIAL29CADHgUfNttt2HSpEn4xz/+gddffx1nnnkmzjjjDJUpJW644QY8/PDDgw5KvfXWW7j11lvx3HPPYfbs2SrgdNpppyE7O1sVVu/tzTffxO23346XXnoJJ554Ivbv34/LLrtMnX1//PHHB/XaRETkmoOhzJggTIqwYvm8NHh5+6CkrqUzrVzSy0041Na5qMa+CrszdqcgNeVMpKn08gAE6bwAS7uWSWPttQjHmOVA0glAa0NnoKKh83qDVnfDtzMgZaudUbmvVy+9gMBwbfAtqxfZBtjyeJnmYJ9FZGsylXDahd1PseFZoKFYuy73SXBKXlcG7zLF4sQbuvc99B1gquoM2Ph2Tk20XfcFUk/s3ldWT1IBL6sWcLEFkGxBl/gp3fvKHxJN1dqZbgkMSZFcuZS+Sz9Of7j7jwvJRJLPyvb+pY8ynVOaX5CWQWXLfhp7JiwZS7G/bS0Sp0+FT1vn52LSBq49/mCRQJfUMOmLFNq1D0pJgFD272s/OR72fZhxGQZEPqO51wMtdUBznXZMiYjo6KTGVPQYrdln0trI70Q5CWQrpC7kd1Z4mhakihmnBanIpXl7e6mVk6Wd2Dnzvd5k1sZlNSYUVDehtL5FBap2FtWrJnQ+2uMkUCUnD6UF+/uyNhUde1Dqhx9+wJdffonJkyerbKa///3vuO6661SWlC0oNWdOZyHcQZBA0tVXX43LL79c3Zbg1EcffaSCThJ86m39+vWYN28eVq1apW6npaXhggsuwMaNGwf92kRE5PrkLJvUL5AGRKu6VJWNrcir0s7YyaBIpvvZzth9By3wER3k17nUsUGtKBNutXYPhGTqgbSBSDtZm+6lVh6UpbcrtSKxEsiRQrH2Z3x3/LP/KYQSOLEnwRwbFTxrB8yd2VMS5LFXsrV7QN9b76DUgTVA+a7+38+ZT3YHhSTIU7qj/+eVQJRtlcYxy4CsU7Xgj/TvSNPvZPqb2YxmvyggbrJWrL4/41ZoS5vLHy8SPFRBRIt22ftsuvwhI9lTcr9kq4Wlak2uH+sgV94H60sRER0/+f/UvvaU/J5bdKf2+6uqs2i6nKSR29LkZIUtKCUBLdkmt339nfYWaGBkqt4UfRimJGuF7lvbO1Bc26yCVLapf6a2Du1EYrXJbqqgD+JCA5EQGoC40AA1BTA6yF8FvmjkGnBQqqamBnFxcep6UFAQDAYDwsO14mhCrjc2Ng7qxdva2rBlyxbccccddv+XeWPJkiXYsGFDn4+R7Kg33ngDmzZtUlP8Dh48iI8//hgXX3xxn/u3traqZtPQINMOZKxsVs0RbM/rqOcnx+MxdH88hp59/MIDfRCeHILpydrgV87OaQEqbSBU3iiryLSotilPC1LJioBa3QOt/kFs8AAHQZFjtGafWSNngiVIJUEbuz56m2oBv5Cu7CGrLYvIdrutrTt4Mv1KLbiiVkRq0wJdUgNJAl2y3e55vWInA8GJ3cErGbzLpcoA84LVfl//UHjJvtqtzteTS22LRfbt7IOXPhZeEZmwSg0QvdR9ioRVTVGM0jKltIOgXertpvJ1dGhtKH4Gw0Zprf8n6r6ecWrf+7S3w1048v8kjnlI8Ji4phF7XPzDgYQTtKaW5K2El0yfr86BVX632j6P+kJ4r39am7odmgJrxCjV1MmI3id1hsiIPSYOIKepksP8VcOocHUCsbqpDQU1zSpIJZcVxlY0NFvQ0GzG/jLt95Pw9fZSq/vFhQQg2uCLqhagqaUVRyjLT8PoeH5OBvoYL6t8YwZAgkXl5eWIjo5Wt4ODg7Fz506kp6er23JfQkICOo4ySLVXUlKCxMRElf00d+7cHlMFv/rqq36zn5566in8+te/Vl/29vZ2XHPNNarGVF/uuece3HvvvX1OA9TrHfMfHBEROVdrB9SgpqrFC5UtQE2rrPzXcx9fbyDc34pIfyAqQLsMcLHSTuR5TCaTyvaur69HSIhdRsEQ4JiHiNxVcHMRkmu+g66jO6tGyK/uFr8IlIbOQGNgP4XXyS10WIC6NlvzQl2rdtneRylQOXcW6qeNzSIDrIjwB0Kk7CQTqjxyzDOooNSyZcvg76+lU65evRqnnHKKypgScmbuk08+cXhQat26dTj//PPxwAMPqBpUOTk5uOmmm9QUwN/97ncDOmuYnJyMqqqqIR8M2kcEP/vsMyxduhS6I01ZIJfFY+j+eAzd21Afv7Z2i1ri2JZGLtP8WvsYBUXodWqZ4+SIQCSH6xEX4s8inceIP4N9k3GILNLiiKAUxzwkeExcE4/LAJlq4FV7UK2Q6yV1D02VarNlzi+BCG2qtVfhRnjlrNGye21ZvvpIbTESubRl+h4Fj4nzSSiixmRGWX2LqktVXNuE9duzERmf1FUmyMbf11uN0ZLCArXL8EC1IjM51vH8nAx0zDPgo3jppZf2uH3RRRcdts8ll1wyqE5KB318fFSWlT25bZsq2JsEnmSq3lVXXaVuS/F1WQHwF7/4Be68887Dv7z+/l2BNHvygTr6P5/heA1yLB5D98dj6N6G6vjJU4wO9Mfo+LCuQVBFY2tnSrnW5HZdSwfqSo3YVWrsSilPDNeWPE7pLNIpq8vQwPFnsCdHfhYc85A9HhPXxONyFKGxWkvrTFiQBTaqc+ETlWG3qEgN0FqvNQlg9Xbijd21AhtKtFqQauXc6D5Xu+Uxca44Pz/EhRkwtTMAElW7FyedMgZljWY1TiusNal6VW0dVuRVN6tmI/VDR0UHqdqh6dEGtaIzOcax/JwMdP8BB6VefvllDDU/Pz/MmDEDX3zxRdeqfRaLRd2+/vrr+00B6x14ksCWGGDSFxERjXBS8Dw2JEC1mWkRaluLuQNFtZ1BqmoZBDWrIp225Y9tJChlC1JJSwjjksdEREQOERAKJE7vuS1zMRA3UVs9VlamlZVjbZdS81Gv/V5XircCOZ913vDS7guKVQEqr4AI+HZ0BzjINaipe4E6RIXoMTExVG2zWKwob2xBYWeNKglUycnESmMbKo012JhX0xWkkuBUepQWqOKJRPfg9Hy3W2+9VWVhzZw5UxUuf/LJJ1Xmk201Psm+kil+Dz30kLq9YsUKtWLftGnTuqbvSfaUbLcFp4iIiAYrQOeDzJhg1UR3kc7OIFWNCaUN2pLHPxbXq2bLppLVY7RMqkCkRhjUqjRERETkAH4GQIqgS+vN3NJz9T5ZaCQ0uXvlXJMEsrQFULwsFvhYTujet75IW/lV9j/SCrM07GRhmvjQQNVmpWtBR1NbOw5VmdRqzAcrjWqMpgWp2rApr1btEyVBqiiDthpzpB4RBr/ulZjJZTg9KPXzn/8clZWVuPvuu1FWVoapU6eq2lSxsdoqPwUFBT0yo+666y71RZLL4uJiVXhdAlJ/+MMfnPguiIjI08jvmqggf9Wmp4R3LXks9agkUKWm/lWb0NTW0TUF0CYk0LdXNlUgdMymIiIicixdr3pSoxZoTWbUtDYCxgpt9VxjBaymWrQW29W5ObAGKN2h1aSKzOxuIYkMUrkgvZ8vxieEqCaa2zpwqFoCVE3IqzKipL4FVcY21X44pAWppAaVrMCcFimBKj0SQgMHthIzeXZQSshUvf6m60lhc3u+vr74/e9/rxoREdFw8vf1QUZ0kGpdBTpt2VSdQaqyhhY0NLdjV3GDakLiUXJ2zz5QFabX8WwdERHRcJDftwEhWovKVJusslx9ycfd+0gwyjcQaG8GyndpTej0QPRYYIZdjeUDnwHmZi0ry8dPu5QWEAaEpXTXv6JhE+jng3HxIarZB6kOVTWpRW6K60xobOk5PrMVT5cgVVqUXpV1CPL35fhsJAaliIiI3JEMWiKD/FWbZpdNJQU5pSZVQXWTClYZW7UMK2nrc6u7ztZJcErO1MmUP9amIiIicqKpq4DJ5wMNRUDVAaA6B5AVAM0mLcPKXsGGrmmAh/ELAk59QAuECcnSYpDD6UEqc4dFjcMkUJVf1YT8GhNazBbkVjap1vU4nQ9iQvwRG+KPmOAAxARrl5IFz2CVYzAoRURENMTZVLISjDQgWmVT1Zq0FWRkACSXJXXN6mzd7pIG1Wy1qeRsnQSpUiK0tHKDP39NExERDRuZpieZTtKkoLrFAtQXAh3mnvulnqhNB2xv02pVdchlK2AsA8JSewahvvmjlkEVlQVEjQaC4xmkcgIpo6BW6YsyAGO0bPfyhlbkS5CqWst4rzG1odl8+CI3tqyq6GAJVgUgPUqPrNhgrvY3RDjaJSIiciA5qyaFNaVNSQ7rOlsn2VQSpJJsqvzO2lSSXi4NqOpaRSalszinZFXJYIhn6YiIiIYxSBWeevj2zCV97y9ZURKksjHVaAXUpdmmA0omlQSuZLpf7AQgaaa2XYJaeV9rU/+8dZ3TAv2AwHBAH6lNI+QYYMjIeCouNEC12aMiu8ZnVcZWVDS0oryhRa3wJ63a2IrWdi3TStqWfK1GVUJogApOjYkLVuM0H9anOiYMShERETnhbF1alNQvMHRlU0khzoIaLUAlrXup47auwU+ATmof6JEcHoiUSLlkNhUREZHLkKCRLrD7tmRInfwroGo/UCXTAXOBNiNQsbvz/pDuoFRbE7Dvw/6fO3kOMPUC7bqsEigBLH0EEBihBa389I58ZyNmfGZb5c9ee4dF1RCVsVlxXTNyKowqOCXF1KV9tb9SZVJlxgRhtASpYoO5EvMgcCRLRETkAmfrJAtK2ozU7qWOJZVcpZRXm1BUq9U+kIGQNJsIg06dnZMAVXKEHvGhrE1FRETketMBlwAd7UBdPtBYBljMQEiS3b6+QPJsbaqgTAe0tGvF1JtrtKmCEsCyaa4D9rzf87UiMoDkWUD81MNXIaTjIuOqmJAA1SYmhuK0CYCxtR0HyhuxXzUjTG0dPcoySE0qGZ/JdD9VnyokAMEsot4nBqWIiIhcdKnjsXEhqgmLxapW9pOaVFJEXS7ljF1Nkxk1TfXYXljfVZsqISwQyRHdq/2FBnKlPyIiIqfz8QUiM7TWmwSdpNh6XyRQJdlR9hKmadMDbUErycKS9uM7wMRztbpX5DCySp8sciNNxmiSQWULUBXWmlS9Kmn29H4+KkAlgSopnm67bhjhWe8j+90TERG5Ce/OYJO02Z3bZLljWeJYMqoKa5rVpZypk0tp30FbGUhWjLFlU0kBdXkOSVEnIiIiNyB1pqTZGCKBGZd1326uBYq2AEWbAGM5YIjuvk8CV5J5FRw3vH0eYWM0yVaXtnhcrMp2P1jZpBa2kROIUp+quqlNjdHyqkyq2YsK8lMnIaU2ldQRHWkZ7wxKERERufFyx5kxwaoJqU0lgx7JotICVSaU1regobkdu4obVBMy1pF6CbZMKln6ONLgDz/fkTUIIiIi8ghSDD1ribZioKwWGJrcfd/BdUDeV9oUwqQTgIhRWtBKCq2Tw7LdZZqfNBspol7ZGaCyFVGXy5oms6or+m1OlWpSmyorNqgrSCUZWZ7O898hERHRCCFT9KKC/FWTdHLR1m5RKeUFdoGqxpb2rhVk1udq2VRCpvnJ2TqpbSVBqqhgP/Vc4Xo/rihDRETk6mSqvgSf7Mmqfl7eQF2B1uyLsAfHA7P/r3tVvzaTVqidU/6HnGSo2zLe7bWYO1St0H1ljcgua4CxtaPrRKIcBslyHxunrfAndUM9sRwDg1JEREQeTLKf0qMMqtmyqepMZq2Ieo0JxbXN6sxds7kD9c1m1XIrm3o8h8SjIg1+iAzyV0sna0XVAxEcwJVliIiIXJqs2DfuTKB4C1C6Uyuybm4CWuq0KYH2QY6Nz2n3SyaVrObn5QN4S/PVsrEmnN0zA0tWDJR9IzO1lQBp0AJ0Pl1ZVTJGkxOGEqDaV9qgVvaznVRcs6ccgTofxIVqdajipIVKXaoA9RzujEEpIiKiEUTOsIUb/FSbkhymtskgSOocVBlbVQq5dtmK6s7r5g4rKo1tqslAySZMr1MBqqRwKayuR2JYIKcAEhERuRr/YGDUQq0JCSZJ7SkpoG7PVA10tAINRYc/R1Bcz6BUwfdAY2n3bQlaSXBKmqwEGGRX14oGPEZL7qxNtXR8rDpRmN2ZQXWgwqhOIPZVk0rGYxKkUsGq0ACVURUd5K9qXbkDBqWIiIhGOBkEycov0lIjtYwqGwlYSU2qys5AlWRWyaoyUgtBMq7qTPX4sVhb+U/GPjIoksFUfIgf6mVFa4vVSe+KiIiI+uRn0GpL9bb0Pi0wZazQglOy4p+lXWu+PaedIWkm0Fyn1bCSaYGq2PoPWpNpgQtv71ls3T9Eex5rhxYMs1q02z5+QKB2kkxu+5vrHPzm3UdooA6z0iNUa++wqLGXrMRcXt+iLqXJGE0bj5l7nDiU2lQJYQFIDNNOHkqLMPi55PQ/BqWIiIioXzJ4CdXrVMuMCepRA0FqVUmNqkKpT1VjQkNLu0o1l2axWFBY6I39H+9DfJis+BeAhFCtloKcyWNGFRERkYuRqXpBMVo7mswlPetW1R4CqnO0Zl/XqqMdWPsgYOmVlWWTMheYcn7nvm0YW/oevNdXAuknAwnTAF+/431XHsG3n5pUstJfeUMryuq1AuoqWFXfgtZ2y2FZVXo/H5XVntgZpEoK16vAl7MxKEVERESDJvULMqKDVLPPqJIsKglUHaoyorRIVpvR6iNIA2rVvnKSTtLKJVAlqwDaLiVTi4iIiNyMrOQXPUZrvck0wd6k8LrUq5KaVlKvqmu7D6wySKjLB3YUArvf0zKyUucBIfGOfQ9uvNJfepS07kx3yVKXDPeiWlPXGEwCVVKqQaYBSrO5cHZKj1UCnYGjPyIiIhrCjCqtWKfZbEZ8/R7MXpCByqZ2lNS1oLS+GSV1zWplGUlBl7a9UJv6J8L1OnXWznYGT87muXvxTiIiohEtNBE4/WEtU0oCUKp4ej/Z0r7+2JPwcySPCQOKN2lTCQ99o7XwdGDCOUB46nC/A7fj7e2lstKlzej8uGT6n2RRFXcGqSTbXTKrpP6UszEoRURERA4hJzujgvwRHx6EyUnd2xtazCitk2l+WpBKzt5JgfVakxm1djWqbI9XKeZhWpp5fFiAWlaZiIiI3ISPr9YGoN0nENaMxcCY04DKbCD/O6B8F1CbB/jaBVDMLZ2ZVjx5NdDpfzKOkja7c1tbuwU6H+fXmGJQioiIiIZVSIAOIXE6jIkL7lGjynbmTtLN5UyeBKkqG1tV21ZQ16OYeryqTaUtixwbHICQQF+XLN5JREREx0B+p8eM1VpLvRagCo7tvn/nv4DSnYAhWquBFRwHBMV2thhtSiEdkavU92RQioiIiJxOpulJIXX7YurG1vbONHNbTQSTmvpnK6be8/He2lLIIQGICfHvWhqZdaqIiIjcXEAokDyrZ5aUBKlkJT9jmdbKdnbfLyv9nXp/9+2yH7VV/iSAFRDW//RBcgqO1IiIiMglBfn7qmwqW0aVfTF1qYMgq83IZZWxFS1mC/KrTarZCw7wRUywv5oGGB3c2YL8EabXMbOKiIjIHekCgNMeBJprtULq0ho7L6VJtpS9H98BWrSMa1XXSh+pBagMUUBoslZMnZyGQSkiIiJyy2LqNlK8U1aZsQWpbK2myYzGlnbVciubejyX1FCQQJXW/LoCVnKbxdWJiIhcnJxY0kdoLWZcz/s6zN3XrVYgLBkwBgCmKsDS3h28EhGjegalircAYalawIqGBYNSRERE5PbFO+NDA1Wz19regYoGbZU/yaay1aeqaWqDucOK0npZEbDnNEBxwaxkTE4KG8Z3QERERENGCqDbB69OuEq7brFoGVNNld0tMKJ731YjsO0NwGrRMqgSpmlNAl/k2UGpZ599Fo899hjKysowZcoUPP3005g1y27OqJ2FCxfiq6++Omz78uXL8dFHHw1Db4mIiMgd+Pv6IDlCr5o9i8WKGlObClRVNbah0tiiglWyAqBkVYXr/ZzWZyIiInIQqSVly66KHnP4/WYTEDUaqNoP1Bdqbe8HQHh6d4AqIMQZPfdoTg9KvfXWW7j11lvx3HPPYfbs2XjyySdx2mmnITs7GzExMYft/+6776Ktra3rdnV1tQpk/exnPxvmnhMREZE78vbunrqHuJ73Nbd1uMxqNERERDSMZNW+OdcCrY3ayn4lW4HqXKA2T2tSjyptnrZvfZHW/IM7W4h26c0SAG4XlHr88cdx9dVX4/LLL1e3JTglGU8vvfQSbr/99sP2j4jomTr3r3/9C3q9nkEpIiIiOm6BfhxMEhERjWgSXJLgk7TmOqB0B1CyDYif3L1P+W4g++NeD/QC/AxagGrahUBoUneNKy8frvrnikEpyXjasmUL7rjjjq5t3t7eWLJkCTZs2DCg53jxxRdx/vnnw2Aw9Hl/a2urajYNDQ3q0mw2q+YItud11POT4/EYuj8eQ/fG4+f+eAz75sjPg2MeEjwmronHxfXwmLgelzwmvgYg+UStic6+efmFwityjJZV1daoXVo7gJYG1Swd1u59c7+EV85nQGgirFKrKiRJu5QVAL28PPaYDPQxXlZZX9lJSkpKkJiYiPXr12Pu3Lld22+77TZVN2rjxo1HfPymTZvUlD/Zr78aVPfccw/uvffew7a/+eabKsOKiIiIaLiYTCasWrUK9fX1CAkZ2roUHPMQERE5idUKX0sLfDua4WtpRtP/Z+9O4OOq6v//v7Pv+9p03xdKW1qgFETWsgpUviqKCgKiiCCCfvnKH2RzQcUvoshPviogoiCKoCBr2fetULbue9rszb4vk//jc24mmaQpSdokM0lez8fjdGbu3Jm5ObdJTj73cz4nJkftYV4O0KTdLyqtbsseL2kLj1JDVIa2ZC/v3DelfptiWqrUHhYhX3ikfGFdrTUiVg1R6VJY+Kga84zooNQ3v/lNl1H1wQcfDOiq4cSJE1VWVjbog8HAiODKlSu1fPlyRUUFVP7HiME5HPk4hyMb52/k4xz2zsYhmZmZQxKUYswDwzkJTZyX0MM5CT2j9pzYan61JQqr3ilV7vBuq3ZJPi+TyHfyLzsDTWHv3auwwvf2+la+Y34oxaV5D8o3S831UnKet4rgEGRd7c856e+YJ6jT9+wAIyIiVFxc3G27Pc7N7VF5tIe6ujpXT+rGG2/8xP1iYmJc68k6dKj/ow/HZ2BocQ5HPs7hyMb5G/k4h90NZV8w5kEgzklo4ryEHs5J6BmV5yR9otfUkYzjs0BVkQtORUQH/O7OnSfFJEhtzR2tpet+S70ikgKm/O14VSrqSNCJiJGScr0AVWKOF7jKXTBodaz25Zz0d/+gBqWio6O1ZMkSPfvss1qxYoXb5vP53ONLLrnkE1/7j3/8w10N/MpXvjJMRwsAAAAAALCfLFhkAaTkvO7bJx3mtf6uFpg8wQtutTVJldu9ZiKipZMXdu374YNSbbEXrPK37HlS7NBkUo+o1feuuOIKnXvuuTr44INdXahbb73VZUH5V+M755xz3BS/m266aY8C5xbIysjICNKRAwAAAAAABMHc07xmWVd1JVJ1gVRTKNWVes8HTucr3yrZtMFAR1xGUMqcddZZKi0t1bXXXquioiItWrRITz75pHJyctzzO3bscCvyBVq/fr1eeeUVPf3000E6agAAAAAAgCALD/em7lnbmwM/J9WVSQ0VXS0+NBJ8gh6UMjZVb2/T9V544YU9ts2ePVtBrM8OAAAAAAAwMqRP9VoIGhlrCQIAAAAAAGBUISgFAAAAAACAYUdQCgAAAAAAAMOOoBQAAAAAAACGHUEpAAAAAAAADDuCUgAAAAAAABh2BKUAAAAAAAAw7AhKAQAAAAAAYNgRlAIAAAAAAMCwIygFAAAAAACAYUdQCgAAAAAAAMOOoBQAAAAAAACGHUEpAAAAAAAADDuCUgAAAAAAABh2BKUAAAAAAAAw7AhKAQAAAAAAYNgRlAIAAAAAAMCwIygFAAAAAACAYUdQCgAAAAAAAMOOoBQAAAAAAACGHUEpAAAAAAAAjM2g1O23364pU6YoNjZWS5cu1VtvvfWJ+1dWVurb3/62xo0bp5iYGM2aNUuPP/74sB0vAAAAAAAA9k+kguyBBx7QFVdcoTvuuMMFpG699VadeOKJWr9+vbKzs/fYv7m5WcuXL3fPPfjggxo/fry2b9+u1NTUoBw/AAAAAAAARmBQ6pZbbtGFF16o8847zz224NRjjz2mu+66Sz/4wQ/22N+2l5eX67XXXlNUVJTbZllWAAAAAAAAGDmCOn3Psp5WrVql448/vuuAwsPd49dff73X1zzyyCNatmyZm76Xk5Oj+fPn66c//ana2tqG8cgBAAAAAAAwYjOlysrKXDDJgkuB7PG6det6fc2WLVv03HPP6ctf/rKrI7Vp0yZdfPHFamlp0XXXXbfH/k1NTa75VVdXu1vb39pQ8L/vUL0/hh7ncOTjHI5snL+Rj3PYu6HsD8Y8MJyT0MR5CT2ck9DDORld56S/rwlrb29vV5AUFBS4mlA2Fc+yn/yuvPJKvfjii3rzzTf3eI0VNW9sbNTWrVsVERHROQXw5ptvVmFh4R77X3/99brhhhv22H7fffcpPj5+0L8mAACAvamvr9fZZ5+tqqoqJScnD+p7M+YBAAAjbcwT1EypzMxMF1gqLi7utt0e5+bm9voaW3HPakn5A1Jm7ty5KioqctMBo6Oju+1/1VVXuULqgVcNJ06cqBNOOGHQB4OBEcGVK1e6guz+ulcYWTiHIx/ncGTj/I18nMPe+bOXhgJjHhjOSWjivIQezkno4ZyMrnPS3zFPUINSFkBasmSJnn32Wa1YscJt8/l87vEll1zS62uOOOIId8XP9rP6U2bDhg0uWNUzIGViYmJc68k6dKj/ow/HZ2BocQ5HPs7hyMb5G/k4h90NZV8w5kEgzklo4ryEHs5J6OGcjI5z0t/9g1ro3NgVvT/84Q+65557tHbtWn3rW99SXV1d52p855xzjrvy52fP2+p7l112mQtG2Up9VujcCp8DAAAAAABgZAhqppQ566yzVFpaqmuvvdZNwVu0aJGefPLJzuLnO3bs6MyIMpaG/tRTT+nyyy/XggULXE0qC1D9z//8TxC/CgAAAAAAAIyooJSxqXp7m673wgsv7LHNiqK/8cYbw3BkAAAAAAAAGApBn74HAAAAAACAsYegFAAAAAAAAIYdQSkAAAAAAACMzZpSw6m9vd3dVldXD9lntLS0qL6+3n0GS1mOTJzDkY9zOLJx/kY+zmHv/OMP/3hkKDHmGZs4J6GJ8xJ6OCehh3Myus5Jf8c8Yy4oVVNT07mKHwAAQLDGIykpKUP+GYYxDwAACNUxT1j7cFyqCyE+n08FBQVKSkpSWFjYkHyGRQRtAJifn6/k5OQh+QwMLc7hyMc5HNk4fyMf57B3NuyywVleXp7Cw4e2igJjnrGJcxKaOC+hh3MSejgno+uc9HfMM+YypawzJkyYMCyfZSeNb6aRjXM48nEORzbO38jHOdzTUGdI+THmGds4J6GJ8xJ6OCehh3Myes5Jf8Y8FDoHAAAAAADAsCMoBQAAAAAAgGFHUGoIxMTE6LrrrnO3GJk4hyMf53Bk4/yNfJzDsYHzHHo4J6GJ8xJ6OCehh3MyNs/JmCt0DgAAAAAAgOAjUwoAAAAAAADDjqAUAAAAAAAAhh1BKQAAAAAAAAw7glIAAAAAAAAYdgSlhsDtt9+uKVOmKDY2VkuXLtVbb70V7EPCXrz00ks67bTTlJeXp7CwMP3rX//q9rytA3Dttddq3LhxiouL0/HHH6+NGzcG7XjR3U033aRDDjlESUlJys7O1ooVK7R+/fpu+zQ2Nurb3/62MjIylJiYqP/6r/9ScXFx0I4Z3f3ud7/TggULlJyc7NqyZcv0xBNPdD7P+RtZfvazn7mfpd/97nc7t3EORzfGPMHDGCb0MC4JPYwzQh9jh9Bw/fXXu/MQ2ObMmTMs54Sg1CB74IEHdMUVV7hlE999910tXLhQJ554okpKSoJ9aOhFXV2dO0c2qO7NL37xC/3mN7/RHXfcoTfffFMJCQnufNo3JYLvxRdfdD8c33jjDa1cuVItLS064YQT3Hn1u/zyy/Xoo4/qH//4h9u/oKBAZ555ZlCPG10mTJjgBiOrVq3SO++8o2OPPVZnnHGGPv74Y/c852/kePvtt/V///d/bvAfiHM4ejHmCS7GMKGHcUnoYZwR2hg7hJYDDjhAhYWFne2VV14ZnnPSjkF16KGHtn/729/ufNzW1tael5fXftNNNwX1uNA3+3Z4+OGHOx/7fL723Nzc9ptvvrlzW2VlZXtMTEz7/fffH6SjxCcpKSlx5/HFF1/sPF9RUVHt//jHPzr3Wbt2rdvn9ddfD+KR4pOkpaW1//GPf+T8jSA1NTXtM2fObF+5cmX7UUcd1X7ZZZe57ZzD0Y0xT+hgDBOaGJeEJsYZoYGxQ2i57rrr2hcuXNjrc0N9TsiUGkTNzc0uCm/p0X7h4eHu8euvvx7UY8PAbd26VUVFRd3OZ0pKipuewPkMTVVVVe42PT3d3dr3o12lDDyHloY6adIkzmEIamtr09/+9jd3RdnS6zl/I4dlBpx66qndzpXhHI5ejHlCG2OY0MC4JLQwzggtjB1Cz8aNG92U8GnTpunLX/6yduzYMSznJHK/3wGdysrK3A+7nJycbtvt8bp164J2XNg3NpgzvZ1P/3MIHT6fz81FP+KIIzR//ny3zc5TdHS0UlNTu+3LOQwtH374oRsc2pQSm6P+8MMPa968eVq9ejXnbwSwAb5N3bIU/J74Hhy9GPOENsYwwce4JHQwzgg9jB1Cz9KlS/WnP/1Js2fPdlP3brjhBh155JH66KOPhvycEJQCMGquttgPzcC5zxgZ7JefDQztivKDDz6oc889181VR+jLz8/XZZdd5mqnWKFrAICHcUnoYJwRWhg7hKaTTz65877V+LIg1eTJk/X3v//dLZYxlJi+N4gyMzMVERGxRxV6e5ybmxu048K+8Z8zzmfou+SSS/Sf//xHzz//vCto6WfnyaaYVFZWdtufcxha7MrLjBkztGTJErdykRXu/fWvf835GwEsnduKWi9evFiRkZGu2UDfiivbfbuCxjkcnRjzhDbGMMHFuCS0MM4ILYwdRobU1FTNmjVLmzZtGvLvFYJSg/wDz37YPfvss91Sd+2xpYxiZJk6dar7Jgs8n9XV1W4FG85naLDarjbwszTs5557zp2zQPb9GBUV1e0c2tLMNj+acxi67OdmU1MT528EOO6449y0CLsC7W8HH3ywq0Pgv885HJ0Y84Q2xjDBwbhkZGCcEVyMHUaG2tpabd68WePGjRvy7xWm7w0yWxrZUkLtm+nQQw/Vrbfe6orpnXfeecE+NOzlm82iv4GFQe2HoRWktMJtVgvgxz/+sWbOnOkGFj/84Q9d8bcVK1YE9bjRlRp/33336d///reSkpI65zRbMVdLM7XbCy64wH1f2jlNTk7WpZde6n54HnbYYcE+fEi66qqrXLqwfb/V1NS48/nCCy/oqaee4vyNAPZ956+V4mfLzmdkZHRu5xyOXox5gosxTOhhXBJ6GGeEHsYOoen73/++TjvtNDdlr6CgQNddd53LiP7Sl7409N8r+71+H/Zw2223tU+aNKk9OjraLZf8xhtvBPuQsBfPP/+8W8qyZzv33HM7l1T+4Q9/2J6Tk+OWUT7uuOPa169fH+zDRofezp21u+++u3OfhoaG9osvvtgt/xsfH9/+2c9+tr2wsDCox40u559/fvvkyZPdz8usrCz3Pfb00093Ps/5G3kCl3U2nMPRjTFP8DCGCT2MS0IP44yRgbFD8J111lnt48aNc98r48ePd483bdo0LOckzP4ZjMgaAAAAAAAA0F/UlAIAAAAAAMCwIygFAAAAAACAYUdQCgAAAAAAAMOOoBQAAAAAAACGHUEpAAAAAAAADDuCUgAAAAAAABh2BKUAAAAAAAAw7AhKAQAAAAAAYNgRlAKAIRIWFqZ//etfwT4MAACAIcWYB8C+IigFYFT62te+5gZIPdtJJ50U7EMDAAAYNIx5AIxkkcE+AAAYKjYYu/vuu7tti4mJCdrxAAAADAXGPABGKjKlAIxaNhjLzc3t1tLS0txzdgXxd7/7nU4++WTFxcVp2rRpevDBB7u9/sMPP9Sxxx7rns/IyNA3vvEN1dbWdtvnrrvu0gEHHOA+a9y4cbrkkku6PV9WVqbPfvazio+P18yZM/XII490PldRUaEvf/nLysrKcp9hz/ccUAIAAPSFMQ+AkYqgFIAx64c//KH+67/+S++//74bKH3xi1/U2rVr3XN1dXU68cQT3YDu7bff1j/+8Q8988wz3QZgNsD79re/7QZuNpizwdeMGTO6fcYNN9ygL3zhC/rggw90yimnuM8pLy/v/Pw1a9boiSeecJ9r75eZmTnMvQAAAEY7xjwAQlY7AIxC5557bntERER7QkJCt/aTn/zEPW8//i666KJur1m6dGn7t771LXf/97//fXtaWlp7bW1t5/OPPfZYe3h4eHtRUZF7nJeX13711Vfv9RjsM6655prOx/Zetu2JJ55wj0877bT28847b5C/cgAAMJYw5gEwklFTCsCodcwxx7grcYHS09M77y9btqzbc/Z49erV7r5dxVu4cKESEhI6nz/iiCPk8/m0fv16lwpfUFCg44477hOPYcGCBZ337b2Sk5NVUlLiHn/rW99yVy3fffddnXDCCVqxYoUOP/zw/fyqAQDAWMOYB8BIRVAKwKhlA6KeqeWDxeoh9EdUVFS3xzaws0GesdoO27dv1+OPP66VK1e6wZ6lxv/yl78ckmMGAACjE2MeACMVNaUAjFlvvPHGHo/nzp3r7tut1V2wOgt+r776qsLDwzV79mwlJSVpypQpevbZZ/frGKzg57nnnqu//OUvuvXWW/X73/9+v94PAACgJ8Y8AEIVmVIARq2mpiYVFRV12xYZGdlZWNMKeR588MH61Kc+pb/+9a966623dOedd7rnrDjndddd5wZP119/vUpLS3XppZfqq1/9qnJyctw+tv2iiy5Sdna2uwJYU1PjBnG2X39ce+21WrJkiVvJxo71P//5T+cAEQAAoL8Y8wAYqQhKARi1nnzySbdkcSC74rdu3brOVWL+9re/6eKLL3b73X///Zo3b557zpYzfuqpp3TZZZfpkEMOcY+tFsItt9zS+V42eGtsbNSvfvUrff/733cDv8997nP9Pr7o6GhdddVV2rZtm0uNP/LII93xAAAADARjHgAjVZhVOw/2QQDAcLM6Bw8//LArtAkAADBaMeYBEMqoKQUAAAAAAIBhR1AKAAAAAAAAw47pewAAAAAAABh2ZEoBAAAAAABg2BGUAgAAAAAAwLAjKAUAAAAAAIBhR1AKAAAAAAAAw46gFAAAAAAAAIYdQSkAAAAAAAAMO4JSAAAAAAAAGHYEpQAAAAAAADDsCEoBAAAAAABg2BGUAgAAAAAAwLAjKAUAAAAAAIBhR1AKAAAAAAAAw46gFAAAAAAAAIYdQSkAAAAAAAAMO4JSAPAJ/vSnPyksLEzbtm3rc98pU6boa1/72rAcFwAAwGBizAMgGAhKARi1g6re2g9+8INgH54uv/xyLV68WOnp6YqPj9fcuXN1/fXXq7a2NtiHBgAARpBQH/ME2rx5s2JjY92xvfPOO8E+HAAhIjLYBwAAQ+XGG2/U1KlTu22bP3++gu3tt9/WkUceqfPOO88Nzt577z397Gc/0zPPPKOXXnpJ4eFcLwAAACN/zNPzolxkZKSampqCfSgAQghBKQCj1sknn6yDDz5YoeaVV17ZY9v06dP1/e9/X2+99ZYOO+ywoBwXAAAYmUJ1zOP31FNPuXbllVfqxz/+cbAPB0AI4XI8gDHrueeecxlLCQkJSk1N1RlnnKG1a9f2+br29nY3oJowYYKbfnfMMcfo448/3q9jsdoMprKycr/eBwAAIJTGPC0tLbrssstcs4twABCITCkAo1ZVVZXKysq6bcvMzHS3NlXOripOmzbN1XNqaGjQbbfdpiOOOELvvvtuZ5CoN9dee60boJ1yyimu2f4nnHCCmpub+31sra2tLgBlr/noo490zTXXKCkpSYceeuh+fMUAAGAsCuUxz6233qqKigo31nnooYf246sEMBoRlAIwah1//PG9XvEz//3f/+0Kjb/++uvu1qxYsUIHHXSQrrvuOt1zzz29vmdpaal+8Ytf6NRTT9Wjjz7qinWaq6++Wj/96U/7fWxW4HPZsmWdj2fPnq1HHnmk81gAAABG+pinqKhIP/rRj/TLX/5SycnJ+/EVAhitCEoBGLVuv/12zZo1a4/thYWFWr16tatrEBgEWrBggZYvX67HH398r+9pVxvt6uCll17aOTgz3/3udwcUlJo3b55Wrlypuro6vfbaa+59WX0PAACMpjHP//zP/7gMra9//esD/poAjA0EpQCMWjYVrrein9u3b+/MTupp7ty5rhCnBYus7sLeXjtz5sxu27OyspSWltbvY7Orhf6rmlbX4b777nO3lha/cOHCfr8PAABAKI553njjDd1777169tlnWVkYwF7x0wEAQsCZZ57pbv/2t78F+1AAAAD2m2VnWXH1qVOnatu2ba75615ZBteOHTuCfYgAQgCZUgDGnMmTJ7vb9evX7/HcunXrXGHQ3q4YBr5248aNLh09sO6CFfHcV01NTfL5fK5QKQAAwEgf81jQybKtLCjV0+mnn66UlBRWHQZAphSAsWfcuHFatGiRK+wZOBiyVfCefvppt7rM3tiUu6ioKLdqjb+AqH9lmf6wz7OlkXv64x//6G57S70HAAAYaWOe3//+93r44Ye7NatPZazw+V//+tf9+toAjA5kSgEYk26++Wa3PLKtgHfBBRd0Lo9sV+1sueS9sToK3//+93XTTTfpM5/5jBvMvffee3riiSc6l17+JC+88IK+853v6HOf+5yr0WAFRF9++WW3RLIFpL7yla8M8lcKAADGsmCNeU444YQ9tvkDY0cddRQX4gA4BKUAjEl29e/JJ590SyFfe+217kqgDZB+/vOf95pmHujHP/6xYmNjdccdd+j555/X0qVL3dVGWzK5LwceeKCOOeYY/fvf/3b1FOzK4/Tp090x2JLN0dHRg/hVAgCAsS5YYx4A6I+w9sBcTAAAAAAAAGAYUFMKAAAAAAAAw46gFAAAAAAAAIYdQSkAAAAAAAAMO4JSAAAAAAAAGHYEpQAAAAAAADDsCEoBAAAAAABg2EVqjPH5fCooKFBSUpLCwsKCfTgAAGAMaW9vV01NjfLy8hQePrTXBhnzAACAUB/zjLmglA3OJk6cGOzDAAAAY1h+fr4mTJgwpJ/BmAcAAIT6mGfMBaXsaqG/Y5KTk4fkM1paWvT000/rhBNOUFRU1JB8xkhHH/WNPuobfdQ3+qhv9FHf6KPB66Pq6moXKPKPR4YSY56xiXMSmjgvoYdzEno4J6PrnPR3zDPmglL+9HUbnA3lAC0+Pt69P99MvaOP+kYf9Y0+6ht91Df6qG/00eD30XBMp2PMMzZxTkIT5yX0cE5CD+dkdJ6TvsY8FDoHAAAAAADAsCMoBQAAAAAAgGE35qbvAQAw1rW1tbl07P6yfSMjI9XY2Ohei777yFLcIyIign1YAACMaQMd82DgY8D9HfMQlAIAYAypra3Vzp073TK9/WX75ubmuoLZw1ELaSTq2UfWbKWZxMTEYB8aAABj0r6MeTDwMeD+jnkISgEAMEbYFS4bnFnByqysrH4HmHw+nxvY2WAjPJyZ/331kfVraWmp6+uZM2eSMQUAwAgZ82BgY0ALWu3vmIegFAAAYygF2wYPNjiLi4sb0ICkublZsbGxBKX62UfWx9u2bXN9TlAKAICRMebBwMeA+zvmYWQJAMAYw9XCoUcfAwAQfPw+Dv0+JigFAACCYtGiRa7NmzfPXVnzPz7rrLP6/R6PPPKILr/88gF/9te+9jXdeuutA34dAADAQDHm2Tum7wEAgKBYvXq1u7WUbxuY+R8Ham1tdau+7M3pp5/uGgAAQKhizLN3ZEoBADAGWZ2Fpta2frfmVt+A9re2r6vdTJkyRf/zP/+jQw89VOeee66Kiop0zDHHaMmSJTrggAN0ySWXuBoH5k9/+pNWrFjh7r/wwguaP3++Lr74Yi1cuNDt+8477/T5eVbA8/zzz3evtXbDDTd0PvfjH/9Yc+fO7byiuX37djU0NLgrm3a10z7nhBNO2KevEwAAhN6YZ1/aaB7znN+x/1CNeYKaKfXSSy/p5ptv1qpVq1RYWKiHH364s5P78uqrr+qoo45yndNblBEAAOxdc5tP1z+ypn87t7eruaVZ0VHRVjig359x/enzFBO5b0W+d+/erTfffNPVKWhsbNSjjz7qVn6x1XTOOOMM/f3vf9cXv/jFPV63bt063Xnnnfp//+//6Y477tDVV1+tp5566hM/60c/+pGampr0wQcfuMHXpz71Kc2ZM8cNvH75y1+6MYoVSa2vr3dFPp944glVVlZqzRqv/8rLy/fpawQAACE25tlHo3XM89hjj6mqqkofffSRezwUY56gZkrV1dW5aNvtt98+oNfZQPCcc87RcccdN2THBgAAgsfqH/gLZ9oVQruKaGOGgw46yF0J3NsFqRkzZmjp0qXu/rJly7R58+Y+P+uZZ57RhRde6AZbCQkJboyxcuVKJScnu+WNv/KVr+j//u//3EDMVp+x41i7dq27OvnAAw8oKipqkL96AAAwVnwtxMc869ev17e//e0hG/MENVPq5JNPdm2gLrroIp199tmuQNi//vWvITk2AABGs+iIcHdVrz9sgFRTXaOk5KS9Lge8t8/YV3aF0O+WW25RSUmJu4poA6QrrrjCXUnsjT3vZ+MEq88wUP6Bob3+jTfe0GuvvebS5A877DDdf//9OvLII12W1HPPPecGd1deeaXefffdfVoGGQAAhM6YZ38+YzSOeY444gi33YJjNu6xMY8FydLS0jRmC53ffffd2rJli/7yl7+4OY99sdQ0a37V1dXutqWlxbWh4H/foXr/0YA+6ht91Df6qG/0Ud/GUh/Z12g1DyzIZLdR4f2bitceFq7oyHA34BrIsr/2Gf2pseCvleC/9d/3P7ardTk5OYqOjlZBQYH+8Y9/6Mwzz+zcx/819Xyf3t6357HZc5Z5/cc//tEFmyxd/d5779V///d/u3T1mpoaNyCzZqnrFnyaPHmyG4x95jOfcenudoFsx44dmjp1ardjsfvW54HBqqH8f8aYB4ZzEpo4L6GHczK6z8m+jnn21Wgd80yaNMkVXz/ttNN00kknuTGP1ZpKSUnpdvz7M+YZUUGpjRs36gc/+IFefvnlT6xKH+imm27qVrzL7+mnn1Z8fLyGkqXB4ZPRR32jj/pGH/WNPurbWOgj+92Zm5vrilw2NzcP+PU2WBkKdjw2mPEHUWxwY1P8/Y/PO+88l9puRTzt+D/96U+747fn7eqhXRm0+za4svoL/tfZ+9p7+R8HsoGSvdae+853vuPGF1an0lh9Sxt47dy5032uHYsF46ZPn+6es6uXN954oztm+7zPf/7zLiAV2Ed2fFarwepnBl65tGMcKox5EIhzEpo4L6GHczI6z8n+jnmGykgb87z11lt7jHmsOHvg5+zvmCesfV/LxA8y+8I/qdC5dYClkF1wwQVu+p65/vrrXaTukwqd93bVcOLEiSorK3PzJoeCnXT7Rlq+fDl1JvaCPuobfdQ3+qhv9FHfxlIf2YAkPz/fDSYCU777YkMFC7YkJSUNKFNqLOnZR9bXtuyzjTkC+9rGIZmZme6K5GCPQxjzwHBOQhPnJfRwTkb3OdnXMQ8GPgbc3zHPiMmUso6weYzvvfeeWxYxME3MoqB2FfDYY4/d43UxMTGu9WT/yYf6h89wfMZIRx/1jT7qG33UN/qob2Ohj+wCjw0orC7UQGpD+VPB/a9F331kze73/H81lP/HGPMgEOckNHFeQg/nZHSek30d82DgY8D9HfOMmKCURdY+/PDDbtts6UMrtvXggw92ps0DAAAAAAAg9AU1KGXzHjdt2tT5eOvWrW4qXnp6uiuoddVVV2nXrl3685//7KJv/nmPftnZ2S49rOd2AAAAAAAAhLagBqVsOt4xxxzT+diWOzTnnnuu/vSnP6mwsNCtZgMAAAAAAIDRJahBqaOPPvoTl020wNQnsULn1gAAAAAAADCyUPELAAAAAAAAw46gFAAAAAAAAIYdQSkAABAUp5xyin7729/usX3hwoV66KGHPnF6/4oVK/ZaGuBf//rXoB4nAADA/mDMs3cEpQAAQFBccMEFuvvuu/dYBMUWOjnttNOCdlwAAACDiTHP3hGUAgBgLGtt2ntra9n3ffvh9NNPV35+vj744IPObXfddZfOOecc7d69263Qu2TJEh1wwAG65JJL5PP5BvT+JSUlOvPMM3XggQdq/vz5+r//+z+33d7H3m/u3LnuCqV9RmNjo0pLS3XCCSe4/RcsWKDzzjtvwF8TAAAIUYx5FIpjnqCuvgcAAILsiSv3/lz2PGnpNzsfhq38oeTby0AsY4Z0+KUD+uioqCh99atfdYOyW2+91Q2S7r//fr322mtKTU3Vo48+qsTERLW1temMM87Q3//+d33xi1/s9/tfeumlmj17tkuLt8GaDcRsQBYTE6Nnn31WH3/8scLDw1VVVaXo6Gj95S9/0dSpU/X000+715eXlw/o6wEAAKNjzKOnr5HamnvflzHPoCJTCgAABDWd/a9//auam5vdQMqu5FmzK3v/8z//4wZUBx10kEtxX7169YDe+5lnntE3v+kNMLOzs90VRNs2bdo0tba26vzzz9c999yjlpYWN1A77LDD9MQTT+h73/ue/v3vfyshIWGIvmoAADDWMObpHZlSAACMZSf/Yu/PhXW/dtW+/EcKCw/v1779NW/ePM2YMcNdIbSrhzZgM7fccou70vfmm28qNjZWV1xxhbuquD/CwsLcbUpKij766CO9+OKLev7553XVVVfppZde0rJly9wg0AZxNlj84Q9/qPfee08RERH79bkAAGBkjXl0wo/7v28/MebpHZlSAACMZZExe28RUfu+7wDYoOynP/2p3nrrLZ111lluW0VFhXJzc93grKioSP/4xz8G/L7HH3+8/vCHP7j7VjvBBl3Lly939+vq6lwtBfvcKVOmaM2aNdq6datLnf/CF76g2267TRs2bFBtbe0+f10AACCEMOZRKI55CEoBAICgskHZ+vXr9fnPf94NkMxll13mrhhawU+rwWCDrYH6zW9+o7Vr17oinlZA9Oqrr9bSpUtdoVEbqFlhTysGau3kk0/WCy+84GowLFq0SIcffrhuvvlmd4URAABgMDDm2RPT9wAAQFAlJSXtcXVu0qRJ7ipib772ta+51hsbZPnl5OS4K4U9LV68WKtWrdpju608w4p7AABgqDDm2ROZUgAAAAAAABh2BKUAAAAAAAAw7AhKAQAAAAAAYNgRlAIAYIxpb28P9iGMevQxAADBx+/j0O9jCp0DADBGREVFKSwszC0PnJWV5e73h8/nU3NzsxobGxUezvWsvvrI38d2a30+2jHeBwCMljEPBjYGtIDU/o55CEoBADBGREREaMKECdq5c6e2bdvW79fZgKOhoUFxcXEM6vrZR9asr63PR6vWNp9e3limlbvCdGKbT2Mg/gYAGOVjHgx8DLi/Yx6CUgAAjCGJiYmaOXOmWlpa+v0a2/ell17Spz/96TGR+bMvevaRtdEckDItbe16dfNuVTSF6bUt5Tpu3rhgHxIAAPs15sHAx4D7O+YhKAUAwBhjA4eBDB5s39bWVsXGxhKU2oux2Edx0RE68YAcrd24VS+sL9WSKRlKjY8O9mEBALDPYx4M//iGwhAAAADYJ4smpCgrrl3Nbe36zweFwT4cAAAwwhCUAgAAwD6xOhJLMtsVHiZ9XFCt9UU1wT4kAAAwggQ1KGVzE0877TTl5eW5Qc2//vWvT9z/lVde0RFHHKGMjAxXaGvOnDn61a9+NWzHCwAAgO5SoqVl09Ld/UffL1BLmy/YhwQAAEaIoAal6urqtHDhQt1+++392j8hIUGXXHKJC2atXbtW11xzjWu///3vh/xYAQAA0LtjZ2cpOS5Su+ua9dKG0mAfDgAAGCGCWuj85JNPdq2/DjroINf8pkyZooceekgvv/yyvvGNbwzRUQIAAOCTxERF6NQDx+n+t/Jd0fNFE1OVkRgT7MMCAAAhbkTXlHrvvff02muv6aijjgr2oQAAAIxpB45P0YzsRLX62t00vvb29mAfEgAACHFBzZTaVxMmTFBpaalbmvD666/X17/+9b3u29TU5JpfdXW1u21paXFtKPjfd6jefzSgj/pGH/WNPuobfdQ3+qhv9NHg9dFQ9mEojHlOOSBLt5VUa21htT7IL9e8cclD8rnYO75fQxPnJfRwTkIP52R0nZP+viasPUQuY1mh84cfflgrVqzoc9+tW7eqtrZWb7zxhn7wgx/ot7/9rb70pS/1uq8FrW644YY9tt93332Kj48flGMHAADoj/r6ep199tmqqqpScvLgBmxCZczzQXmY1laEKT5SOnmiT5EjOi8fAAAM5ZhnRAalAv34xz/Wvffeq/Xr1/f7quHEiRNVVlY26IPBwIjgypUrtXz5ckVFRQ3JZ4x09FHf6KO+0Ud9o4/6Rh/1jT4avD6ycUhmZuaQBKVCZczT3OrTbc9vVkV9i46amanl87KH5LPRO75fQxPnJfRwTkIP52R0nZP+jnlG5PS9QD6fr9sArKeYmBjXerIOHer/6MPxGSMdfdQ3+qhv9FHf6KO+0Ud9o4/2v4+Gsv9CZcxjN6cvmqB739iu17aW6+BpGcpOih3Sz8ee+H4NTZyX0MM5CT2ck9FxTvq7f1CDUjYFb9OmTd2m5a1evVrp6emaNGmSrrrqKu3atUt//vOf3fO333672z5nzhz3+KWXXtIvf/lLfec73wna1wAAAIDu5o5Lcm1tYY0eWV2gCz411WXFAwAAhExQ6p133tExxxzT+fiKK65wt+eee67+9Kc/qbCwUDt27OiWFWWBKgteRUZGavr06fr5z3+ub37zm0E5fgAAAOzJAlCfWZCnTSUbtLm0Th/srNLCianBPiwAABBighqUOvrooz9xuWALTAW69NJLXQMAAEBoS0+I1tGzs7RyTYke/7BQs3OTFBsVEezDAgAAIYT1UAAAADAkjpyZpczEaFU3turZtSXBPhwAABBiCEoBAABgSERFhOu0hXnu/muby7Szoj7YhwQAAEIIQSkAAAAMmVk5SVowIUW+dum+N3eorqk12IcEAABCBEEpAAAADKkVi8a7aXwV9S3629v58lmECgAAjHkEpQAAADCk4qIj9JXDJis6IkybSmq1cm1xsA8JAACEAIJSAAAAGHI5ybE6c/EEd/+F9aX6aFdVsA8JAAAEGUEpAAAADIuFE1P1qRmZ7v6Dq3aqpKYx2IcEAACCiKAUAAAAhs3J83M1LTNBTa0+/eWNHWpsaQv2IQEAgCAhKAUAAIBhEx4epi8eOlHJcZEqrWlyGVPt7RQ+BwBgLCIoBQAAgGGVFBulryydrMjwMH1cUK2XNpYF+5AAAEAQEJQCAADAsJuYHq/PLBjn7j/1cZE2ldQE+5AAAMAwIyg1BN7aVq71VWGqqG8O9qEAAACErEOnpuvgyWmy2Xv3v5WvijrGTgAAjCUEpQaZ1UR4eeNurS4L0/+u3KTbnt2o59YVq7i6kXoJAAAAAcLCwnT6ojxNSItTfXOb7ntrh1rafME+LAAAMEwISg0yX7u0bFq6suLaFRYmFVQ1auWaEt36zEbdsnKDnviwUNt31xGgAgAAkBQVEa6zD52k+OgI7axo0L9XFzBOAgBgjIgM9gGMNhHhYTp8eoYq17fr08fN0uayBq0prNbG4lqV1Ta7Qp7WkmIjNW9csublJbtlkSMjiA8CAICxKS0hWl86dKLuenWbVm2vUF5qrA6fnhnswwIAAEOMoNQQSoyJ1MFT0l1ram1zgamPC6q0trBGNY2tenNruWuxUeGak5ukA/JSNDMnUTGREcE+dAAAgGE1IztJJx2Qqyc+KtJ/PihURkKMZucmBfuwAADAECIoNUws0DR/fIprrW0+bSmr05qCapdFZQGq1flVrtnSyBaYsiyqueOSlRDDKQIAAGPDkTMzVVrTpHe2V+j+t3bom0dN07iUuGAfFgAAGCJEPILApurNykly7YxFedpRXu8CVB8XVGt3XbPLpLIWFrZLUzMS3BQ/C1JZajsAAMBoLny+4qDxbgXjzaV1uue17frW0dOVEhcV7EMDAABDYMCFjK677jpt3759KI5lzA6+Jmck6OQDx+l7J8zSZcfN1PJ52cpLiXXLI1tGlaWw/+Kp9frtcxv1/LoSVvIDAACjuj7nl5dOVlZSjKoaWnTv69tcGQQAADD6DDgo9e9//1vTp0/Xcccdp/vuu09NTU1Dc2RjNECVmxKrY+fk6NLjZurKE2frMwvGaWpmvFvJb1dlo55eU9y5kt+THxVqx+56AlQAAGBUiYuO0NcOn6LEmAg3/vn72/ny2RLHAABgbAelVq9erbffflsHHHCALrvsMuXm5upb3/qW24bBZdP1jpiRqW98err+v1Pm6r8Wj3cF0a3ulK3k9+KGMv3uxc362RPr9K/3dmljcY2rVwUAADDSpSdE66uHTXHjnjWFNa4AOgAAGONBKXPQQQfpN7/5jQoKCnTnnXdq586dOuKII7RgwQL9+te/VlVVVb/e56WXXtJpp52mvLw8lyX0r3/96xP3f+ihh7R8+XJlZWUpOTlZy5Yt01NPPaWxtJLfuYdP0dWnznXLJi+ckKKYyHBVd6zkZ8so//ixtfrrm9vdcsq1Ta3BPmwAAIB9NikjXp8/eIK7/8qmMr2xZXewDwkAAAQ7KOVn08ZaWlrU3Nzs7qelpem3v/2tJk6cqAceeKDP19fV1WnhwoW6/fbb+x3EsqDU448/rlWrVumYY45xQa333ntPY0lsVIQWTEjVFw+dpGtOnavzjpiiQ6emKSk2Uk2tPn20q1oPrtqpnz6+Vr97YbOeX1+ioirqUAEAgJHHxjwnzMtx9x99v0AbimuCfUgAACCYq+9ZQOjuu+/W/fffr5iYGJ1zzjkusDRjxgz3/G233abvfOc7Ouussz7xfU4++WTX+uvWW2/t9vinP/2pq3H16KOPuuytsb6S34pF7dpZ0aD1RbZ6X7UKqhrdyn7Wnv64WGnxUZqdm6S545I1LTPBvRYAACDUHT07S2W1TXp3R6Xue3OHvnnUNI1LiQv2YQEAgOEOSh144IFat26dTjjhBDd1zzKVIiIiuu3zpS99ydWbGmo+n081NTVKT08f8s8aCWwK5MT0eNeOn5ejqvoWrSuq1rqiGm0urVVFfYve2FLumk37m5GdqLnjvIBWUixLLQMAgNAd43z2oPGqrG9xKxPf89p2XXzMdCUzfgEAYGwFpb7whS/o/PPP1/jx4/e6T2ZmpgsYDbVf/vKXqq2tdce0N7Y6YOAKgdXV1e7Wph1aGwr+9x2q9++v+Chp8cRk15pbfW4QZ1lU64prVdPYqg93VrpmK/tNSI3T7NxEzc5JUm5yjBv8DaVQ6aNQRh/1jT7qG33UN/qob/TR4PXRUPbhWBjzfGHJOP3+5W0ua+pPr2zR+UdMcRfa0IXv19DEeQk9nJPQwzkZXeekv68Ja9+PQkP+lw5GAMPe4+GHH9aKFSv6tf99992nCy+80E3fO/744/e63/XXX68bbrih19fHx8drLLLTVtEsFdSHqaBOqmjqfv7iI6W8hHaNi29XTqzELD8AAAZHfX29zj77bLcojC3aMpjGypintkVauStczW1STny7PpXTLuJSAACMzDHPPgWlbNrer371K23cuNE9njlzpr773e/q61//+rAEpf72t7+5bK1//OMfOvXUUwd81dAKsZeVlQ36YDAwIrhy5UpXlD0qKvTTyqsbWrS+uFbri22aX51a2rr+S0RHhGl6VoLm5Pqn+e1TGbIR30fBQB/1jT7qG33UN/qob/TR4PWRjUMso3woglJjacyzvbxe97y+w2WCT82M11eWTiJjqgPfr6GJ8xJ6OCehh3Myus5Jf8c8A44wXHvttbrlllt06aWXatmyZW7b66+/rssvv1w7duzQjTfeqKFkxdUtIGWBqb4CUsYKsVvryTp0qP+jD8dnDIaMqCgdnhyvw2dmq6XN5+pPrSus0dqialU3tGp9Sb1rUrEmpMW5OlRzcpM1LiV2v7PkRkofBRN91Df6qG/0Ud/oo77RR/vfR0PZf2NpzDMjJ0VfP3Ka7n51m7aXN+qvb+3UuYdPcSsUw8P3a2jivIQezkno4ZyMjnPS3/0HHJT63e9+pz/84Q+umLnf6aefrgULFrhA1UCCUlYPatOmTZ2Pt27dqtWrV7vC5ZMmTdJVV12lXbt26c9//nNn+vm5556rX//611q6dKmKiorc9ri4OKWkpAz0S0EvoiLCXcDJ2hnteSqsanTF0tcW1riV/fxt5ZoSpcRFdWZQTctKYCAIAACGzeSMBF3wqam669Wt2ra73gWozjuCwBQAACNJ5L6kbx188MF7bF+yZIlaW1sH9F7vvPOOjjnmmM7HV1xxhbu1wNOf/vQnFRYWuuwrv9///vfuM7797W+75uffH4PLsqDyUuNcO3ZOjmoaW1yh9LWF1dpUUquqhha9ubXctfAwGxzGa2ZOkmZmJ2p8atyQF0sHAABjm6047AJTr2zTjvJ63fnKVp1/xFTFRROYAgBgVAalvvrVr7psKZvCF8gCRl/+8pcH9F5HH310Z7H03vQMNL3wwgsDPFoMpqTYKB08Jd01m+a3pbTOZVFZgKqstllby+pde/rjYiVER2hGdqILUtmtZVUBAAAMtglp8brw01P1x5e3umzuP768RRccOVXx0YNTBxMAAAydffptbYXOn376aR122GHu8Ztvvukyms4555zObCfTM3CF0TXNb3ZukmumvK5ZG4trtKGkVptLalXX3Kb3d1a5ZnKTYzUrx4JUiS7dHgAAYLCMS4nTNz49zQWkCqoa9YeXtrrAVGIMgSkAAELZgH9Tf/TRR1q8eLG7v3nzZndrFdWt2XN+TN0aW9ITorV0WoZrbb52l0JvQaqNJbXaVdmgoupG117aWKaoiDBNSotVeVWYDq5pUl5aJP9fAADAfslJjtWFR07TH1/Z6sYcf3hpi75+5FSX6Q0AAEZJUOr5558fmiPBqBERHqapmQmunXCAVNfU6qb4WYBqY0mNW9FvY0md8svCtPu5zUpLiHF1qGZ1TPWjDgQAANgX2Z2BqS0qqWlygakLjpxGGQEAAELUfuU079y5091OmDBhsI4Ho1BCTKQWTkx1zWqI2SBxza5KPVK2XZHhYa5g+jvbK1yzhKmJafEuSGVT/ex+uFVRBwAA6IespBh9oyNjqrS2uTNjKjU+OtiHBgAAegjXAPl8Pt14441KSUnR5MmTXUtNTdWPfvQj9xzwSWyanqXXf2pGho4e167/7+TZbvnmT83IVHZSjKzuvU39e3Zdie54cYt+9Nga/eWN7Xpra7kq6pqDffgAAGAEyEj0AlNp8VHaXdes25/f5MoKAACAEZ4pdfXVV7tC5z/72c90xBFHuG2vvPKKrr/+ejU2NuonP/nJUBwnRqnoyHA3bc/aqRqnqvoWN8XPTfUrrlVDS5s+Lqh2zWQlRmtGTpJm5yRpSma8YiKZ6gcAAPaUlhCtb356uv78+jZX/Pzu17bp6FlZOn5uDlnYAACM1KDUPffcoz/+8Y86/fTTO7ctWLBA48eP18UXX0xQCvslJT5KB09Jd83na3dF0jd0FEzPL693afiltbv1+ubdburflMyEznpUOckxFEwHAADdxhUXHT1dj31QqDe3luv59aXavrteZx06UckUQAcAYOQFpcrLyzVnzpw9tts2ew4YLHYVc2J6vGvHzc1RQ3ObNpd6xdIti6qivsUVULf2xEdFSo6L1Mxsy7pKdAXT46NZBhoAgLEuKiJcKw4a7xZgefi9XdpSVqfbnt2osw6Z5MYLAAAgeAb8V/vChQv129/+Vr/5zW+6bbdt9hwwVGxVvvnjU1yzgumltU0uOGU1ImyAaav6rdpe4VpgwXTLopqQFkeqPgAAY5gtuJKXGqf739qhwqpG3fXqVh07O1vHzslmjAAAwEgJSv3iF7/QqaeeqmeeeUbLli1z215//XXl5+fr8ccfH4pjBPZg0/Syk2JdO2JGplrafNq+u07ri7xMquLqJlcw3V80PS4qwq3m563ql8TS0AAAjNGV+b519HT954MCvbW1wo0Rtu2u01mHTFQS0/kAAAj9oNRRRx2lDRs26Pbbb9e6devctjPPPNPVk8rLyxuKYwT6lZo/IzvJNQUUTF9fXKPNJXWuYPoHO6tcM1Z/yiuwnqjJGQnu9QAAYPSz3/mfPWiCpmQk6N+rC7S5tE63PbfJBaamZzGdDwCAkA1KtbS06KSTTtIdd9xBQXOMqILp+RX1bqrfhpIa7axocJlU1l7eWKaoiDBNy0xwQSrLospMjKZgOgAAo9xBk9I0Pi1O9725w40J7nxlq46fm61jZmczDgAAIBSDUlFRUfrggw+G7miAIWB1Iiwbytrx83JU39zqiqNv6KhHVd3YqvXFta5JhUqLj+oIUCW6K6axURHB/hIAAMAQsDIAFx89Q4++X6B3tldo5ZoStzrfFw6eqIQYFkwBAGCoDfi37Ve+8hXdeeed+tnPfjY0RwQMMVuVb8GEVNesYHpRdaOXRVVc4waitqqfLRttzeqeTs6IdxlUM7ISNT6VgukAAIwm0ZHh+q8lEzQl06bz7XIXrWw639mHTtKkjPhgHx4AAKPagINSra2tuuuuu1yh8yVLlighIaHb87fccstgHh8wpCw9f1xKnGufnpWlptY2bS2r68yiKqtt1tayeteeVrFiIsNdkMoGrjblz4JUkdSjAgBgxFsyOc39Xr/vze0qrW3W/720WaccOE6HT89gOh8AAKESlProo4+0ePFid98KngOjSUxkhObkJrtmyuuaXQaVBagsMGUF0y1gZc1YPapJ6fGampng2sT0eIqmAwAwQuWmxOriY2bo4fd2ucVR/vNBoVud778WT2A6PwAAoRCUev7554fiOICQlJ4QrcOmZbhmBdOLaxq1tbROW8rqtK2sTnXNbW7VHmsmMjxME9LiOoNUlvZvgS4AADAyWPDpi4dMdJnRj39YqI92VauoapPOXjrJZVYDAIAgBqXOP/98/frXv1ZSUlK37XV1dbr00kvd1D5gNLJaUv6pfofPyHT1qEprmtx0P3+zounbdte79vz6UleTylb2mZqRoKlZCZqcnqC4aIJUAACEMpuud/j0TE1Mi9d9b+1w0/l/98Jmnb4wz63sCwAAghSUuueee1yR855BqYaGBv35z38mKIUxNWDNTo51bem0DBek2l3X7DKo/JlUVjQ9v7zBtZc2lslKUoxLjnUBqikWqMpMYHUfAABClE3Lv/TYGfr72/luld5/vrvLXXiy4JQVSAcAAPun338NV1dXuz+6rdXU1Cg2Nrbzuba2Nj3++OPKzs7ez8MBRnaQKjMxxjX/VdSKumZt3V3npvxZTQq70lpQ1ejaq5t2u31ykmM6p/tZS4qNCvJXAgAAAlftPffwKXphfalWri3Wqu0Vyi+v1+eWTHBBKwAAMAxBqdTUVPdHt7VZs2bt8bxtv+GGG/bjUIDRJy0h2rXFk9Lc46qGFpdBZQGqLaV1KqlpUnG1197YUu72yUqMdqv7TUyNUX1rkL8AAADgxrnHzMl2tSIfeDvf/f7+3Yub9emZmTpubg6LnAAAMNRBKStwbllSxx57rP75z38qPb1rPn10dLQmT56svLy8fT0OYExIiYvSwomprpnaplYXpLJ6VHZbWN3olqG29qbPp/wd4cp/ZpNmj0vW9KxETctKcFdsAQDA8LPfxZcdN1P/+aBAq/Or9OKGMq0prNHnFk9wASsAADAw/f7r9qijjnK3W7du1cSJExUevv9XhF566SXdfPPNWrVqlQoLC/Xwww9rxYoVe93f9vne976nd955R5s2bdJ3vvMd3Xrrrft9HECwJMZEav74FNdMQ3Oby6KyANWm4mrl58vVqbIsKmtWkyovJdYNimdkJ2pyRgI1LQAAGEZWC/KsQybpwPHV+tfqXW7Rkzte2qwjpmdq+bwcfi8DADAAA065sIyoyspKvfXWWyopKZHP5+v2/DnnnNPv97IV+xYuXOhW9DvzzDP73L+pqUlZWVm65ppr9Ktf/Wqghw6EPFuZb+64ZNda5mQqt3qdZh88UdsqGrW5pNZNF9hV2eiaFU6PDA/TpPR4Tc9OcIGqCWnxirAl/wAAwJCal5esKZnx+s8HhXpvR6Ve2VSmdUXVOnPxBFcjEgAADEFQ6tFHH9WXv/xl1dbWKjk52c2x97P7AwlKnXzyya7115QpU/TrX//a3WeVP4wF0RHS3HFJWjDJmy5b3djiglObS+u0qaTW1aiylf6srVSJYiLD3RQ/C1BZsyLqgd+jAABg8NiU+i8cPFELJqTo4fd2uQVN/vDyFh02LUMnHpCjmMiIYB8iAACjKyhl0+css+mnP/2p4uNDf+68ZVdZC1xF0LS0tLg2FPzvO1TvPxrQR/vWR3ER0vxxia61t2ervK5Zm8vqXJBqa1m96ptb9fGuKtdMYkyEpmVakCrBBavS4qM1mvD/qG/0Ud/oo77RR4PXR0PZh4x5gmd6RpwuOWqqnvioWKt2VOrVjaVau6tSKxblud+/w4lzEpo4L6GHcxJ6OCej65z09zVh7Va9fAASEhL04Ycfatq0aQM+qE88kLCwPmtKBTr66KO1aNGiPmtKXX/99b2uCnjfffeNiKAa0F/2nVzRLJU0hKm4QSptDFNb99m1SoiScuLaXcuOk2K5gAsAw6q+vl5nn322qqqqXMb5YGLMExqK6qW3S8M7V9CdmdKuBentotQUAGAsqe/nmGfAQSmr/fTFL35RX/jCFwbjOIc8KNXbVUMr1F5WVjbog8HAiODKlSu1fPlyRUVFDclnjHT00dD3UWubTzsrG1wWlbWdFQ3y9fhuz02OcVlU1qxouk3/G0n4f9Q3+qhv9FHf6KPB6yMbh2RmZg5JUIoxT+hoamnTk2tK9Pa2Cvc4IyFa/7U4z9WBHGqck9DEeQk9nJPQwzkZXeekv2OeAU/fO/XUU/Xf//3fWrNmjQ488MA9Duz0009XKImJiXGtJzvuof6PPhyfMdLRR0PXR/aSmbkxmpmb6h43tngr+20usSBVrQqrGlVS26KS2kq9vrVSVh/dFU3PSnTLWk9Mi3eF10cC/h/1jT7qG33UN/po//toKPuPMU/osL743MGTtGBimv757k5VNLTqztd26NMzs3T83GxFRgz9RSDOSWjivIQezkno4ZyMjnPS3/0HHJS68MIL3e2NN97Ya7ZTW1vbQN8SwDCIjYrQnNxk10xtU2tH0XSvlde1aNvueteM1UfPSoxxgarJGfHuNiuJwukAAPTXrJwkffe4WXr0gwK3Qt+LG0q1vqhGnz94gvJS44J9eAAABN2Ag1I+X48iNfvBVvDbtGlT5+OtW7dq9erVSk9P16RJk3TVVVdp165d+vOf/9y5jz3vf21paal7HB0drXnz5g3acQFjQWJMpBZOTHXNuKLppbXaWlqnHeX12l3XrJKaJtfe2e5NP4iLitDE9DgXoLI2MT3eBbsAAEDvLOvYVuibNy5Z/169S0XVjbr9+U06fm6OjpqVpXBLVQYAYIwacFAqUGNjo2JjY/f59e+8846OOeaYzsdXXHGFuz333HP1pz/9SYWFhdqxY0e31xx00EGd91etWuWKd06ePFnbtm3b5+MAIKUnRCs9IV2HTEnvzKTasbveBajyy+u1s6JeDS1t2lBc65qxpKnspJjOTCoLUll2FdlUAAB0N398iqZkJuhf7+3SxwXVenpNsdYUVrusqeykfR9PAwAwpoJSNj3vpz/9qe644w4VFxdrw4YNbiW+H/7wh5oyZYouuOCCfr+XFSv/pDrrFpjqaYB12QHsRybVvLxk14zP167C6kYXqLIg1fbyOjflr7i6ybW3tnZlU02ybKqOQNWENLKpAADw/2798tJJWp1fqUfeL3CLkPz2uU06YV6uDp+eQdYUAGDMGXBQ6ic/+Ynuuece/eIXv+isL2Xmz5/vVsIbSFAKwMhhA+XxqXGuLZue4bbVNLYov7xBO8q9KX82uLZsqvXFta4ZS5rKSYrVpAz/tL8EZSZGk00FABiT7PffQZPSNC0zUQ+9t9NlHz/2YaFWba/Q6YvyNDUzIdiHCABA6AalrL7T73//ex133HG66KKLOrcvXLhQ69atG+zjAxDCkmKjNC8vqjObqs2yqaosSFXfOfWvor7F1c+w5s+mio+O0MS0OE3OSHBT/iakxZFNBQAYU1Lio/S1w6fo7W0VeurjIvd78vcvbdHCCSk6+cBxSolj5SkAwOg34KCUFR6fMWNGrwXQW1paBuu4AIxAEeFhbrqetcOnqzObanvHlD8LUu2qbFB9857ZVFabymVipcVpQmq8xqXGKmoYlswGACCYWVOHTk3X/PHJevrjYr21rVzv76zSuqIaHTMnW0dMz1AkvwsBAKPYgINStsrdyy+/7IqLB3rwwQe7FSEHAH82lRV3tWZa23wqrGrsDFL5s6n8tane3VHp9rOyGrnJsS5I5Q9W2WMG5wCA0SY+OlIrDhqvQ6am65HVBe5345MfFWnVtnJ9ZmGeZuUkBfsQAQAIjaDUtdde61bHs4wpy4566KGHtH79ejet7z//+c/QHCWAUcOCSjZlz9rh6sqmsnpUu6xVNriV/mqb2lRQ1eja2/Km/UWGhyk3JdZN97NAVU5SlHysfQAAGCXsd9tFR03Te/mVLihVWtusu1/dpnnjknTqgjy3Ui4AAGM6KHXGGWfo0Ucf1Y033qiEhAQXpFq8eLHbtnz58qE5SgCjPptq7jhryZ2rbFY3tCq/wpvu5w9W2bQ/C15ZMxYYL8gPV8HLWzUpI7Fj6l+cspJiKKQOABiR7PfX4klpmjcuWc+uLdFrm8u0prBGG4o36NOzsnTkzEzqMAIAxm5Qyhx55JFauXLl4B8NAHQMyK0AbEp817Q/C1TZND/LovIHqXbsrlNbu7SjvEE7K5s6Xx8TGd455c9uLbPKri4TqAIAjBQWeDp1wTgdMiVNj7xfoM2ldXpuXYne2LJbR83K0mHTMhQdyZR2AMAYC0rl5+e7P+wmTJjgHr/11lu67777XK2pb3zjG0NxjADgfu5YYMnaggmpbltzc7Me+PcWzVmcp+LaFhesKqhsUFOrT1vK6lzzi4uK6BakstvU+CgCVQCAkJadHKsLPjVVHxdU6+mPvSl9T3xUpFc2leno2Vk6dEo69RYBAGMnKHX22We74NNXv/pVFRUV6fjjj9f8+fP117/+1T226XwAMBwsoJQcLS2amKqoKG/pbJ+vXaW1TS6jyj/Vr6iqUQ0tbdpUUuuaX2JMhKttZQEqu7VglRWbBQAg1H7fWeawTel7L7/CTeuz7OFH3y/USxvKdOycbC2ZnOZWwQUAYCQZ8F9fH330kQ499FB3/+9//7sOPPBAvfrqq3r66ad10UUXEZQCEFTh4WHKSY51bUnHIqG24l9JjQWqbNqfN/3PVgC0YuprC2tc88tIiHbBqQlpVow9TuNS4pgeAQAImd9xSyana+GEVK3aXqHn1peoqqFFD7+3Sy9uKNFxc3N0QE5CsA8TAIChC0q1tLQoJibG3X/mmWd0+umnu/tz5sxRYWHhQN8OAIacTWvIS41zTUp321rafCqsbAzIqKp3UyJ213nt/Z1Vbj+76JybHKsJ6V6gygJWOUmx7g8DAACC9Xtt6bQMLZ6cpre2luuF9SUqr2vRP97ZqWfjIxVb69ViBABg1AWlDjjgAN1xxx069dRTXbHzH/3oR257QUGBMjIyhuIYAWDQRUWEa1JGvGt+Dc1tLpMq3wqnV9Qrv6JBNY2tKqhqdO2trRVuv+iIsI76VF42lQWr0qhPBQAIwu+yI2Zk6uApaXpjS7le2lCqstpm5ReHq/WFLTpxfp7mjkvi9xMAYPQEpX7+85/rs5/9rG6++Wade+65Wrhwodv+yCOPdE7rA4CRKC46QjOyk1wzdpW5uqFV+QHZVHZrhdS3ltW75pcQHREw7S/eBa0SY6hPBQAYejGREW5FvqVT0/Xi+mL9decOFVU36d43trvfTcvn5WhmdiLBKQBAyBnwX0xHH320ysrKVF1drbS0tM7tVvw8Pr4r4wAARjobvKfERyklPsUVmPUHqkprmlwWlT9IVVjVoLrmNq0vrnXNLz0hqnPKn93mpca6PxwAABgKsVEROnZ2lqo2+JQ4PVNvba90v6fufnWbpmTEu+DUtKzEYB8mAAD7HpRqaGhwf5T5A1Lbt2/Xww8/rLlz5+rEE08c6NsBwIgLVNny3NZspSN/IXUrnN6VUdXgAldW36O8rkofdNSnsgvU2UkxykuJU25KbEedq1hW/AMADKqYCGn5vGx9ek6OXlxfqje27Na23fX6w8tbNT0rQSfMy+02fR0AgGAZ8F9CZ5xxhs4880y30l5lZaWWLl3qlmK37KlbbrlF3/rWt4bmSAEghAvO2pQ9a36NLW0uOGWBql0dtzYVsLi6yTXld70+JS7KBadspb9xHcEqalQBAPaXTSM/dcE4fWpmpiuG/va2cm0urdPvXtysOblJLnPKWwQEAIAREpR699139atf/crdf/DBB5WTk6P33ntP//znP3XttdcSlAKAjikUM7ITXfOzZbttqp+t+lfQcWsr/dl2a2sLawJeH+4yqsa5YJUXqMpKjHEBMAAABsIufpyxaLw+PTNLz60r0bs7KrSuqMY1C059elaWm97HxRAAQMgHperr65WU5BUBfvrpp13WVHh4uA477DA3lQ8AsPc/CqzNyU3ullFlU/8sWFVQ2ajCygYV1zSqscWnLWV1rvlZPConKVbjbNpfindrASsLgAEA0Je0hGj915IJOmp2lp5bW6LVOys7g1OT0uN15MxMHZCXTHAKABC6QakZM2boX//6l1uB76mnntLll1/utpeUlCg5uesPLQBA3yygNDUzwTU/q1FVWtvkBakCMqssUFVQZfcbtSrgPayguqtPFVCrKjk2kj8qAAC9ykyM0RcOmahj5mTrlU2lend7pXaU1+uvb+5QVmK0jpyVpUUTUxVFdi4AINSCUjZF7+yzz3bBqGOPPVbLli3rzJo66KCDhuIYAWBMsSl6Xn0pq/PhFVO3BSYq6ltUUNmgIheY8jKrbNqfV1C9RR/tqu58j4ToCJdJlZ0YpW01UnF1o8alRSoinEAVAMCTlRSjzx40QcfPzdFrm3frzS3lKq1t1kPv7tLKNcU6fHqGlk7NUFw0GbkAgBAJSn3uc5/Tpz71KRUWFmrhwoWd24877jiXPQUAGHyW9ZSeEO3a/PEpndvrm1v3yKiylf/qmtu0qaRWG4p8yi8JV8HzWxQdGeFW/8uxbCqXVRWj3JQ4VwgXADB2JcVG6cQDcnXUrCy9s61Cr2wqcxc9nvq4WC+sL9WhU9N1xIxMNwUdAIDBtE9/ieTm5rq2c+dO93jChAk69NBDB/w+L730km6++WatWrXKBbkefvhhrVix4hNf88ILL+iKK67Qxx9/rIkTJ+qaa67R1772tX35MgBgxIuPjtyjoHpLm89lRlmwKn93rRpKtismMlwtvvbO6X/vqbJz/6TYSFebKjc51k3/swwtu3pOVhUAjL0p5bZS32HT0vXBriq9tKHUrRj78sYyvb55txZPTnXF0jMSY4J9qACAsRqU8vl8+vGPf6z//d//VW1trdtmhc+/973v6eqrr3ZFz/urrq7OZVudf/75rmB6X7Zu3apTTz1VF110kf7617/q2Wef1de//nWNGzdOJ5544kC/FAAYlawGyIS0eNcOmpCkyF3v6eSTZ6u2RS6jyqb/WXF1C1yV1TarprFVNY212lDs/Uw3VkYkO8kfpPIaWVUAMHamkS+elKaDJqa63w0vbijR1rJ6vbW1Qm9vq9CiCamuWHpOcmywDxUAMMIN+K8LCzzdeeed+tnPfqYjjjjCbXvllVd0/fXXq7GxUT/5yU/6/V4nn3yya/11xx13aOrUqS4gZubOnes++1e/+hVBKQDoc/pflJv+d0Be1/S/ptY2FVc1ecGqai9YZUGrplZfx6qAllWlbllVllHlBam8rKrMxGj3BwwAYPT97pidm+Ta1rI6vbC+xAWp3suvdG1eXrKOnpWlienxwT5UAMBYCUrdc889+uMf/6jTTz+9c9uCBQs0fvx4XXzxxQMKSg3U66+/ruOPP77bNgtGffe73x2yzwSA0SwmMkKTMuJd8/MXVfcyqrxgld3fXdeVVbWx5JOzquzquWVVsQIgAIwO3kqxU7WrssEFpz4uqNaajmZTyI+ZneX24ec+AGBIg1Ll5eWaM2fOHtttmz03lIqKipSTk9Ntmz2urq5WQ0OD4uJsparumpqaXPOzfU1LS4trQ8H/vkP1/qMBfdQ3+qhv9NHQ9VFSdJiSsuI0M6vr56plT9mUP6sv4gJVLljV5Lbvqqh3LVBcVLhbdtyKq2cmRSsrMcbVqkqLi1J4CNWr4v9R3+ijweujoexDxjwYjnOSnRCpLyzOU8nMDL20sUwf7KzShqJq1yalx+mI6RmanZNIBm0PfK+EHs5J6OGcjK5z0t/XhLXbJfEBWLp0qWu/+c1vum2/9NJL9fbbb+uNN94Y2JH6DyQsrM9C57NmzdJ5552nq666qnPb448/7upM1dfX9xqUsmmFN9xwwx7b77vvPsXHk2oMAPvDfoPUt0qVzdbCvNumMNW22pO9vyYizIJe7UqKkpKtRbe7W3vM3zAY7Wy8cvbZZ6uqqkrJycmD+t6MeRAMdS3S2sowba0Jk6/j5350hDQ5sV1Tk9qVRk10ABiT6vs55hlwptQvfvELFwR65plntGzZss5pdfn5+S5ANJRsxb/i4uJu2+yxfYG9BaSMBbBstb7Aq4a2at8JJ5ww6IPBwIjgypUrtXz5ckVFsXRub+ijvtFHfaOPQrePbAVAK6JeVtukkpomd99ud9c2q9X/V4v9TO5oJswnpcVEuWwq1xKjO25jFGd/4QzVsfL/qE/00eD1kT97aSgw5kEwz0lNY4ve2FLhak1VN7aqUdJaG7/HxWjxpFQtmJAyphfL4Hsl9HBOQg/nZHSdk/6OeQb8m+Goo47Shg0bdPvtt2vdunVum62cZ/Wk8vLyNJQsCNYz8GUd5A+O9SYmJsa1nqxDh/o/+nB8xkhHH/WNPuobfRR6fWQfNSk2RpMyk7pt9/msXpUXoCqtaeq8tdbQ0qbKRmv12ljafSqgFVi34FR2ckzAbayS4wavbhX/j/pGH+1/Hw1l/zHmQTDPSXpUlE5ZGK+TDsxzdQff3VHh6k2V1LboyTWlWrmuVHNyk7Vkcppm5ySF1DTu4cT3SujhnIQezsnoOCf93T9yoFGyk046ya2CNxgFzWtra7Vp06bOx1u3btXq1auVnp6uSZMmuSt+u3bt0p///Gf3/EUXXaTf/va3uvLKK3X++efrueee09///nc99thj+30sAIChZ3+EZCTGuDZ3XNd2m0le29TqglQl1U0qrfUHrRpV3WDF1b22payu2/vFRIZ3ZVYlxSgjIdp7/4RoxUYNXXYVAGDvP+f9K/bVN7fq/fwqF6DaWdHgiqNbswsNlj21dGqG0hKig33IAIAgihxopOuDDz4YtA9/5513dMwxx3Q+9qecn3vuufrTn/6kwsJC7dixo/P5qVOnugDU5Zdfrl//+teaMGGCWwnQVuADAIxclu2UFBvl2vSsxG7PNba0edlUtR0Bq5pG99hWA7Qi6/aHjrWe4qMjlJ4QrczEaKUnxLj7XtAqmpUBAWAYxEdHatn0DNdsFddV2yu0Or/CXWR4cUOZK5Q+d1yylk3L0PQsVu4DgLFowNP3vvKVr+jOO+/Uz372s/3+8KOPPtpdHd8bC0z19pr33ntvvz8bADAyWMbTxPR41wK1tvlUXtc1FdAfqCqva1JtU5vqm631HrCyDKu0+GilJ0YrNTZCm6qlTSW1yklNUGqIrQ4IAKNBbkqsTl0wTifNz9Xawmq9ubXc/dy1KX7WbKXWw6Zl6KBJqWS6AsAYMuCgVGtrq+666y5X6HzJkiVKSEjo9vwtt9wymMcHAECvbLnx7ORY13qy7CoLWFnzB6qsyLo9rmxocRlWRdWNrvl8PuWXhqvk9R0KDw+XxaMsq8rfMvxZVi7jKlpRLBEIAPssIjxM88enuFZS3ajXt+zWezsq3QWGR94v0FMfF2nx5DSXPWXTsgEAo9uAg1IfffSRFi9e7O5bwfNApNwCAEKBXWXPS41zrSfLsKqob+kIWDWptKpBL+/eruykaFU2tLnVAb2VA5t7fW8rrm7TAG1KoN0G1rOyQBkAoH/sosIZi8brxANyXd2pNzbvVmlts17fvNu1mdmJLnvK6lNZMAsAMPoMOCj1/PPPD82RAAAwDCxw5A8kSUluEQ/lt+uUY2coMjLSFVa3YFVXlpXXymqb1Njic89b21rWfYVA+3spMEiVlRTrpqPYfaaiAMDe2c/Iw6dnuuwom9Jn2VPrimrcKn7WEmMitHBiqlu5b1zKnhcbAABjICjV1tamjz/+WDNnzlRcXPdfBg0NDdq4caPmz5/vpj4AADASWcZvSnyUa9Oyuj9nNRAbWto6pwFa868SaM2mBNoVfmsqrNkjuyorMcZlBditBaqyk2OURMF1AOhkPw9n5iS5Zj9j39yy22VQWZ3AVzftdi0vJdZN77MglS1aAQAY2fr9k/zee+/Vb3/7W7355pu9rsp3/vnn67vf/a4rhA4AwGj8Y8lWkopPj9yj6LoFrKobW11wqqRjdUB/s+3+7KrNpXXdXhcb5WVtZSfFetlVLnAVo/T4aIqtAxjTrIbfyQeO0wkH5GpDcY0LTq0rrFFBVaMKPijU4x8Wak5ukg6alOZumT4NAKM8KGUr7n3/+99XRMSeUxBsusOVV17pglYEpQAAYzLDKi7KtRnZid2ea2hu8wJUtV6wyr9aoE0NtOmA+eUNrgWKDA9zhdX9ASv/NMDMxBhFR/KHF4Cxw2pJzR2X7Fp9c6vez69yASpbWXVNYY1r8dERWtQxva+3WoIAgFEQlFq/fr0OO+ywvT5/yCGHaO3atYN1XAAAjApx0RGalBHvWs+C6xaYKqnukV1V26SWtnYVVze5JlV3vsZm+qXGRSkj0Susnt6jUbsKwGhm2arLpme4Ziv3WXDKVu6zjNTXNu92bVxKrAtOMb0PAEaGfv+krqurU3V118C4p5qaGtXXdy/6CgAAemdTTXKSY12TUrpNBbTVAf1BKgtY+bOr6pvb3HPWNvXynlYMOC0hunN1wMCAVXIs9asAjB5Wo++k+eN0wrxcVwzdAlRrCqpVWNWo/3xQqCc+sul9yS5ANTsniSnRADDSg1JW4Py1117TggULen3+lVdecfsAAIB9Z4EjfyDJlkEPVNvk1a0qr2vqLLjuXyHQAlZWDLi2ac/pgCYqIkxp8dFuWqD//TM6Aldp8VHUYwEwIlmwyX5WWus5ve/jgmrXkmIjdVDH9D4LZgEARmBQ6uyzz9Y111yjww8/fI/A1Pvvv69rr73W1ZUCAABDw6aiWJuambDHc40tbZ2rAnqBKgtetbjbyvoWNyXQMq6s9WQJVMmxUV1TAhP92VZeiyLBAMAIm95XVNWoVdsrtDq/QjWNrXppY5lrE9LiNH98iuaNS3a1+gAAIyQodfnll+uJJ57QkiVLdPzxx2vOnDlu+7p16/TMM8/oiCOOcPsAAIDhZ/WkrMBvb0V+23ztqqzvClhVBGRYWWtq9amqocW1LWXdVwg0MRFS6c4wVb+9U1nJsd2mBlqNK6bFAAg1uSmxOnXBOJ00P1fri2q0anu51hXVuAwqa09+VKSc5BgXnDpgfIryUmKZ4gwAoRyUioqK0tNPP61f/epXuu+++/TSSy+5uhezZs3ST37yE333u991+wAAgNBbvcoVR0+MUc+J9va7vK65TeW1Fqhq6ha4svtWQLihxaeKpjB9VFCt8KLabq+3eFRqfFRHoMq7tSwrq22VHh/tCr0DQDB//s3LS3bNpkB/vKvKTenbXFrbsaBEqZ5fX+qmMds+B+SlaHJ6PMF2ABgmA1qSwoJONkWPaXoAAIwOlhngnxbYc4VA09zqU0lVnR55apsOmJ+jqiZfZ8DKWquvvWOaYEuv7x8XFeHqWFk9q56rBZJlBWA42c+5pdMyXGtobtO6Iq/m1IbiGreAxKubdrtmi0bMHZesxZPSNDkjngwqABhCrJMKAAD2KjrSWyVwfIJ0+PSMblnRlmVlmVT+AJU/WOUyreqbXR2X1qZa1dZVqbG9WaW+ZkW2tyiyvVkRvmZFq1k16QcqNi3PZVeNb92hCWWvKj6iVfHhrYqygFVkTEeLlaYeJWXN8j68brdU9L4U0fFc534x3rbYFCmKgsYAemdZnAdNSnPNgu8bS2pcgGpdYY1bNOLtbRWuZSVG6+Ap6Vo8Oc0FtQAAg4ufrENkfPnrCn97pxQd3zVYjoqTIqKl6ERp0tKunW1gbWzwbAPpCE4LAGCY+XxSa4PU2iS12G2j11oaFdZUq8jWgFpTpeulHa8rrLVZKa2NSmlt0tS2po7XNEuHXCBlzVVTa5vqNryssA8eVlNbmxpbfWpqaXM1rKz52tv1VkSmNrUka5P97qzfKV/5+50fExke5mpleS1cjVGzlBA9yWVeRVXvktb8e+9fz4FfkKYc4d3fvVl6566O38fWor3biI7b8Uu6gl0AxmTw3abtWbMafFvL6rQ6v1If7qxUaW2znvioSE99XOSypw6Zkq6Z2YlkeQLAICH6MUQSmkuk0jpbp3bPJ3sGpVb/VSrf3PU4PLIrkGX7HnlF13NbX5YaygOuCvsH2B2P06d27dvWKoVHeMsqAcBo1N7eFUCJT+/aXl/uBVc6f/6Fdb+fkNn1uKlGUa013mssCyhwP2MZN/5tLY2Sr6X7+4WFdzwOlyICXz+cwaSOAJLrh0wv6GIqtku7NwU8HxBwsttFZ0vJed6+W56X1j7S60eE+XyKbZ3btaF+t1Tw3t6Pyd7fCqRHRigmLU3KyOqexRQZo/bIGDX4IpWXPl8lEdlu+l9dRZjyk2NU0SxVt3i1qCJ8llllrUmlG8NVv3Wj6+JJYWWa1zRFKdE+JUe2KdFaRJti1aIwX3P3LKmWeqm51mu9SZ1IUApAZw2qGdmJrn1mwTh9sLNKb28rd8XRLZPKWkpclA6enKYlk9Nc/TwAwL4jKDVEClMO1swFi2xkHvBHQMdVZLsyG8iCULatrdl77GvtGjzba7q98WrvD4ze2Puc+r9dj1fdLRV/3HElOLrzDwHvcYx06De7gmY7V0l1JV1Xjbu9JlpKndK1L8EuAIOprcULGtjPSXdrAZN672fhpMO69lv3mFS+tWs/f2BF7VJ4lHTqL7v2/fghqejDvX/mKf/bmZUatvYRzSv4l8JfeLP3Cwkn/lSKTvDuW2bOjtf2/r7HXy/FpXUcw8PSlhc7flZ2BK0C79sFh8Rsb99Nz0pbX9r7vku+JiWP8/bd8aa0+dnOLCZZhlKgI78npU7y7u/eKK19dO/H2xQQpLFsXmN9GRVwwcNtj1TbzoAhQ9pU6YDPds826rxQEiPFJHftO26h13qwry6+o03s3Jojab53aK1tbipgWU2zymqbVFrbJF9tk9prmtXQ0qbt7VnaHnW8O/2yOGFLV3aVZVJl5scos6LQLfmeGZunzGXfU3xYq8JcRldH899Pm7L3PgIwZlmW5qFT010rqmrUO9vL9d6OSrdS6bPrSvTc+hJNz0rU/LxkzclNVko8iz4BwJAHpZ5//nkdc8wxA/6gsaYmbrzaJxziXXXvy7KLe7nabQPlBm9bIJtikDKxK8DVuW/jnkEiF9Bq9wbd7o+Wmq7nwiK6//FV8K5U/NHej/EU+2OvY//375d2vdMx1TDK+4PEtY7gmgW7/Feo89+WKrd7+9kfOm7/KIW1hyutbpMXiPP3kWUp2B+Y7r38+0Z7wTYCYMDwZR655us+lbipxgseuefaJF+bt4/dN/4giLHAUVN1QJCpoeu+hSIWf7Vr39d+6wVOemM/MwKDUtUFe9/XHzD3H3NknJdpasfrfWFdX5//fufnRMrnfibaz6mwXvYbyM+fgH397+E/Bn9f9cb6p7Fy788HvraxSqot3nMff5atBfP8ksdL9ruoM8DkDzbFecEjf5aUmXCoNHGpd9GhB19LixpKHg9433FdQbIhYllW41LiXOtttcDdFqiqaXIBq7LaZnffX3jdW1Grqdei65lJ0cpMTFRWYowyraVHKyMhRuQ6APgkuSmx+syCPJ14QK7WFFS77KnNpXXaVFLrmlSg3ORYzc5N1OzcZE1Kj3dZVwCAQQ5KnXTSSZowYYLOO+88nXvuuQivwdIAALm2SURBVJo4sev6JvaTBYmsBpW1vZl8eP/f79BveMEqC/x0XhFu9m4D/2gxOQd4U1Tcfv79m7ua/bHj578q3xns6sFNZelQtl7a+faeu/h8mrQ7X2o9zyY7ehs3Pydte7mXLyTM+/yjr5ISMrxNW16Qdq3qCnS5bLOOW9s260QpLtXbt3yLN4XFH+CyP1o7XxclpUzoCqK5rIPmrufICMP+8Ad3/N9vFgTwqy3xtne2jv2sWWZKxvSufbe/3hGk7ggGBb4uNlWaeXzXvqvvkxqrO58Pb23WrKK1Cn/pQy8rZ+k3uvZ95VYvuBEYYLJbE5cuHX9d175v/p9Uld/712nBnxN/0vV43X8+IaPTgtABQanOPgnzvu7OFu/dWr/4A+hW5Hr8Yu85C6xY9pILtMTvWYvvoC+rv9oXnKUPdyZp4kmnKKKvCwkLz5IWfKGXoJM/kBcQ2ph9ijTj+I4+9Qf72rseWx/7TflURzZRx/OB723NpuT55R0kpU8LCDBZhpLVLOzlV3r2XK/1xwipZxi4WuDkjI7fHx18vnZVNrR4gaoaL7vKAlb2uLK+xWVY5Zc3uNaTTcfJTIx2mVVWMyYvtXswDABMVES4Fk5Mdc0C4e/nV2p9cY12lNerqLrRtRc3lLk6eDOzk1yQalZOkmL3jPcDAPYlKLVr1y7de++9uueee3TDDTfo2GOP1QUXXKAVK1YoOprrjCHFFXLt5zkZSLDroHM6gl0t3q3VV7EMBX8AywI6frkLvD+83D4tHfu0SM2NqimxrIaA47PXxSR17ef/49j+MLPXB169t6yqyh17P8bpAdl8JWuljU/vfd8jv+/VEzEWFLM/qHsGxFyQKkI65EIpbbL3lAXFLDjmAmGWzWWZFv4W6f0x6s9CqNjmTSXqbT9rmbO66uE0VHqBgjaf4puKva8zOsZ7nQX8AleU8ve7bXcBtI4g2lgLpNkf7c11Hf93WgL+v3Xct6lEKeO9fS0wu+0lr+8scBOY9WO3lvEzeZm3r+1j02Dd8/79/EEhn5Q5Q5r/X13H8dTVHc917Nf5f1iu6LMOu6jr8Uu/7D2oayzgcMRlXY/XP+ZlKvUmeUL3oJQFg6zej5/Pp7jmCu//VG/ZlC57qbc+7ZHV4w/Udv5fC+9q/qltfom5Xh/4A0vdAk3x3vnyH4vVNLL3sOBKX/9vQ6XmT2ctqT6O175P+7v6mwXR/YH0viRmeQ17sMLD6QnRrtkfgYFsdS03HbBjKqAFrfwZVhassuk41izzwYoZA0Bf7GfNMXOyXatvbtXG4lqtL6pxQar65jZ9uKvKNTMuOVo15WE6sKJeU7OSXYAdALAPQanMzExdfvnlrr377ru6++67dfHFF7t29tlnuwDVwoV71o7AGA12jVvgtV6mgmwpeVxzAjNH5p3htc6d2roCVPaHfmCNEguiWSDHny0SGIiwx5a54Zc0Tspb3Mu+HY/tj+HAz+ymIyDmCht3PPaz4NEnBcYmBkw7qtopbXpm7/se8vWuoFTZRmn1XxTu82lmcb7CX7NgVkD22eJzvGmcpuRjb0WpnvwBLMvomHhox/tukt6/ryOQ0BEU8wcV7L5loeQt6pgmVdgVnPPXtuks5hzm9Wfu/K4A4caVAfsEvMb2z5rdlalhgZVtrwQUiQ64tT62YIzt7+/fj/4ZcL6aO85Zx32bZjT9hK7pTC/+eO/9O+lwL8PF2Dn/pBo7Fmj1B6Xs2D5pWmtgYW3/a3tmIe4tyBOTKLX6s/sCW7gX1AmUu9B7b/d8RPdbC1IGmntaR903O6+RLna2peFVjV96tCJiegSPbIU0C5wFBpg6/1/0uKQbGCTry4LP93/fngEtYAhX17LpN9Z6sj8mA6cC9rYPAHyS+OjIzgwqy9rcVdmgdUU12lBc44qk76psVH5FmP7vpW1KjovSzJwkzclNctlUcdGkUQEYu/YrV3/x4sXKzc1VRkaGfvazn+muu+7S//t//0/Lli3THXfcoQMOOKBf73P77bfr5ptvVlFRkQto3XbbbTr00I4/pHtoaWnRTTfd5DK1LGtr9uzZ+vnPf+6mFWKU8WcT9ZZpkJTrtf6w6T7W+mP2Sd7UPzdFKiDI5b+1Fbv8xi2SEnO6Z9v4s2TsNjCTwTKmLOjjn8oVuJ9tCwy42ddrdWBamtQcWeEVTba4jT+bx01/2lsQrYPL0unxnAU1AjNoerJAk58V2f+kYIwdX0cxYhdo+qTCzxZ49AelLJtpw5N733f6sV1BKftaiz7Y+772Xj2nHbmgSlftMm/KZlT3wI1ts9o5bpU0L3DTmWVmtxbE9LPnF36pqwZbZzCv49Yy+wJ9+r+7B/0C9+0Z5DnuWg1JkMemdgVqaVFN3DYpY+aeNe4C/z8DY/yPyckZe04HBIB9zdqcmB7v2vJ5OappbNGaXZX6Z/l2xUSGq7apzRVMt2ZlpyZnxLs6VBakyk6KIYsKwJiyT0EpCwz9+9//dkGolStX6uCDD9Zvf/tbfelLX1JpaamuueYaff7zn9eaNWv6fK8HHnhAV1xxhQtiLV26VLfeeqtOPPFErV+/XtnZHasSBbD3/stf/qI//OEPmjNnjp566il99rOf1WuvvaaDDurxxxiwL2wg4Iq2R3atRtUbq2/lr3HVF8sAstYfuQe6Ztlka+se19RjPqHOjQUgbIpkYD2gzilmvu5ZKPb5n7o8oH5Q4L5tXm2tzq8tywvG+GvbdNbE6Xgc+LVYwGf2qXvu46+HE7iv9eeUI/fcx62eFtl9BSw79gM/HxBkCiiAb9sCA0JRCdKpt/RaoHkPdl77W2/IrTsfkPHWl/4GSgEAwJiRFBulxZNSVZTTrhNPmq2C6mY3zc8yqUpqmrS1rN61Jz8qUmp8lAtOHZCXrCkZCYqM6GVVWAAYy0GpSy+9VPfff79b/earX/2qfvGLX2j+/Pldf8smJOiXv/yl8vICVvT5BLfccosuvPBCVzjdWHDqsccecwGvH/zgB3vsb/Wsrr76ap1yyinu8be+9S0988wz+t///V8XrALGZACtP1wR/X4ue261bfobjLF9Z3VMo+uLBbAO/Fz/9rUMKyv+/ElaWrr6oT8BKQAAgCCyFfmmZSW6dvKB41ytO1eHqqhaW8rq3KIMb2wpd82yqixANS8v2SuWHsVYB8DoM+CglGU/2fS6M888UzExAfWAetSdev755/t8r+bmZq1atUpXXXVV57bw8HAdf/zxev3113t9TVNTk2Jju0/niouL0yuvWJ0aAAAADKeM2nUKy8+Qxi/y6uUBGFCx9GXTM1yzBRk2l9ZqXVG11hRUu2l+7++scs0SpqZnJbqFGKzZiqEAMOaCUjZtb/LkyTrssMP2GpBybxoZqaOOOqrP9ysrK1NbW5tycnK6bbfH69at6/U1NrXPsqs+/elPa/r06Xr22Wf10EMPuffZWxDLml91dXXn12JtKPjfd6jefzSgj/pGH/WNPuobfdQ3+qhv9NHg9dFQ9mFQxjzNzcqpek/t7+9Q24d/d1O223MXqD3nwP6vKIlBxffryD0vVklqRmaca6cekK38igatLazR2qIatwjDusJq1x6WNCE1VjOzEzXJ1a6KI4tqH/C9Eno4J6PrnPT3NWHtNg9vAFJSUrR69WpNnTpV+6ugoEDjx4939aCsOLrflVdeqRdffFFvvvnmHq+xmlU23e/RRx91RQAtMGWZVTbdr6GhYY/9r7/+et1www17bL/vvvsUHx+/318DAABAf9XX17vViquqqpScHLDIxSAIxpgnrL1VWdUfK7Vhm+Kay7s9Vx+dqd2Js1Se2LGABYB9Vt0s7aoP0646aXdjj0LoYVJyVLuyYqXM2HZlxkoJkR0LHANAiI95BhyUOvfcc7Vo0SJdfvnl+32QNn3PBkkPPvigVqxY0e0zKisrXTH1vWlsbNTu3btd7SqrPfWf//xHH3/8cb+uGk6cONFlaQ32YDAwImgF4JcvX66ovRWoHuPoo77RR32jj/pGH/WNPuobfTR4fWTjECtzMBRBqaCPeVqqFVb8kcJs5dSKbW4Ri/apR6t97ukdO9dLuzd5K7jGpfMX8xDh+3X0nxdbzW9dUa22l9drR3m9yuv2zEZIjIlwq/9NSo/TtMwE5aXEsqpfD3yvhB7Oyeg6J/0d8wy4ptTMmTN144036tVXX9WSJUtcYfNA3/nOd/r9XtHR0e49bAqePyjl8/nc40suueQTX2t1pSzLyjrpn//8p77whS/0up9NM+xtqqF16FD/Rx+Ozxjp6KO+0Ud9o4/6Rh/1jT7qG320/300lP0X9DFPfK6UkivNOl5qrJaKP/JWVfV/dvkuafWfvfuRcVLKeC9AZc1WgE3M6f/iHegT36+j97ykR0Xp8KR4HR4QpNq+u1755fUuULWrokH1Le1aX1znmlSm5LhIzc1NdkXTLUjFqn5d+F4JPZyT0XFO+rv/gH/z33nnnUpNTXUFyq0Fsuj7QIJS5oorrnCZUQcffLAOPfRQ3Xrrraqrq+tcje+cc85xwaebbrrJPbYpfbt27XLZWnZrqeoWyLIpfwAAAAgBscnSZP+fzB3afVLyBKmmUGpt8LKmrPkt+rI08VDvfn25VFcqJedJMUnDe+zACJMUG6X541NcMy1tPhVUNrhA1fbdddpcWqfqhla9ubXcNVvVb3ZukiuYPjsnSXHR1KMCEDwDDkpt3bp1UA/grLPOcnWirr32WhUVFblg05NPPtlZ/HzHjh1uRb7AaXvXXHONtmzZosTERJ1yyim69957XaAMAAAAISp3vtfaWqXaYql6l1S1s+N2l5cx5WdTAD9+uCMFLElKypOSx3Xc5klJ48iqAvYiKiJckzMSXJOy1Npmq/rVaW1htWvVja36YGeVa+Fh0tTMBJdBNSc32a0GCADDKSR+m9tUvb1N13vhhRe6PbZV/dasWTNMRwYAAIBBZcEkm7pnzZ8Z1bPEaViElJAl1ZVJTTVS03qpbH3X80d8V0rvWHSnulBqrvWCWtEsYgP0ZFP1LDPK2hmL8rSzokFrOgJUxdVNLmBl7dH3C5UaH+WCVNamZCQoMzGaWlQAQi8otXPnTj3yyCMui8mKlQe65ZZbBuvYAAAAMBb0/KN36pFea22Saoq8KX+WUWUBKLtvmVJ+21+Vtr3s3Y/P9OpTpU6UUqxNkKK71z8FxjILMFkBdGsnHpCrstqmzgwqm+5XWd+i93ZUumaSYiM7A1R2m5McQ5AKQHCDUlaE/PTTT9e0adO0bt06zZ8/X9u2bZMt4rd48eLBPToAAACMXZExUtpkr/lZVlXgH8VRcd5qfg3lUn2Z1wpXdz1/wo+76lKVb/VqWyVmS9GJrACIMS8zMUZHzsxyram1zRVL31pmrVb55Q2qCZjqZ+KjIzQlM0GzshNd5lVqPNP9AAxzUOqqq67S97//fd1www1KSkpyK99lZ2fry1/+sk466aT9PBwAAADgE/QMJM051WvNdV5tqqodXq0qa23N3Qulb3hKKl3r3Y+K94JTtuqf/zZrLrWqMGbFREZoRnaSa1KOK5huU/22ldVpS1mdduyuU31zm9YUVLtmspNiXHBqVk6SpmTEs6ofgAEb8G/dtWvX6v777/deHBmphoYGV3D8xhtv1BlnnKFvfetbAz8KAAAAYH/YNL2sWV7za2vpvk9sihSf4a3u11IvVWzzmomMlU70Vnt2yrdIMbZ/OhlVGLMF0/31pY6xbydfu3ZVNGhzaa3WF9doR3m9SmqaXHt5Y5lb1W96VoILUJFFBWDIglIJCQmddaTGjRunzZs364ADDnCPy8rKBvp2AAAAwNCIiOr+eNGXuoJVtSXeKoD+WwtqBaz4rPf+6k0FjE2VMmZIGdOl9OleVhVBKoxBEeFhmpQR79oxc7JV39yqTSW1Wl9Uo40ltW6q35rCGtf8WVTTshI0LTNRU7MSlBhDFiKAPQ34J8Nhhx2mV155RXPnztUpp5yi733ve/rwww/10EMPuecAAACAkA9W+VcA7E2rTftL9OpUNVZKu97xmrFaVLZq4LwzhvWQgVATHx2pBRNSXbP6wgVVjdpQVLNHFtUbW8o7g1T+zCsLUiXH9ggaAxiTBhyUstX1amtr3X2rK2X3H3jgAc2cOZOV9wAAADDyRUZLn7rcW/2vYrtUvlnavcm731zrbfdra5Ve+ZUX4EqdLKVOkpLzpPCIYH4FwLCyFfnGp8a5ZllUDc1tbpqf1aKymlSFVY2dQao3t3pBqqzEaBecspX9JmckKC0+ipX9gDFowEEpW3UvcCrfHXfcMdjHBAAAAITG6n+BdaosAFW53Vvxz696Z1fLf9PbFm6ZWBO8VQPHLZTSu8bPwFgQFx2h+eNTXDM21W9rWZ3XSutUWN2o0tpm197aWuH2SYyJ0MT0eE1Mi9fE9DhNSItXbBTBXWC02+eJvVZXqqSkRD6fr9v2SZMmDcZxAQAAAKHFVuaz2lKBEnOlQy70glWVO7zmiqhv9Zqt/ucPSjVWSyVrvMcJWdSmwpia6ndAXoprxjKptu3uCFK5TKoG1Ta1aW1hjWvGvj1syp8XpPICVTlJsQoP5/sGGNNBqQ0bNuiCCy7Qa6+91m27zSO2dMu2trbBPD4AAAAgdEXFSrnzvWba26W6Um+qn63slzWna9+yjdL793fVpkqb4gWorNm0P6b8YQxlUs0dl+yaaWnzqbCyUfkV9a4eVX55vSrqW1Rc3eTaO9u9bCpb4W9yRrymZHrT/iakxblVAgGMoaDUeeedp8jISP3nP/9xq+8x7xcAAADoYGNjW6HP2sRD9qxVZSv5+WtTFX/kNRMRLR36DSlzZlAOGwgmCyz5V/Y7omNbTWOL8ssbXKDKglQ7KxrU1OrThuJa10xkeJjGp8VpSka8q0tlgSoLeAEYxUGp1atXa9WqVZozJ+CqDwAAAIBPlnug16w2VVW+VL6lo22VWuq8QJbf5uel4o+9IJY1q09lqwYCY0RSbJTm5Vnzsql8vnYVVTe6wunbdte76X81ja3avrveNanM7ZeT7K3yNz0r0WVUJcbsc8UaAMNgwN+h8+bNU1mZ9w0PAAAAYB9qU6VP9ZqO86b81ZZIsV69Had0nbR7o9dMeKQ33S9ztpQ9R0qZSE0qjClWSyovNc61w2d45WPK65pdcGpbmQWm6lzhdP+Uvze2eKv8EaQCQtuAvyN//vOf68orr9RPf/pTHXjggYqK6n7FJjnZi2QDAAAA6AcLLiXldN92wJkdQalNXmuq6bq/8WnppJu6Mqdam72pgcAYYmVkMhJjXFsyOd1tq21qdZlUXQXUG/capJqcFqvG1iB/EQAGHpQ6/vjj3e1xxx3XbTuFzgEAAIBBYkEqa1M+1VU8vWyDVLLWC0YFTuV75Rb7E93LoEqbobB2/tLG2GRZUPPHp7hm6ppaXXBqiwWpSuvc9D9/kOo1n0/5O8K1deVGTclM9Fb4S4tXXmqsIimeDoRuUOr5558fmiMBAAAA8MnF0y1IFcgyqGqK7BKxVFOgcN8zmr+zQOFv5EuZM6TsuVLG9GAdORBUCZ8QpNpUXK38MLlV/qp2Vun9nVWdxdPHpcZqUkeQym5T46NY4AsIlaDUUUcdNTRHAgAAAGBgYpKkE34sla2XStdLxWsU3m5F1DdLlVul5rquoJSvTSp4T0qbKsWnU5MKYzpI1dKSpX/Xrdf8pZNVWN3sVvnbsbtedc1t3qp/5Q2SdrvXJcZEaHxqnManxWtCmt3GKTmWhQeAYQtKffDBB5o/f77Cw8Pd/U+yYMGCQTkwAAAAAP0QkyiNX+Kar7lZ62ru14QDp0nV+VLOvK79qnZK793b8ZpkKX2aF7BKny4l5xGkwpgTFS5Nz0rQnLzUzpI0ljm1o7zetfzyehVUNqi2qU3ri2td80uOi9QEF6iK0/jUeHdLEXVg4Pr1XbNo0SIVFRUpOzvb3bfURfuG7YmaUgAAAEAQhYWpKSpV7RMPk6KO7P5cW4uUOlmqypeaqqXC1V4zUfHSgZ+Xxi8OymEDocD+nk1PiHZt0UQvUNXS5lNRVaN2VjRoV2WDdlbUq6SmSdUNrVrTUKM1hTWdr7dpfhM7sqmsRpXVp4qJjAjiVwSMkqDU1q1blZWV1XkfAAAAwAhjNaaOvMJbra9yh1S+xZvmV75VaqmXYr26O07Rh9K2V71MKmspk6QIskAw9kRFhHtF0NPjO7c1tbZ1BaoqGrSzskFltU2qrG9RZX2VPtzl1aey5MPc5NjOIJXd5iTFKjycrETAr1+/WSZPntzrfQAAAAAjTGS0F6Cy5q81ZVP7ksd37WP1qUrXes2ER0lpk6WMGd50P5v6R5AKY5RlP03OSHDNr7GlrSOTyupR1bsaVZZNVVjV6Nrb2yrcftERYZ1T/vz1qTISoimkjjFrwL9Jdu/erYyMDHc/Pz9ff/jDH9TQ0KDTTz9dRx7ZI0UYAAAAQGgLj/ACToFslb+ELGn3Ji+jqrnWu2/NHH+9FJfm3a/bLUXHS1Fxw3/sQIiIjYrQ9KxE1/yqGlrcdD8rmm63FrBqavVpa1m9a35xUREuOOWCVKlxbgqg1awiUIWxoN9BqQ8//FCnnXaaC0TNnDlTf/vb33TSSSeprq7OFUD/1a9+pQcffFArVqwY8EHcfvvtuvnmm13dqoULF+q2227ToYceutf9b731Vv3ud7/Tjh07lJmZqc997nO66aabFBsbO+DPBgAAANBDUq7Xph1l1Z+l2mJpt0312yw1VHQFpMxH/5RK1niZVi4Da5aXTRXF2BxjW0pclFLiUnRAnjc11uoyl9Y0uSwqC1BZs2mADS1t2lRS65pfUmykC1LlpXjZVHmpce79gDEblLryyit14IEH6q9//avuvfdefeYzn9Gpp57qMqXMpZdeqp/97GcDDko98MADuuKKK3THHXdo6dKlLuB04oknav369a6wek/33XeffvCDH+iuu+7S4Ycfrg0bNuhrX/uaiyLfcsstA/psAAAAAH2wbA1/kGrKEXs+b0XT1S5V7/TalheksHCvqHr2PGnWCcE4aiDk2N+s2cmxri3pSE5sbfOpuKZJO8u9QJVNASyublRNY6vWFta4FhioskwqaxaksmBVciwZVRgjQam3335bzz33nBYsWOCymX7/+9/r4osvdllS/qDUYYcdNuADsEDShRdeqPPOO889tuDUY4895oJOFnzq6bXXXtMRRxyhs88+2z2eMmWKvvSlL+nNN98c8GcDAAAA2E+f/r7UUOllUZVtlMo2SPW7pYqt3tTAwKDU9te8jKqUiVLH3xHAWBYZEd4ZaFrasa251afCqq4i6gWVDW7FPwtUrSuqcS0wUJWXEqtxHe8xLiXWrR5IoAqjLihVXl6u3Nxcdz8xMVEJCQlKS+tK27X7NTVd3xz90dzcrFWrVumqq67q3GZBruOPP16vv/56r6+x7Ki//OUveuutt9wUvy1btujxxx/XV7/61V73b2pqcs2vutqu5EgtLS2uDQX/+w7V+48G9FHf6KO+0Ud9o4/6Rh/1jT4avD4ayj5kzIOgnpPIBCl7gddMfbnCdm9Ue1S8HYy3rblW4avv79g/zq3q154xU+023S8h28vIGqX4Xgk9oXxO7DshLznatUMmp3QGqoqqG1VQ2agCC1hVNrqpgFX1za6tLfR+5puYyHAXnMpNjnEZVXY/KzHaBcBCWSifk7GqZT/OSX9fE9ZuE1v7wYJFxcXFysrKco+TkpL0wQcfaOrUqe6xPZeXl6e2trZ+H2RBQYHGjx/vsp+WLVvWbargiy++uNfsp9/85jf6/ve/7+bktra26qKLLnI1pnpz/fXX64Ybbuh1GmB8fNeyngAAAEOtvr7eZXtXVVUpOTl5UN+bMQ9CXXRLtfIq31ZiU5EifM3dnmuJiFdxykLtTpwTtOMDRpo2n1TZLJU3hbnbiiapqjlMvl7+wreYb0p0u1KipbRo735qjBQbEYwjx1hQ388xz4CCUieffLJiYmLc40cffVTHHnusy5gydmXuySefHPKg1AsvvKAvfvGL+vGPf+xqUG3atEmXXXaZmwL4wx/+sF9XDSdOnKiysrJBHwwGRgRXrlyp5cuXKyqKYnS9oY/6Rh/1jT7qG33UN/qob/TR4PWRjUNskZahCEox5sGIOSftPqlqp8LKNrhsKjfNz9eq9gVfVPuEjsWOaosVtv1VtVvB9NRJUmzqiM6kGhHnZYwZrefE52tXaW2TCqoaXRH1wo7W0OLrdf/EmAjluqwqL7PK7mcmBCerarSek5GsZT/OSX/HPP2evnfuued2e/yVr3xlj33OOeecAR2kHWBERITLsgpkj/1TBXuywJNN1fv617/uHlvxdVsB8Bvf+IauvvrqzhpXfhZE8wfSAlmHDvV/9OH4jJGOPuobfdQ3+qhv9FHf6KO+0Uf730dD2X+MeTCizknWdK/pZKmtRSrfKiWPswP3ni/fKOW/5jUTnegFp/xthK7uF/LnZQwajedkQky0JmQkdT62PJTK+hYXnCqqbvBuqxq1u65Z9S3t2lLW4JqfxaNykrw6VXmpsa5WlQWrYiKHJ61qNJ6TkS5qH85Jf/fvd1Dq7rvv1mCLjo7WkiVL9Oyzz3au2ufz+dzjSy65ZK8pYD0DTxbYMv1M+gIAAAAQKiKipKxZ3belTZamHOkFq2oKXD0qlazxmjn8O64mlVNtz9dJaVOliH7/eQOMGVb0PC0h2rV5eV0ZK02tbSqpburIpvJW/bOaVU2tPpdpZW3Vdv97yGVQuRpVrqh6rMalxCkhhu857J+g/w+64oorXBbWwQcf7AqX33rrrS7zyb8an2Vf2RS/m266yT0+7bTT3Ip9Bx10UOf0Pcuesu3+4BQAAACAESx9mteMZVJV7ZSq8qXKHd79lAndV/Tb9rIUESNlzpSy50nZc6X49KAdPjASWObTxPR413pmVe2q9DKq3CqAlQ2qbmhVaW2za+/vrOrcPyUuymVTWYDKCqpb0CotPorV/zByglJnnXWWSktLde2116qoqEiLFi1ytalycnLc8zt27OiWGXXNNde4/+B2u2vXLld43QJSP/nJT4L4VQAAAAAYskyq9Kle6010ghSTJDXVSMUfec0k5krZc6Q5n/HeA8CAsqrmj/dW/jO1Ta0qqPQCVIWVXrCqrLZZVQ0trq0trOm2+p8FqnJT4pSX4k0DzEmKCfnV/zBGg1LGpurtbbqeFTYPFBkZqeuuu841AAAAAGPc7JOlWSd5GVQla70pfhXbpNoiqbVRmueVCXHs+bg0KTFnRBdOB4ZbYkykZuUkuebX2NLmalMVVHUFqoqrm9z0v61l9a75RYaHuSyqielxmpgWr0np8UolowqhEpQCAAAAgH1mf9imTvTarBOk5nqpdJ1b1a8z+OTzSe/+WWqp9wqn21S/jBleI0gFDFhsVISmZCa45tdmq//VNHULVFmdqoaWNu0or3dN2u32TYqN1MS0OE1I94JUOYlkNI5FBKUAAAAAjC7R8dL4xd23Ndd4taiseLoVTi94z2tu/0SvsPrsk4JyuMBoEREe5lbqs6ZJXXWqyuuaXUAqv6JB+eX1bipgTWOr1hTWuObt51NlYbgq3spXTnKcMpNilJloLdplapFVNToRlAIAAAAw+sWmSMu+LbW1SpXbpd2bvOYPUilgJe+GSun9+6Xk8VLKeO82IVvqsQo4gL5ZMCkjMca1gyaluW0tbT4XmMovb+gIVtWrvLZJ1c1y9anWF9d1ew+rU2XBKS9IFaOspBg3HdC2Eawa2QhKAQAAABg7IiKljOle04ldQarY1K59qnd50/+s+YVHScnjpOQJ0sRDulYHBDBgURHhmpyR4Jrf7up6PfjYNs07MFcVjW3aXdukstomVdS3uDpVuyobXesZrBqfGucCVBPSvFsCVSMLQSkAAAAAY5c/SBUoOU9acJZUtUuq3ilVF0ptTVLlDq9ZQMoflKopkvLf8mpU2bbImKB8GcBIlxwXpdx46bBp6YqK6qov1drmU3l9s8pqml2Qanddk4qqmly9KgtWbSmrc61noGp8R5AqJ9nLrrJAGEIPQSkAAAAACGQr9E0+vOuxFUmvL/MyqCxQlT616zlb7W/zs14Li5DSpngBqsxZUupkL+gFYJ9FRoQrOynWtUA+K6pe26SdFfVeFlVFw14DVZY4lZEQreykGGUnx3beZiXGKDqSYFUw8RMSAAAAAD6J1ZJKzPZa3kHdn0uZKE1cKpVtkBoqpPLNXtvwpBQRLR1xmRSf4+3b1iJFRrLSHzAIwsPDlJMc69qSyV2BqpKaJu2qrNdOF6RqVEl1k1v9r6zWMq2aOwurG/tWTIuPcu8xLiXOy7BKjVNyHIXVhwtBKQAAAADYVy4raqYtHSbVl0tl66WyjV6QqrVRSsyRfN6uYR8/JJV+LCXlSknjvNtEu58rxSQRrAIGIVDlX/3PH6iy1f9qm1pVXN2kkppGldY0uUBVcXWj6prbVF7X4poVWPdLio1UXkqsxqfFE6gaYgSlAAAAAGB/2R+rCRlSwuHe1D8LUlnmVESU5GvxdqktllrqpfItXgsUnSgdf723v2mul6LiCFQB+8kCSUmxUa7NyE7s9pwFq0qqG1VU3aiCjimAFriqaWzV+sZarS+2lTk9iTERnUXV/c2yrAhU7R+CUgAAAAAw2OwP1fj0bpt8S7+liKZyrzi6a4Xebf1ub6qfPyBlVt0tVe30pgemTupqcQGrBALYL4kxkUrMStS0rK5gVXOrT0VVjdpZWd8tUFXb1OaCVIGBqrioCOWlxroA1TjLrHKr/8W4jC30D0EpAAAAABgOFnRKmeC1QK3NUlN112PLsrKAlWVVuemA67uei02RsuZIi84evuMGxhArfD4pI9613gJVhZWWVdWg4ppGV6tqc2mda52vj7AphJZJ5QWpvBUAYxVBoKpXBKUAAAAAIJgio6XIzO5ZVsdd7wWmKnd0NXvcWCU1VHZ//ebnpbTJUuoUryg7gCEPVLW2+VxRdQtQFVR5gSoLXNnqfzvK613zi+yoddU1/S9WucmxbmXBsY6gFAAAAACEmohIKdWm7k2UdIS3rbXJm9IXWMPG6lat+VdXXarseVLufC+bKjImOMcOjAEWUPLXlvKz1f921zV7garKBu3qaI0tPrcaoDU/i0flJHmrB2YkRisjMUYZCXYbrfjosROqGTtfKQAAAACMZBZkypjefVtbqzR+iVSyVmqulXa+5bXwSCljpjTrRCl9arCOGBhTrJZUVlKMawsnpnau/lde1+yCU16gyqtTZVP/CizDqqpxj/exWlUWnMq0YFVCjNITo5WdFOMCWFGjLLuKoBQAAAAAjFSJWdLicyRfm7eiX/FHUtFHUn2ZVLpWmnRY1762/cO/SwlZUnymd5tgtx33yawCBp2tzueyoBJjtGBCV6Cqsr7FBapKa5tUXtus3XVNLsuquqHVBax6ZlYZK0tlgSn/FECbDmjTAmMiIzRSEZQCAAAAgJEuPELKnOm1eSuk2mIvQGWr9/nVlXo1qazt3tTjDcKkJV+T8hZ1ZWDZe7LcPTAkgaq0hGjXempqbVNFXYvKLFhV1xGsqm1WYVWj6pvb3K21Vdv97yVlJcZ01quyIFV2coySYiLd54Q6glIAAAAAMJrYH6JJuV4LZFlT6dO84FRdmXdrGVW1pVJLnZSY07Xvjteldf+RUidJqZOltCleMfWYpGH/coCxJCYyQrkp1mK7bbfsqqoGL7vKrQBY5dWrsswqK7hu7b38ym5TAG0aoU37syBVdlKsu58aHxVSwSqCUgAAAAAwFkTFeYElaz3Zin4xyV2Pq/Kl1kapbIPX/OLSvddbNlacNxUJwNALCwtTany0awfkpXRur2lsUYEFqTqKqhdXN7ppgDYFsOcqgCY6IkzZybEuu+pTMzO7FWoPBoJSAAAAADDW9QwwLfiiNPUoqXK7VLFNqtgu1RZJDeXein8Lv9S175YXvGwrC1ZZVlViNtP+gGGSFBul2bnWurIYW9p8bspfSU2jSqq9LCq7b1MCm9vaO+tVLZ2WrmAjKAUAAAAA6C48XEoZ77XJh3vbWhqkyh3e1L/AougFq6WKrdL2V7zHkXHetD+b8mcr/2XNIUgFDKOoiHA3/a/nFMA2n7cSoGVTWYF1m9IXbASlAAAAAAD9m/6XNdtrgWYcJ+3e7GVVVdq0vwapbL3XrAbV8h917Vu6XopN8epXEagChlVEeJirM2UtVIREUOr222/XzTffrKKiIi1cuFC33XabDj300F73Pfroo/Xiiy/usf2UU07RY489NgxHCwAAAADolHug14yvTaop7Jjyt02KjO0KPrW3S+/dKzXVSFHxHcXTO5qtEhgdH9QvA8AYDEo98MADuuKKK3THHXdo6dKluvXWW3XiiSdq/fr1ys7O3mP/hx56SM3NzZ2Pd+/e7QJZn//854f5yAEAAAAA3YRHSCkTvDblU92fa23yMqRaGqWWeqlkjdf8xi+RFp/T9djn86YRAhi1gh6UuuWWW3ThhRfqvPPOc48tOGUZT3fddZd+8IMf7LF/enr3Qlx/+9vfFB8fT1AKAAAAAEJZVKx0+KVeNlX1Li+TqnyrN+2vfnf31f8scLXyWi+45S+gbrexqUz7A0aRoAalLONp1apVuuqqqzq3hYeH6/jjj9frr7/er/e488479cUvflEJCQm9Pt/U1OSaX3V1tbttaWlxbSj433eo3n80oI/6Rh/1jT7qG33UN/qob/TR4PXRUPYhYx4Yzklo4rz0ImGc1yYs8x7blD6b3ufvo7ItCrfC6mUbveZnNapSJsk3camUM3+fP55zEno4J6PrnPT3NWHt7fadHxwFBQUaP368XnvtNS1b1vHDSNKVV17p6ka9+eabn/j6t956y035s/32VoPq+uuv1w033LDH9vvuu89lWAEAAAyX+vp6nX322aqqqlJyckBGwCBgzANgVGlvV0xrleKbSpXQXKr45lLFtlTYH7Du6Z1ph2l30lx3P6alUrlV76k+OtO1hugM+cKjg/wFAGNbfT/HPCM6KPXNb37TZVR98MEHA7pqOHHiRJWVlQ36YDAwIrhy5UotX75cUVFRQ/IZIx191Df6qG/0Ud/oo77RR32jjwavj2wckpmZOSRBKcY8MJyT0MR5GSRtzVJ1gcKqdqg9a66UkOU2h+W/obAP/959X5vml5Sr9qRxah9/iLsfiHMSejgno+uc9HfME9Tpe3aAERERKi4u7rbdHufmdv+h0VNdXZ2rJ3XjjTd+4n4xMTGu9WQdOtT/0YfjM0Y6+qhv9FHf6KO+0Ud9o4/6Rh/tfx8NZf8x5kEgzklo4rzsJ+u72JlS9szu27NmSvNOlyp3eK2xUmqulnZb2yDlHuC91hR/LO14XWFxWUqu36Go9mZF2UqACBl8n4yOc9Lf/YMalIqOjtaSJUv07LPPasWKFW6bz+dzjy+55JJPfO0//vEPdzXwK1/5yjAdLQAAAAAg5FgWVGAmVHO9VFskVRdKNYVScl7Xc1ZYvehDhfl8mlqWr/BnNkqpE6SM6VLGDClrjhS5Z4AfwChdfe+KK67Queeeq4MPPtjVhbr11ltdFpR/Nb5zzjnHTfG76aab9ihwboGsjIyMIB05AAAAACDkRMdL6dO81lPeIikmUe0VO9VYaAtCtHsrAVrb+pJ0zDVSojctULWlXoAqdmimQAMIgaDUWWedpdLSUl177bUqKirSokWL9OSTTyonJ8c9v2PHDrciX6D169frlVde0dNPPx2kowYAAAAAjDgpE1xrb2nR+p1Jmn7ckYqo2iaVb5FqiqSEzK591z4iFX0gxWdIyeM7Wp53G58uhYUF8ysBRoWgB6WMTdXb23S9F154YY9ts2fPVhDrswMAAAAARoOYJGn8Yq/11GqLR4RJ9bu9ZgGqztclS8tv7ApM1e12GVhM/QNGYFAKAAAAAICQsuxiqblOquqY3ldd4DWrVxWX2j1T6q3fe9styGWZVfGZHbcZUmK2lD41mF8JELIISgEAAAAA0JvoBClrltf8fG1Sc23AY5/U2uDdb6rxWsW27lMGP/3fXY8/+LuXUZWY4zUr0h4VNxxfDRByCEoBAAAAANBf4RFSbErA43BvKp+t+ldf1jXdr67j1jKl/KwMTf6bkq+1+3va+yXmesGvGccP39cCBBlBKQAAAAAABmPVv+hJUuqkve/T7pMO+KxXVL22xJvy11jV1aJiA/Ztl565zgtYJWRJCdnera0OaLdkV2EUICgFAAAAAMBwZVlN+VT3bS0NXUGq2OSu7Y2VXcGqyh17vteEQ6SDvtIVwCr+2MvKsnpWPVawB0IVQSkAAAAAAILFMp6sEHrPYui2wt9RP5DqSqS6Uqm21Lu1x1a3yoqq+9njt//g3Q+L6Mioyu6qWWXZW4HTCIEQQVAKAAAAAIBQzKpKHue1nloapfa2gMf1UvIEqbZY8rV40wKt+U072ps2aKz21YYnvWCVNatlZVMPgSAgKAUAAAAAwEgSWHvKWHDpqP/2pvE1VHjBKdesblWxlBJQ58qCVVtf7P56y7pKGudlVuUdJGVMH56vA2MeQSkAAAAAAEaDsDApPt1r2XN73ycqwcucqimWagq92lU2/c9a2QYvMOUPSlVsl977S0eh9UyvWc0qe2yfYdlcwH4gKAUAAAAAwFiRlNM1lc8/FdCfWWUF19OndT1nmVauplXJnu8TFi4t+rI04WDvsb121yqvFpZlXlnRdv/9yJhh+MIwEhGUAgAAAABgLE8FTJvstZ5y5kmHfVuqL+sosm63HfetdlVkwDTCqp3Sxqf38hkJ0oGfk8Yv7gqEtTV7ASvL7sKYRVAKAAAAAADsKTpBypolyVoAq13VWOWtHOgXnyFNOVJqqpYaqzumBFZ7waeWuu77lnwsvftnL1hlmVtJ4xQWl6Gkhp1exlZyrhRBuGIs4CwDAAAAAID+s+ymuNTu29Kneq1n8Kq1ycu0slpUfhbQUpgXrCrf4lqYz6dppfkKf2mdtOzirppYZZukog+8GlZxaR0t3QuYkWU14hGUAgAAAAAAg8+CRjY9MGVC9+3Tj/Wyqlwdq46C65W71FhY400JtKCTX/nmPVcLNOFRXoBq8Vel1I7VBWtLvdUHXeAqVYqIGuIvEPuLoBQAAAAAABheFjCyYFVHwMrX0qL1JbmavvxkRUQFBJPSpnpBrPpyL+DUUO5NDbSaVlaAPSKgiHrBe9L6x7oeRyd6qwkm5Xq3eQd5BdgRMghKAQAAAACA0MmuCpyWZzWtXF2rAG2tUmOlF6SyWlZ+kdFSYq4XuLJaVs21Urm1zd7zmbO6glI7V0ll66XEbO81CZnee5FdNawISgEAAAAAgJHDiqBbEMlaoGlHe81qWbXUS/W7vemBtR0tIatrXwtI5b+553vHpnj1r5ac6903DZVSeISXeUUdq0FFUAoAAAAAAIweFjiyQujW/PWmeppwiJcZVVMk1ZZ4xdhbG70i7G5lwfiufdc/IeW/4U0VtEBVTJKXcWW3McnS1E9LkR3TCK2wu9W7Cg8fnq91hCMoBQAAAAAAxpbMmV7zs+yq5jovu8qmBgZO47Ngla0W2Nbk1bGyFsiys/w+/Ie08x0vIBab6gWvLJDlglnJ0sRDu967vX3MZ14RlAIAAAAAAGObBYdiEr2myd2fO/g8qa3Fq2HVWC01+VuN1NLYPYDVVGvRJq+elbXqHp8zcWnX/ffvl3Zv8mpaJeV03HYUZbdVC8cAglIAAAAAAACfxAJPrih69ifvd+g3vGCUBa38ASz/lEDLuLJ6WH4NlV5mlrWSj7u/j2VZHXtNV8DLphiGR3rbR9HUwJAISt1+++26+eabVVRUpIULF+q2227ToYceutf9KysrdfXVV+uhhx5SeXm5Jk+erFtvvVWnnHLKsB43AAAAAABAJwsYuSl7yVJHnfS9WvxVL9hkda1qCr1i7HbfAlmWbRWYgfXBA15WlU0jjEuV4tKl+PSuW8vAGoFTAYMelHrggQd0xRVX6I477tDSpUtdcOnEE0/U+vXrlZ29ZwSyublZy5cvd889+OCDGj9+vLZv367U1NSgHD8AAAAAAMCAxVih9CQpY3r37c31XmZVoLBwL1PK1+pNI7RWvrnjfZKlSYd17fvqr73gVmRsR4vxbm1KoH3e/P9SqAh6UOqWW27RhRdeqPPOO889tuDUY489prvuuks/+MEP9tjftlt21GuvvaaoKC9qOGXKlGE/bgD/f3v3ASZldf59/Le997703rtSBKNIs0QkJtFEo1iiscZo/FtelWISNZooJjG22A3GktgboCAqIIKgIB2Wzna29915r3PGXXZhKQs7O7Mz3891HWbmmWdmzjxnZnn23vvcRwAAAACA1hYc7myNjbneWRjdZFGV5Uvl+VKZCU7lO4NVBwe1qn9oBzPT/whKHch6Wrlype68886Gbf7+/po4caKWLl3a7GPeeecdjRkzRtdff73efvttJSUl6aKLLtLtt9+ugICANuw9AAAAAABAG/HzO7CSn7odfj8TwKoud9awqm+mILtZPdDPs+Imbg1K5ebmqra2VikpKU22m9sbNmxo9jHbtm3Tp59+qosvvlgffPCBtmzZouuuu07V1dWaOXPmIftXVlbaVq+oyFn63uxvmivUP6+rnt8bcIyOjmN0dByjo+MYHR3H6Og4Rq13jFx5DDnngcGYeCbGxfMwJp6HMWlFAWHOdjjHeIxPZEyO9TF+DofJ/3KPvXv32ppQZiqeyX6qd9ttt+mzzz7TV199dchjevfurYqKCmVkZDRkRpkpgKZQ+r59+w7Zf9asWZo9e/Yh2+fOnavw8IPS4QAAAFyorKzMZngXFhYqOjq6VZ+bcx4AANDeznncmimVmJhoA0tZWVlNtpvbqampzT4mLS3N1pJqPFWvX79+duU+Mx0wODi4yf5maqAppN74r4adOnXS5MmTW/1ksHFEcP78+bYge33dKzTFMTo6jtHRcYyOjmN0dByjo+MYtd4xqs9ecgXOeWAwJp6JcfE8jInnYUy8a0yO9ZzHrUEpE0AaMWKEPvnkE02bNs1uq6urs7dvuOGGZh8zduxY+xc/s5+pP2Vs2rTJBqsODkgZISEhth3MHFBXf9Db4jXaO47R0XGMjo5jdHQco6PjGB0dx+jEj5Erjx/nPGiMMfFMjIvnYUw8D2PiHWNyrPs7ozpuZP6i9/TTT+uFF17Q+vXrde2116q0tLRhNb5LL720SSF0c79Zfe+mm26ywSizUt99991nC58DAAAAAACgfXBrppRx4YUXKicnRzNmzLBT8IYOHaqPPvqoofj5zp07GzKiDJOG/vHHH+vmm2/W4MGDbU0qE6Ayq+8BAAAAAACgfXB7UMowU/UON11v0aJFh2wzRdGXLVvWBj0DAAAAAACAK7h9+h4AAAAAAAB8D0EpAAAAAAAAtDmCUgAAAAAAAGhzBKUAAAAAAADgm4XO25LD4bCXRUVFLnuN6upqlZWV2dcICgpy2eu0Zxyjo+MYHR3H6Og4RkfHMTo6jlHrHaP684/68xFX4pzHNzEmnolx8TyMiedhTLxrTI71nMfnglLFxcX2slOnTu7uCgAA8FHmfCQmJsblr2FwzgMAADz1nMfP0RZ/qvMgdXV12rt3r6KiouTn5+eS1zARQXMCuGvXLkVHR7vkNdo7jtHRcYyOjmN0dByjo+MYHR3HqPWOkTntMidn6enp8vd3bRUFznl8E2PimRgXz8OYeB7GxLvG5FjPeXwuU8ocjI4dO7bJa5lB48t0ZByjo+MYHR3H6Og4RkfHMTo6jlHrHCNXZ0jV45zHtzEmnolx8TyMiedhTLxnTI7lnIdC5wAAAAAAAGhzBKUAAAAAAADQ5ghKuUBISIhmzpxpL9E8jtHRcYyOjmN0dByjo+MYHR3H6Oh89Rj56vv2ZIyJZ2JcPA9j4nkYE98cE58rdA4AAAAAAAD3I1MKAAAAAAAAbY6gFAAAAAAAANocQSkAAAAAAAC0OYJSx+mxxx5T165dFRoaqlGjRmn58uVH3P/1119X37597f6DBg3SBx98IG91//336+STT1ZUVJSSk5M1bdo0bdy48YiPef755+Xn59ekmWPlrWbNmnXI+zWfjyPxpc+QYb5fBx8j066//nqf/QwtXrxY5557rtLT0+37e+utt5rcb0oEzpgxQ2lpaQoLC9PEiRO1efPmVv951l6PUXV1tW6//Xb7/YmIiLD7XHrppdq7d2+rf1/b8+fosssuO+T9nnnmmUd9Xl/5HBnN/Wwy7aGHHvKZz5E3jnt746r/E+Dac+CKigp7LpOQkKDIyEj99Kc/VVZWltv67O0ef/xxDR48WNHR0baNGTNGH374YcP9jIf7PfDAA/Zn2O9+97uGbYxL2zvaeYorx4Sg1HF49dVXdcstt9gq9N98842GDBmiKVOmKDs7u9n9lyxZol/+8pe68sortWrVKvsflGlr166VN/rss8/sB3bZsmWaP3++/UVw8uTJKi0tPeLjzH8U+/bta2g7duyQNxswYECT9/vFF18cdl9f+wwZX3/9dZPjYz5Lxs9//nOf/QyZ75D5eWN+CWzOgw8+qL/97W964okn9NVXX9nAi/nZZP4Taa2fZ+35GJWVldn3eM8999jL//3vf/aXhalTp7bq97W9f44ME4Rq/H5feeWVIz6nL32OjMbHxrRnn33WnryZEzRf+Rx547i3N674PwGuPwe++eab9e6779o/Npr9zR9Gzj//fLf225t17NjRBj1WrlypFStW6IwzztB5552n77//3t7PeLj/fP/JJ5+0gcPGGBf3ONJ5ikvHxKy+h5YZOXKk4/rrr2+4XVtb60hPT3fcf//9ze5/wQUXOM4555wm20aNGuX4zW9+4/AF2dnZZoVHx2effXbYfZ577jlHTEyMw1fMnDnTMWTIkGPe39c/Q8ZNN93k6NGjh6Ourq7Z+33tM2S+U2+++WbDbXNcUlNTHQ899FDDtoKCAkdISIjjlVdeabWfZ+35GDVn+fLldr8dO3a02ve1vR+j6dOnO84777wWPY+vf47M8TrjjDOOuI83fo68edx99f8EuPYc2IxBUFCQ4/XXX2/YZ/369XafpUuXurGnviUuLs7xr3/9i/Fws+LiYkevXr0c8+fPd5x22mn2XN9gXNzjSOcprh4TMqVaqKqqykbaTQp0PX9/f3t76dKlzT7GbG+8v2H+UnW4/b1NYWGhvYyPjz/ifiUlJerSpYs6derU5C8Y3sqk0JuU++7du+viiy/Wzp07D7uvr3+GzPfu5Zdf1hVXXGGzEQ7H1z5DjWVkZCgzM7PJ5yQmJsZOpznc5+R4fp55488n85mKjY1tte+rN1i0aJGdetKnTx9de+21ysvLO+y+vv45Mqnr77//vs1kPRpv+hz5+rh74/8JcP05sPnOmOypxuNipsd07tyZcWkDtbW1+s9//mMz18w0PsbDvUxW4TnnnHPI7ziMi/sc7jzF1WNCUKqFcnNz7Q+0lJSUJtvNbfOff3PM9pbs703q6urs/OCxY8dq4MCBh93P/OJjpj+8/fbbNvhgHnfKKado9+7d8kbmpNDUQProo4/sXHdz8njqqaequLi42f19+TNkmDoZBQUFttbN4fjaZ+hg9Z+FlnxOjufnmTcxU1hMjSkzNdZM/Wyt72t7Z6buvfjii/rkk0/05z//2aZon3XWWfaz0hxf/xy98MILtn7M0VLYve1z5Ovj7o3/J8D158Dm2AcHBx/yhxDGxbXWrFlja+CEhITommuu0Ztvvqn+/fszHm5kgoNm2repw3YwxsU9jnSe4uoxCTzhZwCOEgE3dY+OVjfD/LXCtHommNCvXz87x/gPf/iDvI35Ba+emUNtfgiYDJ/XXnvtmP7a7mueeeYZe8xM5P5wfO0zhBNj/tpzwQUX2ELA5j/eI/G17+svfvGLhuumKLx5zz169LDZUxMmTHBr3zyRCYabvyYebWEFX/scAb7uWM+B4XrmD5erV6+2mWtvvPGGpk+fbv/gAvfYtWuXbrrpJlt3zdsWJWrPzjrCeYpZLMOVyJRqocTERAUEBBxSad7cTk1NbfYxZntL9vcWN9xwg9577z0tXLjQFhlsiaCgIA0bNkxbtmyRLzBR5969ex/2/frqZ8gwxcoXLFigX//61y16nK99huo/Cy35nBzPzzNvCkiZz5Y5ITpSltTxfF+9jUnhNp+Vw71fX/0cGZ9//rktlt/Sn0/e8Dny5XH31v8T4PpzYHPszdRXk/3dGOPiWibDo2fPnhoxYoTNzDELBDz66KOMh5uYqWBmQYzhw4crMDDQNhMkNAszmOsm+4Zxcb/G5ymu/q4QlDqOH2rmB5qZ1tA4Pdfcbpyl0ZjZ3nh/w/widLj92zuTeWD+MzapsZ9++qm6devW4ucwUwJMqq1ZxtgXmFpIW7duPez79bXPUGPPPfecrW1j5py3hK99hsz3zPyn0PhzUlRUZFdcOtzn5Hh+nnlLQMrMmTfBTrOsbWt/X72NmQJrakod7v364ueocRanee/mFxxf+xz58rh76/8JcP05sPnOmD+aNR4XE9g2dVsYl7ZjflZVVlYyHm5isq7NObrJXqtvJ510ks06rr/OuLhf4/MUl39XTrhUug/6z3/+Y1cvef755x3r1q1zXH311Y7Y2FhHZmamvf+SSy5x3HHHHQ37f/nll47AwEDHX/7yF1ul3lS2N9Xr16xZ4/BG1157rV0FbdGiRY59+/Y1tLKysoZ9Dj5Gs2fPdnz88ceOrVu3OlauXOn4xS9+4QgNDXV8//33Dm/0+9//3h6fjIwM+/mYOHGiIzEx0a7SYvj6Z6jxSk6dO3d23H777Yfc54ufIbNKyapVq2wzP74ffvhhe71+5bgHHnjA/ix6++23Hd99951dEaxbt26O8vLyhucwK4T9/e9/P+afZ950jKqqqhxTp051dOzY0bF69eomP58qKysPe4yO9n31pmNk7rv11lvtSirm/S5YsMAxfPhwuzpORUVFw3P48ueoXmFhoSM8PNzx+OOPN/sc3v458sZx98X/E9D258DXXHONPbf59NNPHStWrHCMGTPGNriGOVc0qx+an73me2Bu+/n5OebNm2fvZzw8Q+PV9wzGpe0d7TzFlWNCUOo4mRNNMyjBwcF2SeRly5Y1+VKZJbUbe+211xy9e/e2+w8YMMDx/vvvO7yVOTFqrj333HOHPUa/+93vGo5nSkqK4+yzz3Z88803Dm914YUXOtLS0uz77dChg729ZcuWhvt9/TNUzwSZzGdn48aNh9zni5+hhQsXNvvdqj8OZgnwe+65x75/84vihAkTDjl2Xbp0sUHNY/155k3HyPwne7ifT+ZxhztGR/u+etMxMr84TZ482ZGUlGQD3+ZYXHXVVYcEGXz5c1TvySefdISFhdllkpvj7Z8jbxx3X/w/AW1/DmyCgtddd50jLi7OBrZ/8pOf2MAVXOOKK66wP4/Nzyjzf5v5HtQHpAzGwzODUoxL2zvaeYorx8TP/HPi+VYAAAAAAADAsaOmFAAAAAAAANocQSkAAAAAAAC0OYJSAAAAAAAAaHMEpQAAAAAAANDmCEoBAAAAAACgzRGUAgAAAAAAQJsjKAUAAAAAAIA2R1AKAAAAAAAAbY6gFAC4iJ+fn9566y13dwMAAMClOOcBcLwISgHwSpdddpk9QTq4nXnmme7uGgAAQKvhnAdAexbo7g4AgKuYk7HnnnuuybaQkBC39QcAAMAVOOcB0F6RKQXAa5mTsdTU1CYtLi7O3mf+gvj444/rrLPOUlhYmLp376433nijyePXrFmjM844w96fkJCgq6++WiUlJU32efbZZzVgwAD7Wmlpabrhhhua3J+bm6uf/OQnCg8PV69evfTOO+803Ld//35dfPHFSkpKsq9h7j/4hBIAAOBoOOcB0F4RlALgs+655x799Kc/1bfffmtPlH7xi19o/fr19r7S0lJNmTLFntB9/fXXev3117VgwYImJ2DmBO/666+3J27mZM6cfPXs2bPJa8yePVsXXHCBvvvuO5199tn2dfLz8xtef926dfrwww/t65rnS0xMbOOjAAAAvB3nPAA8lgMAvND06dMdAQEBjoiIiCbtT3/6k73f/Pi75pprmjxm1KhRjmuvvdZef+qppxxxcXGOkpKShvvff/99h7+/vyMzM9PeTk9Pd9x1112H7YN5jbvvvrvhtnkus+3DDz+0t88991zH5Zdf3srvHAAA+BLOeQC0Z9SUAuC1xo8fb/8S11h8fHzD9TFjxjS5z9xevXq1vW7+ijdkyBBFREQ03D927FjV1dVp48aNNhV+7969mjBhwhH7MHjw4Ibr5rmio6OVnZ1tb1977bX2r5bffPONJk+erGnTpumUU045wXcNAAB8Dec8ANorglIAvJY5ITo4tby1mHoIxyIoKKjJbXNiZ07yDFPbYceOHfrggw80f/58e7JnUuP/8pe/uKTPAADAO3HOA6C9oqYUAJ+1bNmyQ27369fPXjeXpu6CqbNQ78svv5S/v7/69OmjqKgode3aVZ988skJ9cEU/Jw+fbpefvllzZkzR0899dQJPR8AAMDBOOcB4KnIlALgtSorK5WZmdlkW2BgYENhTVPI86STTtK4ceP073//W8uXL9czzzxj7zPFOWfOnGlPnmbNmqWcnBzdeOONuuSSS5SSkmL3MduvueYaJScn278AFhcX25M4s9+xmDFjhkaMGGFXsjF9fe+99xpOEAEAAI4V5zwA2iuCUgC81kcffWSXLG7M/MVvw4YNDavE/Oc//9F1111n93vllVfUv39/e59Zzvjjjz/WTTfdpJNPPtneNrUQHn744YbnMidvFRUVeuSRR3TrrbfaE7+f/exnx9y/4OBg3Xnnndq+fbtNjT/11FNtfwAAAFqCcx4A7ZWfqXbu7k4AQFszdQ7efPNNW2gTAADAW3HOA8CTUVMKAAAAAAAAbY6gFAAAAAAAANoc0/cAAAAAAADQ5siUAgAAAAAAQJsjKAUAAAAAAIA2R1AKAAAAAAAAbY6gFAAAAAAAANocQSkAAAAAAAC0OYJSAAAAAAAAaHMEpQAAAAAAANDmCEoBAAAAAACgzRGUAgAAAAAAQJsjKAUAAAAAAIA2R1AKAAAAAAAAbY6gFAAAAAAAANocQSkAAAAAAAC0OYJSAAAAAAAAaHMEpQDgCJ5//nn5+flp+/btR923a9euuuyyy9qkXwAAAADQ3hGUAuC1gaTm2h133OHu7tngVXN9u+aaa9zdNQAAAABoM4Ft91IA0LbuvfdedevWrcm2gQMHyhMMHTpUv//975ts6927t9v6AwAAAABtjaAUAK911lln6aSTTpIn6tChg371q1+5uxsAAAAA4DZM3wPgsz799FOdeuqpioiIUGxsrM477zytX7/+qI9zOBz64x//qI4dOyo8PFzjx4/X999/3+LXr6qqUmlp6XH2HgAAAADaN4JSALxWYWGhcnNzm7R6CxYs0JQpU5Sdna1Zs2bplltu0ZIlSzR27NijFjWfMWOG7rnnHg0ZMkQPPfSQunfvrsmTJ7cowGQCYiagFRkZaWtMPfrooyf0XgEAAACgvWH6HgCvNXHixGaznIz/+7//U3x8vJYuXWovjWnTpmnYsGGaOXOmXnjhhWafMycnRw8++KDOOeccvfvuu7ZAuXHXXXfpvvvuO6Z+DR48WOPGjVOfPn2Ul5dnC7P/7ne/0969e/XnP//5BN4xAAAAALQfBKUAeK3HHnus2eLh+/bt0+rVq3Xbbbc1BKTqg0WTJk3SBx98cNjnNBlWZtrdjTfe2BCQMkxQ6ViDUu+8806T25dffrmtf/Xwww/b5zXTAgEAAADA2zF9D4DXGjlypM2WatyMHTt22EuTqXSwfv362Wl+h5uKV//YXr16NdmelJSkuLi44+qnCW7dfPPNqqmp0aJFi47rOQAAAACgvSEoBQAeoFOnTvYyPz/f3V0BAAAAgDZBUAqAz+nSpYu93Lhx4yH3bdiwQYmJiXZFviM9dvPmzYfUmtq/f/9x92nbtm0NGVcAAAAA4AsISgHwOWlpaRo6dKgtZl5QUNCwfe3atZo3b57OPvvswz7WTAEMCgrS3//+94ai6cacOXOO6bVNJlRtbW2TbdXV1XrggQcUHBys8ePHH9d7AgAAAID2hkLnAHzSQw89ZIuLjxkzRldeeaXKy8ttoCkmJkazZs067ONMJtOtt96q+++/Xz/+8Y9tAGvVqlX68MMPbYbVsRQ5/+Mf/6if/exn6tatmw1SzZ071wbETKH01NTUVn6nAAAAAOCZCEoB8Ekm4+mjjz7SzJkzNWPGDJv9dNppp+nPf/6zDRYdiQkqhYaG6oknntDChQs1atQom2F1zjnnHPV1Bw0apP79++vll1+2U/5MdpTJ2nrttdf085//vBXfIQAAAAB4Nj9H4/knAAAAAAAAQBugphQAAAAAAADaHEEpAAAAAAAAtDmCUgAAAAAAAGhzBKUAAAAAAADQ5ghKAQAAAAAAoM0RlAIAAAAAAECbC5SPqaur0969exUVFSU/Pz93dwcAAPgQh8Oh4uJipaeny9+fvw0CAADf5nNBKROQ6tSpk7u7AQAAfNiuXbvUsWNHd3cDAADArXwuKGUypOpPBqOjo13yGtXV1Zo3b54mT56soKAgl7wGWoYx8UyMi+dhTDwPY+JdY1JUVGT/OFZ/PgIAAODLfC4oVT9lzwSkXBmUCg8Pt8/PLxCegTHxTIyL52FMPA9j4p1jQgkBAAAACp0DAAAAAADADQhKAQAAAAAAoM353PQ9AAB8XW1trZ2ChuNjjl1gYKAqKirssWyOmdYXEBDQ5n0DAABoTwhKAQDgQ0pKSrR79245HA53d6XdMscuNTXVLppyuNpQZrtZXS8yMrLN+wcAANBeEJQCAMBHmKweE5AyRbqTkpIotn2c6urqbHDPBJz8/f2bDVrl5OTYY92rVy8ypgAAAA6DoBQAAD407cwETExAKiwszN3daddBqaqqKoWGhjYblDLMMd6+fbs95gSlAAAAmkehcwAAfAwZUq7HMQYAADg6glIAAMAthg4dalv//v1tNlH97QsvvPCYn+Odd97RzTff3OLXvuyyyzRnzpwWPw4AAACth+l7AADALVavXm0vzTQ3E4yqv91YTU2NXenucKZOnWobAAAA2h8ypQAA8EGmtlRlTa1L2/Gu8Ne1a1fdfvvtGjlypKZPn67MzEyNHz9eI0aM0IABA3TDDTfYuk7G888/r2nTptnrixYt0sCBA3XddddpyJAhdt8VK1Yc9fVM0fIrrrjCPta02bNnN9z3xz/+Uf369WvI4tqxY4fKy8sb9jevM3ny5ON6nwAAAL7OrZlSixcv1kMPPaSVK1dq3759evPNNxtOLI/myy+/1GmnnWZPCJv7yyoAADi8qto6zXpnnUtfY9bU/goJPL4i33l5efrqq69sbaaKigq9++67drU7s4Lgeeedp9dee02/+MUvDnnchg0b9Mwzz+if//ynnnjiCd111136+OOPj/haf/jDH1RZWanvvvvOBpzGjRunvn372mDTX/7yF3uOYgrDl5WV2cLm77//vgoLC7V27Vp7Oz8//7jeIwAAgK9za6ZUaWmp/QvjY4891qLHFRQU6NJLL9WECRNc1jcAAOA+puZTfbFwkxVlMqfMOcOwYcNs9tPh/iDVs2dPjRo1yl4fM2aMtm7detTXWrBgga666iobYIqIiLDnGPPnz1d0dLR69eqlX/3qV3ryySdt8MmsuGf6sXHjRl1//fV69dVXFRQU1MrvHgAAwDe4NVPqrLPOsq2lrrnmGl100UW2KOpbb73lkr4BAODNggP8bSaTq1/jeJmsqHoPP/ywsrOzbeaUCQrdcsstNnuqOeb+euY8wdSkaqn6YJh5/LJly7RkyRI7NXD06NF65ZVXNHbsWLvdBMc+/fRT3XbbbTZIFhcXd1zvFQAAwFe1u5pSzz33nLZt26aZM2e6uysAALRbJvBipta5stUHd07U/v37lZqaagNOpr7U66+/rtY0ceJEO+XP1MAyWdwvvfSSnbpXXFysrKwsnXrqqbrnnnvstL5Vq1Zp9+7d9r2ZAutmep953K5du1q1TwAAAL6gXa2+t3nzZt1xxx36/PPPj7gST2OmRoRp9YqKiuxldXW1ba5Q/7yuen60HGPimRgXz8OYePeYmOcwARQzHa6+ULgnqO9L4z417uONN96oCy64wBYuT0tLs9P3G7+Pg9/T4S4bM4+pf5ypO3XTTTdp0KBB9r6f/exntpngk3ldE6gyQSgzNfCSSy6xdS3vvPNOO93PZGKZ6X2mxuXB/TfPb465ybiqx3cLAADgAD/H8S6N08rMyd6RCp2bwqYmbf7KK6+00/eMWbNm2el7Ryp0bvZpvIpOvblz5yo8PLwV3wEAAJ7N/EHHZBx16tRJwcHB7u6OV6uqqrLZUyazq/EUQlMs3ZQgMIXSTc0qAAAAX9ZuglKmuLmp1dD4r431f4U02+bNm6czzjjjmDKlzMl4bm6uy04GzV9BTYHUSZMmUfzUQzAmnolx8TyMiXePianDZAIlXbt2bVJ7CS1jzj3M1L6oqKjDTlE0x3r79u32nKPxsTbnIYmJiQSlAAAA2tP0PXPitmbNmibbzHLPpsDoG2+8oW7dujX7uJCQENsOZk7sXf0LV1u8BlqGMfFMjIvnYUy8c0xM1rEJophpZ6bh+NRP06s/ls0x2839B48b3ysAAAAPCUqVlJRoy5YtDbczMjLsVLz4+Hh17tzZ1mvYs2ePXnzxRXtyZ+o1NJacnGz/+njwdgAAAAAAAHg2twalzFLK48ePb7htlng2pk+frueff1779u3Tzp073dhDAAAAAAAAeF1Q6vTTT7d1GQ7HBKaOxBQxNw0AAAAAAADtCwUlAAAAAAAA0OYISgEAAAAAAKDNEZQCAABucfbZZ+sf//jHIduHDBmi//3vf0ec3j9t2rTDlgZ46623WrWfAAAAcA2CUgAAwC2uvPJKPffcc4csgmIWOjn33HPd1i8AAAC0DYJSAAD4sprKw7fa6uPf9xhMnTpVu3bt0nfffdew7dlnn9Wll16qvLw8u0LviBEjNGDAAN1www2qq6tr0fNnZ2fr/PPP16BBgzRw4EA9+eSTdrt5HvN8/fr1s1lZ5jUqKiqUk5OjyZMn2/0HDx6syy+/vMXvCQAAAO1k9T0AAOBmH952+PuS+0ujfnPg9ry7pdqq5vdN6CmdcmOLXjooKEiXXHKJDUTNmTPHBoZeeeUVLVmyRLGxsXr33XcVGRmp2tpanXfeeXrttdf0i1/84pif/8Ybb1SfPn3sVEAToDLBJxOECgkJ0SeffKLvv/9e/v7+KiwsVHBwsF5++WV169ZN8+bNs4/Pz89v0fsBAABAy5ApBQAA3DqF79///reqqqps8MhkL5lmspluv/12G0QaNmyYnda3evXqFj33ggUL9JvfOINqycnJNmvKbOvevbtqamp0xRVX6IUXXlB1dbUNTo0ePVoffvihfv/73+vtt99WRESEi941AAAADDKlAADwZWc9ePj7/A7629XkPx77vseof//+6tmzp82KMhlTJkhlPPzwwza76auvvlJoaKhuueUWm0l1Ivz8/OxlTEyM1q5dq88++0wLFy7UnXfeqcWLF2vMmDE28GUCVyZAds8992jVqlUKCAg4odcFAABA88iUAgDAlwWGHL4FBB3/vi1gAlH33Xefli9frgsvvNBu279/v1JTU21AKjMzU6+//nqLn3fixIl6+umn7XVTL8oEmiZNmmSvl5aW2vpR5nW7du2qdevWKSMjw04XvOCCC/T3v/9dmzZtUklJyXG/LwAAABwZQSkAAOBWJhC1ceNG/fznP7dBIeOmm26yWVKmyLmpO2UCTC31t7/9TevXr7eFy03R9LvuukujRo2yxdVNcMoUMzcF0E0766yztGjRIlt3aujQoTrllFP00EMP2awqAAAAuAbT9wAAgFtFRUUdkpHUuXNnmznVnMsuu8y25pjAUr2UlBSbHXWw4cOHa+XKlYdsN6vtseIeAABA2yFTCgAAAAAAAG2OoBQAAAAAAADaHEEpAAAAAAAAtDmCUgAA+BiHw+HuLng9jjEAAMDRUegcAAAfERQUJD8/P+Xk5CgpKcleR8vV1dWpqqpKFRUV8vf3bzYgZY6xOb7mmAMAAKB5BKUAAPARAQEB6tixo3bv3q3t27e7uzvtlgk6lZeXKyws7LCBPbPdHGtzzAEAANA8glIAAPiQyMhI9erVS9XV1e7uSrtljt3ixYv1ox/96LCZUGY7ASkAAIAjIygFAICPMcESAibHzxy7mpoahYaGMj0PAADgBFDoHAAAAAAAAG2OoBQAAAAAAAB8Kyhl6jGce+65Sk9PtwVB33rrrSPu/8UXX2js2LFKSEiwxUX79u2rRx55pM36CwAAAAAAAC+oKVVaWqohQ4boiiuu0Pnnn3/U/SMiInTDDTdo8ODB9roJUv3mN7+x16+++uo26TMAAAAAAADaeVDqrLPOsu1YDRs2zLZ6Xbt21f/+9z99/vnnBKUAAAAAAADakXZdU2rVqlVasmSJTjvtNHd3BQAAAAAAAO0lU+p4dezYUTk5OXY55lmzZunXv/71YfetrKy0rV5RUZG9rK6uts0VzPPWOZyX8Az1Y8GYeBbGxfMwJp6HMfGuMWEcAQAADvBzOBwOeQBT6PzNN9/UtGnTjrpvRkaGSkpKtGzZMt1xxx36xz/+oV/+8pfN7muCVrNnzz5k+9y5cxUeHi5X2FIk7Srx07hUh4LadS4aAABoTWVlZbroootUWFio6Ohod3cHAADArdplUKqxP/7xj3rppZe0cePGY86U6tSpk3Jzc11yMlhWVaO/zNukrRk7ddKAHrrslG6KCm2XCWlexfxlev78+Zo0aZKCgoLc3R38gHHxPIyJ52FMvGtMzHlIYmIiQSkAAID2On2vsbq6uiZBp4OFhITYdjBzEumKk/uYoCBdOa6bZu/cqaziaj27ZKeuGNdN8RHBrf5aaDlXjTtODOPieRgTz8OYeMeYMIYAAAAeEpQyU/C2bNnSZFre6tWrFR8fr86dO+vOO+/Unj179OKLL9r7H3vsMbu9b9++9vbixYv1l7/8Rb/97W/lSTrEhmlChzrtCQ9SXmmVnvhsqy47pavSY8Pc3TUAAAAAAACP4Nag1IoVKzR+/PiG27fccou9nD59up5//nnt27dPO3fubJIVZQJVJngVGBioHj166M9//rN+85vfyNNEBUlXndpVLy/fo32FFXpq8TZdMqaLeiRFurtrAAAAAAAAvh2UOv3003WkklYmMNXYjTfeaFt7ERUapKt/1F0vLd2hbbmlev7L7brgpE4a1DHG3V0DAAAAAABwK9aGc7HQoABdNrarBnaIVk2dQ698vVNLt+a5u1sAAAAAAABuRVCqDQQF+OuXJ3fW6O7xMolh73y7V/PXZR0xSwwAAAAAAMCbEZRqI/7+fpo6JF0T+yXb259uyNZbq/eoro7AFAAAAAAA8D0EpdqQn5+fJvRL0bSh6fLzk5Zn7Ne/l+9UVU2du7sGAAAAAADQpghKucGo7gm6aGRnBfr7ad3eIj352VbtL61yd7cAAAAAAADaDEEpNxnYIUZXjOumyJAA7S2s0D8WbtGW7BJ3dwsAAAAAAKBNEJRyo26JEbp+fE91jAtTWVWtnvsyQ19uyaUAOgAAAAAA8HoEpdwsNjxYV/+ou4Z1jpWpef7ed/v0+ordqq6lzhQAAAAAAPBeBKU8QFCAv34+oqN+PDhN/n7Sql0Fts5UQRl1pgAAAAAAgHciKOVBK/ON7Zlo60xFBAdoT0GF/vHpFm3Loc4UAAAAAADwPgSlPEyPpEhbZyo9JlSlVbV65osMLaHOFAAAAAAA8DIEpTxQXESwrjm9h4Z1ctaZetfUmVpJnSkAAAAAAOA9CEp5cp2pkzrqnEE/1JnaWaDHF21VTnGlu7sGAAAAAABwwghKeXidqXG9EnX52G6KDAnQvsIKPbZwi1bt3O/urgEAAAAAAJwQglLtQM/kSN04oZd6JEWosqZOr63Yrf+u3K2qGqbzAQAAAACA9omgVDsRHRqkK8Z204S+yfLzk1bs2K9/Ltqi7KIKd3cNAAAAAACgxQhKtSP+/n6a2D/FBqeiQgOVVVRpp/Ot3JHv7q4BAAAAAAC0CEGp9jqd74ye9rKq1qE3Vu7Rayt2qbKm1t1dAwAAAAAAcE1QaubMmdqxY0dLH4ZWFhUapMtP6arJ/VPsdD6zOt9jC7cqi+l8AAAAAADAG4NSb7/9tnr06KEJEyZo7ty5qqysdE3PcEzT+cb3Tdavx3VTdFigcoqd0/m+2pYnh8Ph7u4BAAAAAAC0XlBq9erV+vrrrzVgwADddNNNSk1N1bXXXmu3wT26J5npfL3UOyVS1bUOvbV6r15etkMllTXu7hoAAAAAAEDr1ZQaNmyY/va3v2nv3r165plntHv3bo0dO1aDBw/Wo48+qsLCwuN5WpyAyJBAXXZKV50zKE2B/n5at69Yf/tkszZmFru7awAAAAAAAK1b6NxMEauurlZVVZW9HhcXp3/84x/q1KmTXn311aM+fvHixTr33HOVnp4uPz8/vfXWW0fc/3//+58mTZqkpKQkRUdHa8yYMfr4449P5C14FXMMx/VK1HXjeyglOkTFFTV6fsl2vb16j6pq6tzdPQAAAAAAgBMLSq1cuVI33HCD0tLSdPPNN9vMqfXr1+uzzz7T5s2b9ac//Um//e1vj/o8paWlGjJkiB577LFjel0TxDJBqQ8++MD2Yfz48TaotWrVquN5G14rLSZM14/vqbE9E+ztZdvy9Y+FW7SnoNzdXQMAAAAAALAC1UKDBg3Shg0bNHnyZDt1zwSFAgICmuzzy1/+0tabOpqzzjrLtmM1Z86cJrfvu+8+W3j93XfftYExHBAU4K8fD05Xn5QovbFyty2C/viiLZrUP1Wn9ky0RdIBAAAAAADaTVDqggsu0BVXXKEOHTocdp/ExETV1bl+uph5jeLiYsXHxx92H7M6YOMVAouKiuylmXZomivUP6+rnr8lusaH6rrTuuqt1ftsnakPvturdXsK9NPh6YoLD5av8KQxwQGMi+dhTDwPY+JdY8I4AgAAHODnMMWgjlP9Q00toxPuiJ+f3nzzTU2bNu2YH/Pggw/qgQcesJlbycnJze4za9YszZ49+5Dtc+fOVXh4uHyFGartJdI3uf4y5aWC/KVhiXXqGmmOvbt7BwCAbygrK9NFF11kF4Ux9TEBAAB82XEFpcy0vUceecTWjzJ69eql3/3ud/r1r3/dZkEpE1S66qqr7PS9iRMntihTyhRiz83NddnJoPkr6Pz58239q6CgIHmSvNIqvbFyj3btd9aX6pEUofOGpCk+wruzpjx5THwZ4+J5GBPPw5h415iY8xCTUU5QCgAA4Dim782YMUMPP/ywbrzxRrv6nbF06VJb8Hznzp2699575Wr/+c9/bADs9ddfP2JAyggJCbHtYOYk0tUn923xGi2VGhuk68b30uLNOfp0Q7Yy8sr12GcZmtgvReN8oNaUJ44JGBdPxJh4HsbEO8aEMQQAADiBoNTjjz+up59+2hYzrzd16lQNHjzYBqpcHZR65ZVXbE0rE5g655xzXPpa3soEnk7vk6yBHWL01qo92ppTqg/XZuq73QU6f3hHpceGubuLAAAAAADAy/kfT8r6SSeddMj2ESNGqKampkXPVVJSotWrV9tmZGRk2Osm48q48847demllzaZsmdu//Wvf9WoUaOUmZlpm0mBR8slRoboynHd9NPhHRQWFKA9BRV6bOEWfbR2n6pM4SkAAAAAAABPCUpdcsklNlvqYE899ZQuvvjiFj3XihUrNGzYMNuMW265xV43UwSNffv2NQSo6l/DBL6uv/56paWlNbSbbrqppW8DjWp5ndQ1XjdP6qXBHWNU55A+25SrRz/ZpC3ZJe7uHgAAAAAA8FItnr5XX+h83rx5Gj16tL391Vdf2eCRyWIygaV6pvbUkZx++ukNK/g15/nnn29ye9GiRcfTXRyDqNAg/XJkZw3tVKS3V+9Vfmm1nvkiQyO6xOnsQakKDz6ujwoAAAAAAECzWhxpWLt2rYYPH26vb9261V6aVWRMM/c1zsBB+9MvLVrdEiM0b12Wlm3L08od+7Upq1g/Hd5RfVKj3N09AAAAAADgq0GphQsXuqYn8BihQQGaOiRdQzvG6r/f7FZ2caWeX7Jdo7rF66xBqQoJDHB3FwEAAAAAgK/VlGps9+7dtsE7dU4I1w1n9NTYngn29lcZ+frHp1u0M6/M3V0DAAAAAAC+FpSqq6vTvffeq5iYGHXp0sW22NhY/eEPf7D3wbsEBfjrx4PT7Sp9MWFByi2p0hOLt2re95mqqWW8AQAAAABAG03fu+uuu2yh8wceeEBjx46127744gvNmjVLFRUV+tOf/nScXYEn65kcqZsm9NK73+7Vql0FWrgxx9aauuCkTkqODnV39wAAAAAAgLcHpV544QX961//0tSpUxu2DR48WB06dNB1111HUMqLhQUH6IKTO6l/erTeXLVHewoq9PdPt+jMgak6pUcCxe0BAAAAAIDrpu/l5+erb9++h2w328x98H4DO8Topom91DslUjV1Dr333T4980WGCsqq3N01AAAAAADgrUGpIUOG6B//+Mch2802cx98Q3RokC47paumDU1XcICftuaUas6CzVq5I18Oh8Pd3QMAAAAAAN42fe/BBx/UOeecowULFmjMmDF229KlS7Vr1y598MEHrugjPJSZrjeqe4J6JEfq9RW7tTO/TG+s3KO1e4o0bVgHWxgdAAAAAACgVTKlTjvtNG3atEk/+clPVFBQYNv555+vjRs36tRTT23p08ELJEaG6Dc/6m5rSwX6+2lDZrEeXbBZq3buJ2sKAAAAAACceKZUdXW1zjzzTD3xxBMUNEcT/v5+Oq13kvqmRumNlbu1e3+5XluxW2v3FNqsqahQsqYAAAAAAMBxZkoFBQXpu+++a8lD4GNSokN17Wk9NLl/igL8pXX7im2tqe92F5A1BQAAAAAAjn/63q9+9Ss988wzLX0YfCxranzfZF0/vqfSY0JVVlWrV5bv0tzlO1VSWePu7gEAAAAAgPZY6LympkbPPvusLXQ+YsQIRURENLn/4Ycfbs3+oR1LiwnTdeN7auGGbC3cmG0LoG/PLdV5QztoQHq0LZQOAAAAAAB8U4uDUmvXrtXw4cPtdVPwHDiSAH8/Teyfon7p0XpjxW5lFlXo31/tVJ+USE0d2kHxEcHu7iIAAAAAAGgPQamFCxe6pifwah1iw3T9+B76dEO2Fm/O0casEj0yf5NO75OkH/VOUpApQAUAAAAAAHxGiyMBV1xxhYqLiw/ZXlpaau8DDicwwF+TB6Tqpgm91TM5UjV1Di1Yn61HF2zWpqxDP1MAAAAAAMB7tTgo9cILL6i8vPyQ7Wbbiy++2Fr9ghdLigrRFWO76pcjOyk6LFB5pVV67svt+vdXO1RYVu3u7gEAAAAAAE+avldUVCSHw2GbyZQKDQ1tuK+2tlYffPCBkpOTXdVPeBlT5Hxwx1j1TonSJ+uztWRrri2EvjmrRGf0TdbYnom2HhUAAAAAAPDxoFRsbKwNJJjWu3fvQ+4322fPnt3a/YOXCw0K0DmD0zSiS5zeWr1HO/LK9OHaTK3csV/nDU1X96RId3cRAAAAAAC4MyhlCpybLKkzzjhD//3vfxUfH99wX3BwsLp06aL09HRX9BE+IDUmVL/5UXd9s3O/PlqbqeziSj39eYZdpc/UoUqPDXN3FwEAAAAAgDuCUqeddpq9zMjIUKdOneTvf+KrpS1evFgPPfSQVq5cqX379unNN9/UtGnTDru/2ef3v/+9VqxYoS1btui3v/2t5syZc8L9gGcw2XYjusSrf1qM5q3L1PKMfLtK38asLRrYIVqT+qUoOfrAtFEAAAAAAOADQal6JiOqoKBAy5cvV3Z2turq6prcf+mllx7zc5kV+4YMGWJX7Tv//POPun9lZaWSkpJ0991365FHHmlp19FOhAUH6LyhHWxdqU/XZ2v17gJbb+r7vUUa2ilWE/ulKD4i2N3dBAAAAAAAbRmUevfdd3XxxRerpKRE0dHRNrulnrnekqDUWWedZdux6tq1qx599FF7/dlnn21hz9HeJEaG6IKTO+m0Pkmavy7LBqVW7SzQt7sKdHLXeI3vm6yYsCB3dxMAAAAAALRFUMpMnzOZTffdd5/Cw8Pl6Ux2lWmNVxE0qqurbXOF+ud11fP7mviwAF04Il27u8dpwYZsbcku1dKtuVqxPU8ju8bp1F6Jigw58keZMfFMjIvnYUw8D2PiXWPCOAIAABzg5zDVy1sgIiJCa9asUffu3dWaTJbV0WpKNXb66adr6NChR60pNWvWrGZXBZw7d267CKrhUNnl0pp8P+VWOLP0Av2lgXEO9YpxyP9A4h4AAB6nrKxMF110kQoLC23GOQAAgC9rcabUlClTbKHx1g5Kucqdd96pW265pUmmlCnUPnnyZJedDJq/gs6fP1+TJk1SUBDTy1zBxFJNxpTJnNpTUKE8swpkRKjOG5KmjnGHrtTHmHgmxsXzMCaehzHxrjGpz9gGAADAcQSlzjnnHP3f//2f1q1bp0GDBh1yMjZ16lR5kpCQENsOZvrt6pP7tngNX9a/Y7D6dYjVih379eGaTGUVV+npL3doVLd4TRmQqtCggEMew5h4JsbF8zAmnocx8Y4xYQwBAABOICh11VVX2ct777232Sl4tbW1LX1K4LiZz5wpet4vLVofrNlnC6Ev25Zvi6L/eHCaBnWIaVKMHwAAAAAAtNOgVF1dXau9uFnBb8uWLQ23MzIytHr1asXHx6tz58526t2ePXv04osvNuxj7q9/bE5Ojr0dHBys/v37t1q/0P6YQucXnNRJI7rE6e1Ve5RTUqVXlu/SypT9mjokXdEh/u7uIgAAAAAAOJGgVGMVFRUKDQ097seb2lTjx49vuF1f+2n69Ol6/vnntW/fPu3cubPJY4YNG9ZwfeXKlbZgeZcuXbR9+/bj7ge8R4+kSP12Qi99tilHizbmaFNWiR79ZLNO7Rmv2haV9AcAAAAAAB4VlDLT8+677z498cQTysrK0qZNm2zR83vuuUddu3bVlVdeeczPZVbQO9LifyYwdbAWLhYIHxQY4K8J/VI0pFOs3lq1R1tzSrVgfY4KM/3VK7NYAzvGMaUPAAAAAAA3a/Gcpj/96U82WPTggw/aaXP1Bg4cqH/961+t3T/guCVGhujKcd10wUkdFRkSoKIq6eWvdumfi7ZqU1YxAU4AAAAAANpTUMrUd3rqqad08cUXKyDgwOpmQ4YM0YYNG1q7f8AJMRlRwzrH6aYzeqpvrEPBAX7avb9cz325XU8u3qYt2SUEpwAAAAAAaA9BKVN4vGfPns0WQK+urm6tfgGtKiw4QEMSHLplUi+N65mooAA/7cgr0zNfZOjpz7dpW06Ju7sIAAAAAIBPaXFQyqxy9/nnnx+y/Y033mhShBzw1FX6zhmcplun9NEpPRIU6O+njNwyPf15hv71+TbtyCt1dxcBAAAAAPAJLS50PmPGDLs6nsmYMtlR//vf/7Rx40Y7re+9995zTS+BVhYdGqRzh6TrR72StGhTtr7enm8Lom/9bJt6p0RqQt8UdU4Id3c3AQAAAADwWi3OlDrvvPP07rvvasGCBYqIiLBBqvXr19ttkyZNck0vAReJCQ/SeUM76PeT+ujkrnHy95M2ZZXo8c+26tkvMsicAgAAAADAUzKljFNPPVXz589v/d4AbhIXEazzh3fUab2TtHBjjlbt3K/N2SW29UiK0IR+KeqWGOHubgIAAAAA4LtBqV27dtkVzTp27GhvL1++XHPnzrW1pq6++mpX9BFoMwmRIfrZiI46o2+yFm3M1sod+53T+nK2qXuiCU4lq3tSpLu7CQAAAACA703fu+iii7Rw4UJ7PTMzUxMnTrSBqbvuukv33nuvK/oItLn4HzKnbp3cR6O6xSvAX9qWW2oLoj+1eKu2ZJfI4XC4u5sAAAAAAPhOUGrt2rUaOXKkvf7aa69p0KBBWrJkif7973/r+eefd0UfAbdO65s2rIMNTo3uHt+wWt8zX2ToycXbtCW7mOAUAAAAAABtMX2vurpaISEh9ropdj516lR7vW/fvtq3b9/x9AHweLHhwbYg+um9k/XZ5hx9nZGvHXkmOLVdXRLCNbFfsnokRdqprQAAAAAAwAWZUgMGDNATTzyhzz//3BY7P/PMM+32vXv3KiEhoaVPB7S71fqmDknXrVP6aGzPBJs5VR+cInMKAAAAAAAXBqX+/Oc/68knn9Tpp5+uX/7ylxoyZIjd/s477zRM6wO8XUxYkH48mOAUAAAAAABtNn3PBKNyc3NVVFSkuLi4hu1m5b3w8PDj7gjQnoNTp/ZK0uebc/TVNqb1AQAAAADgkkyp8vJyVVZWNgSkduzYoTlz5mjjxo1KTk5u6dMBXpc5dUqPQzOnNmeROQUAAAAAwAkFpc477zy9+OKL9npBQYFGjRqlv/71r5o2bZoef/zxlj4d4HXBqXOHHBqcevbL7frnoq1at7eI4BQAAAAAAMcTlPrmm2906qmn2utvvPGGUlJSbLaUCVT97W9/c0UfgXYfnAoK8NPu/eV6adkO/f3TLVqzu1B1dQSnAAAAAAC+q8U1pcrKyhQVFWWvz5s3T+eff778/f01evRoG5wCcGhw6vQ+SfpyS66WbcvXvsIKzV2+U0lRIXb70I6x8ven5hQAAAAAwLe0OFOqZ8+eeuutt7Rr1y59/PHHmjx5st2enZ2t6OhoV/QRaPeiQoN05sA03XZmH03om6ywoADlFFfq9RW79df5G7U8I181tXXu7iYAAAAAAJ4blJoxY4ZuvfVWde3aVSNHjtSYMWMasqaGDRvmij4CXiM8OFAT+6fY4NSUASmKDAlQfmm13ly1Rw/N22izqSprat3dTQAAAAAAPG/63s9+9jONGzdO+/bt05AhQxq2T5gwQT/5yU9au3+AVwoNCtDpfZJ1So9Efb09X4s356iovEbvfbdPn27I1pjuCRrTI0ERIS3+igIAAAAA4J2ZUkZqaqrNitq7d692795tt5msqb59+7boeRYvXqxzzz1X6enp8vPzs9MCj2bRokUaPny4QkJC7FTC559//njeAuARggP9NbZnov5vch9NG5quhIhglVXV6pMN2frzRxv0zrd7tb+0yt3dBAAAAADA/UGpuro63XvvvYqJiVGXLl1si42N1R/+8Ad7X0uUlpbabKvHHnvsmPbPyMjQOeeco/Hjx2v16tX63e9+p1//+te2thXQngUG+GtU9wTdMqm3LhrZWR3jwlRd69DSrXn6y7yNevXrndpXWO7ubgIAAAAA0GpaPDforrvu0jPPPKMHHnhAY8eOtdu++OILzZo1SxUVFfrTn/50zM911lln2XasnnjiCXXr1k1//etf7e1+/frZ137kkUc0ZcqUlr4VwOOYVfgGdYzRwA7R2ppTqs825WhLdolW7yq0rXdKpH7UO0ndEyNsdiEAAAAAAD4TlHrhhRf0r3/9S1OnTm3YNnjwYHXo0EHXXXddi4JSLbV06VJNnDixyTYTjDIZU4A3MQGnnsmRtu0pKNfiTTlas6dQm7JKbDOZVKf1TtKA9GiCUwAAAAAA3whK5efnN1s7ymwz97lSZmamUlJSmmwzt4uKilReXq6wsLBDHlNZWWlbPbOvUV1dbZsr1D+vq54fvjUmyRGB+tmwNJ3RO0Ffbs3TNzsLtDOvVC8tLVVSZLBO7ZWowR2i7RTA9qY9j4u3Ykw8D2PiXWPCOAIAAJxAUMrUgPrHP/6hv/3tb022m22NV+PzFPfff79mz559yPZ58+YpPDzcpa89f/58lz4/fG9MAiQNckibi/20udBPu+qkb9ZtUVig1CfWoR5RDgW2v9hUux8Xb8SYeB7GxDvGpKyszCV9AQAA8Img1IMPPmiLjS9YsEBjxoxpmFa3a9cuffDBB3Ils+pfVlZWk23mdnR0dLNZUsadd96pW265pUmmVKdOnTR58mT7OFcwfwU1J6qTJk1SUFCQS14DLeONY1JZXavl2/fb7KmSylrlSSoPCNDo7vEa3S1O4cEt/nq3OW8cl/aOMfE8jIl3jUl9xjYAAACOIyh12mmnadOmTXbFvA0bNtht559/vq0nlZ6eLlcyQbCDA1/mpLA+ONackJAQ2w5mTiJdfXLfFq8B3x0T8z7O6J+mU/uk6Jsd+7V4c47yS6u1aFOelm7br5O7xmtcr0TFhHn++/WmcfEWjInnYUy8Y0wYQwAAgOMMSpm/DJ555pl2FbzWKGheUlKiLVu2NNzOyMjQ6tWrFR8fr86dO9sspz179ujFF1+0919zzTV2muBtt92mK664Qp9++qlee+01vf/++yfcF6C9Cgrw16juCTYIZYqhmxX79hVW6IstuVq6LVdDO8XpR70SlRwd6u6uAgAAAABwfEEp89e97777Tq1lxYoVGj9+fMPt+ml206dP1/PPP699+/Zp586dDfd369bNBqBuvvlmPfroo+rYsaNdCdCswAf4On9/Pw3pFKvBHWPsCn2fbcpWRm6ZVu7Yb1v/tCj9qHeSuiREuLurAAAAAAC0fPrer371Kz3zzDN64IEHTvjFTz/9dDkcjsPebwJTzT1m1apVJ/zagLfy8/NTn9Qo23bmldlpfev2FWndvmLbuiSE60e9ktQvLcruCwAAAABAuwhK1dTU6Nlnn7WFzkeMGKGIiKZZFw8//HBr9g/ACeicEK5fJXRRTnGlvtiSo292FGhHXpleytuhpMhgmzk1tFOsAgPa4ZJ9AAAAAADfCkqtXbtWw4cPt9dNwfPGyLoAPFNSVIh+MqyjJvRL0dKteVq2LU85JVX67zd7NH9dlk7pmaiTu7aPFfsAAAAAAN6hxb+BLly40DU9AeBy0aFBmjIgVaf1TtKK7fv1+ZYcFZXX6KO1mfpkfZaGd47TmB4JSqEoOgAAAADAU4JStbW1+v7779WrVy+FhYU1ua+8vFybN2/WwIED5e/PNCDA04UGBWhcr0SN7h6vb3cX6sstuXbFvq8y8m3rkRShsT0T1SclyhZQBwAAAACgtR1zBOmll17SFVdcoeDg4GZX5TP3zZ07t7X7B8CFTC2pEV3idOMZPXX1j7prQHq0zCzcrTmlenHpDv11/kZ9sTlXFdW17u4qAAAAAMBXg1Jmxb1bb71VAQEBh9wXGBio2267TU899VRr9w9AGzD14LolRuhXo7vo/yb30Y96JSosKED5pdV6f80+PfDhBr29eo8tmA4AAAAAQJtO39u4caNGjx592PtPPvlkrV+/vlU6BcB94iKCddagNJ3RL1nf7irUkq25yiqq1LJt+baZqX0ju8Wrf1o0q/YBAAAAAFwflCotLVVRUdFh7y8uLlZZWdnx9wSARwkJDLDBJ7Mqn5nOt3RrrtZnFtvrpkWGBNipfyd1jVdiZIi7uwsAAAAA8NaglClwvmTJEg0ePLjZ+7/44gu7DwDvm9rXMznStv2lVfp6e75W7tivoooafbYp1zZz38iu8eqXFkX2FAAAAACgdYNSF110ke6++26dcsophwSmvv32W82YMcPWlQLg3VP7Jg9I1YR+KdqQWaTlGfnanF2iLT80Z/aUM7sqgewpAAAAAEBrBKVuvvlmffjhhxoxYoQmTpyovn372u0bNmzQggULNHbsWLsPAO8X4O+nAekxttVnT63YsV/FNnsqx7Y+KZEa1ytRPZIibbYVAAAAAADHFZQKCgrSvHnz9Mgjj2ju3LlavHixHA6HevfurT/96U/63e9+Z/cB4LvZU+v3FdkAlcme2pjlbKnRoRrbM0FDOsUqiKl9AAAAAICWBqUME3QyU/SYpgegueypgR1ibMstqdSSrXn6Zsd+ZRZV6L/f7NHH32dqVLcEjeoer6hQAtgAAAAA4OtaFJTCsfNz1Li7C4DbmNX4pg5J16R+KTZzygSoCsur9cmGbDu1z2RNmeypxHB+BAEAAACAr+I3QhfpnPe5/L/aLfU5S0rsZZYwc3eXgDYXFhygH/VO0rieiVq7t1BfbsnTzvwyu3qfaV3jQ1VbKtXVOdzdVQAAAABAGyMo5QqVxYop3ynl1UrLHpPiukq9pkjJ/QhOwSf5+/tpcMdY23bmlenLrblau6dQ23LLtCvTX8WfbNG43ska0SVOoUEB7u4uAAAAAKANEJRyhZAorU/7qTp1CZT2LJf2b5eWPylFd5R6T5ZSBxOcgs/qnBCuzgmdVVhWrc83Zen1PTuVX1at977bp/nrsmxgakyPBDsFEAAAAADgvVq8FNbChQtd0xMvUx0YKceA86UJM6UeZ0gBIVLRbmnFs9KOJe7uHuB2MeFBmjIgRVM712nqkFQlR4WosqbO1p96eP4mvbh0u7Zkl9hVPgEAAAAA3qfFmVJnnnmmOnbsqMsvv1zTp09Xp06dXNMzbxEaLfU/T+oxQcr4TNqzUup40oH7y/KlkGgpgKQ1+KZAf2lk13id0jPZBqG+3JKrjVklWr+v2LaU6BCd0iNRQzvFKtjsDAAAAADwCi3+DW/Pnj264YYb9MYbb6h79+6aMmWKXnvtNVVVVbmmh94iJFLqe440/m4p8IdpSSYD5OtnpE9mSZvmSVWl7u4l4DZ+fn7qlRKly8Z20y2Temt093iFBPorq6hSb67aowc+3KB3v92rrKIKd3cVAAAAAOCOoFRiYqJuvvlmrV69Wl999ZV69+6t6667Tunp6frtb3+rb7/9tjX65b38Gx3y8v1SVbEtjK6N70vzZ0rfvS6V5Lizh4DbJUWF6LyhHXT7mX11zqA0xUcEqby61k7tm7Ngs574bKu+2blf1bV17u4qAAAAAOA4ndCcseHDhys1NVUJCQl64IEH9Oyzz+qf//ynxowZoyeeeEIDBgw4kaf3fuHx0hkzpH2rpa0LnTWndnwh7fhSShkg9TlLiuno7l4CbhMWHKBxvRI1tmeCNmeXaHlGvtbvK9KOvDLb3vt2n4Z1jtXIbvFKiQ51d3cBAAAAAC1wXAVaqqur7fS9s88+W126dNHHH3+sf/zjH8rKytKWLVvstp///OfH/HyPPfaYunbtqtDQUI0aNUrLly8/4mvfe++96tGjh91/yJAh+uijj9RumVpSpsbUj26VxtwgpQw08/qkrLVSRZG7ewd4zNS+3ilR+tXoLrr9rL6aPCBFceFkTwEAAACAT2VK3XjjjXrllVfsiliXXHKJHnzwQQ0caAIpThEREfrLX/5ip/Mdi1dffVW33HKLzawyAak5c+bYOlUbN25UcnLyIfvffffdevnll/X000+rb9++NiD2k5/8REuWLNGwYcPUbvn5SYm9nK04S9qzQkrud+D+bZ9J1eVSp5HODCvAR0WHBml8n2Sd3jup2eyp97/bZzOnRndLsCv8AQAAAAC8JCi1bt06/f3vf9f555+vkJAfCnY3U3dq4cKFx/R8Dz/8sK666iq7mp9hglPvv/++nQp4xx13HLL/Sy+9pLvuustmaRnXXnutFixYoL/+9a82WOUVolKcRdHr1VRJmz6WqkulTR85A1edRktpg6UAfumGb2dPmVZYXq1vduzX19vztb+sWos25mjxphwN6hBjV+7rnBDu7u4CAAAAAE4kKGWmzpmpeaNHjz5sQMo+aWCgTjvttKM+n1mxb+XKlbrzzjsbtvn7+2vixIlaunRps4+prKy00/YaCwsL0xdffHHY/U2rV1RU1PBeTHOF+udtteevq5Vf36ny271cytssZW9wtsAwOdKHytFpDLWn2npM4FHjEh4ojesRp1O6xWp9ZrGWZeQrI7dMq3but61jbKjG9EjQgLQoBQYc16xln8F3xfMwJt41JowjAADAAX4OMw+vBWJiYuzKe926ddOJ2rt3rzp06GCn3pni6PVuu+02ffbZZ3Z1v4NddNFFdoW/t956y9aV+uSTT3Teeeeptra2SfCp3qxZszR79uxDts+dO1fh4e0veyK4plhxpVsUX7pZwTWldltOVH/tjRvl7q4BHmV/pbS50E87SvxU98NPubBAqUe0w7bQAHf3EIAvKisrs+cyhYWFio6Odnd3AAAA2tf0vWnTptmA0M033yx3ePTRR+10P1NPykzfMYEpM/XPTPdrjsnCMjWrGmdKderUSZMnT3bZyaD5K+j8+fM1adIkBQW5aHqdiSXmbZHf7q/UofsEDY1Oc27P2yL/bYvk6DBcjuQBUuDhM9p8SZuMCTxyXEoqa/T19v36KiNfJZW1KpT0nfw0OC1aJ3eNU8fYMPuzBE58VzwPY+JdY1KfsQ0AAIDjCEr16tXLrn735ZdfasSIEbaweWO//e1vj/m5TO2pgIAAu2pfY+Z2ampqs49JSkqyQbGKigrl5eXZguqm9lT37t2b3d9MM2xuqqE5iXT1yb3LXyOtv7M1tneFlLfB2QKCnav5dRghJfV1rvTn49pi3OFZ4xIXFKTJA8N0Rr9UrdlTaFfr272/XKt3F9uWHhOqk7vFa2inWIUGkT5Vj++K52FMvGNMGEMAAIADWhyleOaZZxQbG2trQZnWmMk2aElQKjg42Aa2zBQ8k4Fl1NXV2ds33HDDER9r6kqZqX/mr5X//e9/dcEFF7T0rXinXpOl8ARpz0qpLFfa+42zBUVI6UOlAT+hODp8kqklNaxznA0+7cwvs5lTa3YXam9hhd5evVcfrc3U4I4xduW+jnHtb2ovAAAAAHh9UCojI6NVO2Cm1k2fPl0nnXSSRo4cqTlz5qi0tLRhNb5LL73UBp/uv/9+e9vUmdqzZ4+GDh1qL03NKBPIMnWoUL9y39lSn7Okgp3O4JQJSlUWS7mbJf9GQ16+XwqNNdFEd/YYaFMmeN4lIcK2Hw9O06qdBTZAlVNcaaf5mdYhNlQnd43XELKnAAAAAMBl3D6f68ILL1ROTo5mzJihzMxMG2z66KOPlJKSYu/fuXOnXZGvnpm2d/fdd2vbtm2KjIzU2WefrZdeeslmb6ERE2iK6+Js/ac5V+2rrToQgKqtlhY9IIVESenDpfRhUn1dKsBHhAcHamzPRJ3SI0Hb88q0PCNPa/cUaU9Bhfas3qsP12bazCqzcl9KdNNVPwEAAAAAbghK7d69W++8844NGFVVVTW57+GHH27x85mpeoebrrdo0aImt0877TStW7euxa/h00xQL6lP022Fu6W6Wqk0R9r8sbNFpR0IUEUmuau3gFuyp7olRtj248E1NnvKBKhySqpsFpVpPZIibHCqX2q0/P3JLgQAAACANg9KmXpPU6dOtYXFN2zYoIEDB2r79u1yOBwaPnz4CXcIbSS+mzT5j1LWWmnvKil7vVS8T9r4vrMNukDqOtbdvQTaXERIoMb1StTYngnalluqZdvy9P3eIm3NKbUtLjxIo7sn6KSucTbTCgAAAABwfFr8G9Wdd96pW2+9VbNnz1ZUVJQtMp6cnKyLL75YZ5555nF2A24RFCp1PMnZqsqkzDXOAFXuRimx14H9crdIJZnODKrgpqstAt6cPdUjKdK2grIqLduWr6+352t/WbWd1rdgfZaGdY7VmO6JSo1hah8AAAAAuDwotX79er3yyivOBwcGqry83NZ2uvfee3Xeeefp2muvbXEn4AGCw6XOo5zNBKjM7XoZi5wBq7X/k1IGOINYyQOkALJE4Btiw4N15sBUTeiXrG93FWjJ1jztK6zQ8oz9tnVPdE7t65saZVf5AwAAAAAcXYujChEREQ11pNLS0rR161YNGDDA3s7NzW3p08ETNQ5IGYm9pbL9UtFuKfM7ZwuKcGZOmQCVmQoI+ICgAH+d1DVeI7rE2cLoS7bmat3eIjvNz7Tw4AAN6hBjM6g6x4fbbCsAAAAAQCsFpUaPHq0vvvhC/fr1syvf/f73v9eaNWv0v//9z94HL9TtR85WtFfa/bW0e4VUWSTt+EIq2CH96FZ39xBwW2H0wrJqLcvI0zc79quooqahMHp8RJCGdIzV0M6xSo5ieh8AAAAAnHBQyqyuV1JSYq+bulLm+quvvqpevXod18p7aEei06X+50l9z5XyNjsDVPHdD9xfVSp9+aiU1FdK7i8l9GSKH7xeTHiQpgxI1aR+KdqWW2JX7jOF0fNLq7VwY45tHePCNLRTrAZ3jFFUaJC7uwwAAAAAHqHFEQOz6l7jqXxPPPFEa/cJns7fX0rq42yNZW+QSrKcLeMzKSDEWTDdBKhS+kthce7qMeBy/v5+6pkcZdt5NXVav69Iq3cVaFNWsXbvL7ftgzX71DM50gao+qdHKyQwwN3dBgAAAAC3Oe40FlNXKjs7W3V1dU22d+7cuTX6hfbIFEE/6Qopa52Uvc45xS9rrbOtkTTiMmcdKsDLBQf6a0inWNtKKmv03e4CG6DalV+uTVkltoUE+qt/WrStP2VW+DNBLQAAAADwJS0OSm3atElXXnmllixZ0mS7w+GwdVZqa2tbs39oT4JCpbQhzuZwSEV7DgSoTO2puEYF0bd/6dxuM676ShFJplCPO3sPuERkSKBO6ZFoW25JpVbvdAao8kqrtGpXgW1RoYEN9afSY0IpkA4AAADAJ7Q4KHX55ZcrMDBQ7733nl19j1+e0CzzuYjp6Gy9J0vV5VJQ2IH7M9dIOeudWVRGWLwzOGWCVGa1v4NXAAS8QGJkiCb2T9GEfsk2a2rVrv36bnehiitq9MWWXNuSo0JscGpox1jFRQS7u8sAAAAA4DlBqdWrV2vlypXq27eva3oE79Q4IGX0O1dK7CnlbJTyt0nl+dLOJc5malFNuY8i6fBaJpjfOSHctnMGpWlzdonNnjJ1qLKLKzXv+yzbTP2pUd3i7TQ/pvcBAAAA8DYt/q2/f//+ys3NdU1v4DtiOjhbz4lSTaWUt1XK2eAMUoXFNg1IffWkFBLtLJZusqkCQ9zZc6BVBQb4q19atG0V1bX6fm+hXcFvW26ptmSX2BYdFqiRXeN1Utd4xYSxeh8AAAAAHw1K/fnPf9Ztt92m++67T4MGDVJQUNNfkKKjo1uzf/AFJshkAk6mGbXVB+4r3++sPWXsWib5B0oJvX7Yf6AUHu+ePgMuEBoUoBFd4m3LL63S8ox8rdyRr6LyGi1Yn61PN2Tb4NXo7vG2ODrTpwEAAAD4VFBq4sSJ9nLChAlNtlPoHK0moFGgMzhKGn2dlPW9s/5UWZ6zFpVpa/8r9ThD6n+eO3sLuER8RLDOHJiqif2S9f3eIn2VkaeM3DJ73bTEyGCdbLOn4hQezFRXAAAAAO1Pi3+TWbhwoWt6AjTHTOOzK/T1kQb8RCrJdganTJBqf4azkHq9gp3SmtelhJ5SfA8pvjsF0+EV0/uGdIq1LauoQl9l5OubHfuVW1KlD9dmav66LPVOiVSf1Gj1SYlSTDjT+wAAAAB4aVDqtNNOc01PgKMxU5WiUpyt5wSpqlTyb/QLeO4mZ2DKtK2fmgdI0R2khB5STFf511W5s/fACUuJDtXUIemaMiBF3+4q1Ffb8rS3sELr9hXbZqTFhKpPapT6pkapU1w4BdIBAAAAtO+g1HfffaeBAwfK39/fXj+SwYMHt1bfgCMLjmh6u+PJUmislLtZyt8qleZIRbtt869bqLCqgQf23b9DqihwBq3CE5wBL6CdCAkM0Mhu8Tq5a5wyiyq0YV+xNmQWa9f+Mu0rrLBt0cYchQcHNGRRmUum+QEAAADwJMf0G8rQoUOVmZmp5ORke93UjjI1pA5GTSm4VWiM1PEkZzPKC5zBKbOyX+5WlTmSDuy76ytpx5fO6wEhUnS6M0BlLu3KgJ0k/wD3vA/gGJmfuWkxYbaN75us0soabcoq1sbMYm3KKlFZVa1W7yq0zcRduyaEa0B6jPqnRSsuItjd3QcAAADg444pKJWRkaGkpKSG60C7EBYrdRhhW111tRwffNDovnhnPariTKm20lmfyrR6E2dJYXEHVgNsXHwd8FARIYEa1jnOtro6h3bkl9kAlWkmo8oUSjftve/2qUNsqA1QDUiPVlJUCCv5AQAAAPDMoFSXLl2avQ60W70mOltdrbN4etFeqWiP87Ku+kBAyljxrFSWLyX3czZTRN0UYAc8mKkl1S0xwjazit/+0iqt3+dcuS8jr1R7Cipsm7cuS0mRweqfHm2DVCmRfLYBAAAAtI0W//aRl5enhIQEe33Xrl16+umnVV5erqlTp+rUU091RR8B1zFT9KLTnE0jDr3fBK3M9D+TTVWSKW1b6Jzul9hLSurrvIxKdUfPgRYx0/VO6ZloW0lljTb8EKDakl2inJIqfbYp17bIYH9V5fppYH6ZuidHk0EFAAAAwGX8j3XHNWvWqGvXrrauVN++fbV69WqdfPLJeuSRR/TUU09p/Pjxeuutt46rE4899ph97tDQUI0aNUrLly8/4v5z5sxRnz59FBYWpk6dOunmm29WRUXFcb02cNSg1cSZ0vDpUqdRUkiUM0CVtVZa+4a0/t2m++/8yllE3Uz5AzxUZEigTuoar+mndNVd5/TTL0d20uCOMQoJ9FdRRY02F/rpqc+366GPN+qjtfu0t6C82TqCAAAAANAmmVK33XabBg0apH//+9966aWX9OMf/1jnnHOOzZQybrzxRj3wwAOaNm1aizrw6quv6pZbbtETTzxhA1Im4DRlyhRt3LjRBsAONnfuXN1xxx169tlndcopp2jTpk267LLL7F/zH3744Ra9NnDMq/x1GO5s5hdzM80ve72Us1GK73Zgv4pC6du5zut+/lJUmrNulWm2iHoHKSjUbW8DaE5oUIAGd4y1rbq2Thv2Fmju/h0KDPTX/rLqhgwqM8XPuV+MkqP5HAMAAABow6DU119/rU8//VSDBw/WkCFDbHbUddddJ39//4ag1OjRo1vcARNIuuqqq3T55Zfb2yY49f7779ugkwk+HWzJkiUaO3asLrroInvbZFj98pe/1FdffdXi1wZazExlqg809ZrU9L6aSueUvsLdUlXJDzWq9jhX+jO6nSYNPP/AvnlbnIEqs2ogU6TgAYIC/NU3NUqjkx2aNKW3tuVV6NvdBbZQupni98mGbNvSYkJtcGpQhxglRIa4u9sAAAAAvD0olZ+fr9RUZ+2cyMhIRUREKC7uQDFoc724uLhFL15VVaWVK1fqzjvvbNhmglwTJ07U0qVLm32MyY56+eWX7RS/kSNHatu2bfrggw90ySWXNLt/ZWWlbfWKiorsZXV1tW2uUP+8rnp+eOiYhMRJI37tzKYyWVNFu+VXuFt+PwSnHJFpctS/fn6G/Jc9cSATK7qDHKbFdpES+0iBvvGLPt8Vz9MwFnW16pMcbltlda3WZxZrzZ4ibc4u0Z79ZbZ9uGafkqOC1SclSn1SI9U5LtwWWEfr4nviXWPCOAIAABxnofODC96eaAHc3Nxc1dbWKiUlpcl2c3vDhg3NPsZkSJnHjRs3ztY4qamp0TXXXKP/9//+X7P733///Zo9e/Yh2+fNm6fw8HC50vz58136/GgvY2KKqKdJq7Okbz+wW6LKdyu9oFghNYXys7V6DnzeHX7+2hU/TvsjeshX8F1pH2NilriI9JN2l0k7S/yUU+GnXQ5p5ffO+4MDpLRwh9LDHUoNc95G6+F74h1jUlZW5pK+AAAAeH1QytRuCglxZnCYwuImGGQypozG2UiutGjRIt1333365z//aWtQbdmyRTfddJP+8Ic/6J577jlkf5OFZWpWNc6UMsXRJ0+erOjoaJf00fwV1JyoTpo0SUFBQS55DXjDmFztLIhekmkzqmxmVc4mqTxPHced75zaZ+Rukl/uZjlS+ksmk8rUq/ISnjkuvq0lY1JeVastOSXakFmiTVnFKq+uU52k3ZL2OqSuMeHqkxql3smRSowMZiW/48T3xLvGpD5jGwAAAC0ISk2fPr3J7V/96leH7HPppZe26MUTExMVEBCgrKysJtvN7fqpggczgSczVe/Xv/61vW2Kr5eWlurqq6/WXXfd1VDjqp4JotUH0hozJ5GuPrlvi9dAOx8T05fQ7lJid+dtkzVVkq2AyOQDdaYyV0m7v5a2L5SCIqTkfs4W310Ki/OKelQeNy44pjEx9w+PCNXwromqq3NoR36ZNmYWaf2+YmUXV2p7foVtH6/LUXRYoHokRqp7UoS6J0UqLjyIIFUL8T3xjjFhDAEAAI4jKPXcc8+ptQUHB2vEiBH65JNPGlbtq6urs7dvuOGGw6a9Hxx4MoEtgyXL0e6ZX9Kjmk5nVdoQW99HORuk6lJpzwpnM0JjpTPulgJ++CXHfAf4RR9uYGpJdUuMsO3MgWnKK6m0BdJNLartuaUqKq/Rql0Fthmx4UHqnhihHsmRNlgVE84v6gAAAICvadH0PVcwU+tMFtZJJ51kC5fPmTPHZj7Vr8Znsq86dOhga0MZ5557rl2xb9iwYQ3T90z2lNleH5wCvErqIGerq5P2Z0hZa50r95kpf0FhBwJSxldPSnXVUlw3Kb6bFNfVWUgdaGNmVb5TepqWqOraOu3ML9O2nFJtzSnRrvwyFZRV65udBbbZ/SOC1SM5Qj2TouxleLDb/3sCAAAA4GJuP+u/8MILlZOToxkzZigzM1NDhw7VRx991FD8fOfOnU0yo+6++2475cNc7tmzR0lJSTYg9ac//cmN7wJoA+Z7kNDD2YyaKucqf/Vqa5zBKhOUMpf1IpKluB9W9et0ctv3Gz4vKMBfPZIibZukFFXW1GpnXpm25pRqW65Zza9ceaVVysuo0vKM/TbZr0NsmHomR6pXcqQ6x4crMMB7aqkBAAAA8JCglGGm6h1uup4pbN5YYGCgZs6caRvg0wKDpcikA7f9A6Qf3SrlZzgzqvK3SaU5Umm2s1WXHwhKmWl+Gz+QotKc2VReUpsK7UNIYIB6pUTZZlRU12pHXpm2ZJdoc3axsooqtXt/uW2LNuYoJNBfXRPCnY9JjlRSVAj1qAAAAAAv4BFBKQCtVY8q1dm6jHFuqyqV9u+QCnZIkY1qVVUUSJvnHbgdHOl8nNknIsmZjRXbue3fA3xSaFCAXaXPNClNheXVdprflixnkKqkslYbs0psM+qLpndNNEXTI+zUP4JUAAAAQPtDUArwZqaeVEp/Z2vMZEp1PVXav10q2iNVlTin/NVP++sx4UBQqrJYWvO6M2BlAlcJvaTQ6LZ/L/AZMWFBGt45zjazgEVmUYU22wBVSbNF06NDAxuKrHdLilBSJJlUAAAAQHtAUArwReHx0qCfOa/XVktFe51T/UqynM0USa9XnCXt+7bRg/2cAauUgVLKACk6nal/cBkTXEqLCbPtR72TbNH0HXmltmj69rxS7covV1FFjb7dXWibERUaqK4JziBVDxOkYrofAAAA4JEISgG+zqzeZwqhm3a4AFb/aVJJtlSwUyra7ZwOaNrG96VBP5e6jmvrXsOHi6b3TI6yzTBBKrOaX0ZuqW1mlb/iihqt2VNomxEZEqDuSZE2SNU9kSAVAAAA4CkISgE4MhOU6jH+wO3yAil7nZT1vZSz0bmqX709K6W9q6TkAVJsJ2d9qsAQt3QbvhOkMgEn04waE6TaX26n+Zm6VCZIZWpSfbe70Lb6TKr6AJV5XGIkNakAAAAAdyAoBaBlwmKlLqc4m5n6ZzKt6u1dLWWucbaG/eMOFFDve44UFOaWbsM3BAb4N9SXGt832QapzCp+23JL7JS/+kyqxkGq+ppUzuAWhdMBAACAtkJQCsDxaxyQMnqfKUV3kHI3OmtRVZdK5fudLXeTcxpgvTVvyD9vm9L3F0g53aWUvoc+H9AKQSqzSp9pZ/R1TvezQaqcA0Gqg2tS1a/uZwJUJlAVFx5EkAoAAABwAYJSAFpPTAdn63Om83ZliVSa7axHZVbxC2j0I6dwl21Jxbvk//VTzml+CT2l5L5Scn9nZhWBALhgul99JtWEfs4glQlMZeSU2mwqWzj9oNX9zGqAJkBliqZ3jo9guh8AAADQSghKAXCdkEhni+9+6H1DL5Yjb7vy8t9Qp9AQqapIylnvbFsXShNnHdi3rlbyD2jTrsN3glQ9kiJtk1JUVeMMUtlMqtxS7d5fpsLyaq3aWWCbERLorw6xYeoYF6YOpsWGKZ4pfwAAAECLEZQC4B6RyXKExGl3/D4NHn+WAirynAGp7A32voYsqbo6acEsKTRGik6XolKlqDRnM9sIBKAVBQea1f0ibTMqa2rt6n5bc5yr++0tKFdlTZ0NWJlWLywoQOmxoTZQ1TEuXOmxYUz7AwAAAI6CoBQA9zO/uEenOVuPMySH48B9RbulyiJnM1P+GgsKl7qOcxZQN8zjaiqloNC27T+8VkhggHomR9lm1NU5lFVcoT37y7WnoNzWp8osrFB5da0NXJl2cKDKBKhsiwlVYmSI/P0JVAEAAAAGQSkAnqdxdklsZ+mMGc6AVHGmVLzXeVmaI1WXSX6NpvWZguqf3CvFdJQSejhrVJmpg8ERbnkb8D4moJQWE2bbST9sMyv8ZRdX2gDVnoIyG7DKKqpsNlAVHOCn1BgTpAq10/46xYcrOSqEjCoAAAD4JIJSADxfRIKzNVZb7SygHhR2YJsJVMnRUERd2xY5t0elO4NUnUY6g1xAK6/wV58NJcU3CVSZ6X57Cyvs5b6CclXVOmzNKtPqRYUGqqepa5UcoZ5JUYoJZxVKAAAA+AaCUgDap4Ag50p/jSX1kSbOlvK3Snk/tJL67Kq9Uly3A0GpkhypYKczWBUW65a3AF8JVKlh6l9uqQlUOYNUppngVHFF09X+kiKD1SPZWXzdtECSqAAAAOClCEoB8C4mwNRhhLMZlcU/BKi2OANQ9TK/lda/67wenuic6mdbDyncme0CtPbUv+SoUNuGdoptyKgygakt2SV2mt+u/WXKKalSTkm+lm3LtzNZU6OCtT/PT2m7CtQpIVJJkSE26AUAAAC0dwSlAHi3kCgpfaizNRYcKcV0kgp3S2W5zrZrmfO+sHhp9HVSZNKBAurU/IELmOBS96RI24yK6lptyynVlpwSbc0usVMA9xRUaFeBn8q+2St/f3+ZOulJUSFKjQ5VSkyo0mJC7fWYMFb7AwAAQPtCUAqAb+o82tmqy6X8DGcmVd5mZ5DKZFeFxR3Y95sXpNzNzm31zWRT1V+P7mjSYNz5buAlQoMC1D892jajsLxaG/cV6L3CHUpLCFdOSbUtoG4KqZum3YWNHuvvDFRFhyo5OsRmZKVEhygyJJBgFQAAADwSQSkAvs0USk/p72xGdYVUkiUFBDZd1a+qxNlMAfXG/Pyls/964HbmGqmuVorrIoXGkmGFE2Kyn4Z1itW+RIfOHtdVgYGBKiqvUWZRhfYVliuzsMJezymuVEV1nbbnldnWWHhwgA1O2WDVD4Gq5OhQG6wCAAAA3IkzUgBoLCjUGVBqbORvnIEp2/IbXd/vvL9xltTmec4C6kZItLOwelxXKbaLFNup6WqBQAuZjCezOp9pfVKjGrab2lQ5JZU2SGWm/GUXVdhMqvyyKpVV1Sojt8y2xqLDApUWHao0U5A9JkxpsaFKiAgmqwoAAABthqAUABxNcLizHbzaX3NMAKquzrnaX2WRlLXW2Qwz1W/irAP7mqAW2VRopdpUaSawFNM06FlV4wxWZRVVKLuoUtnFJlhVof1l1Tbjqqi8RBuzShr2Dwn0V+oPdaqcz+ecDhgcyPRUAAAAtD6CUgDQmgb+1HlZUyUV7Zb275AKdjgvTaZUPVM8ffFfJEedM4vKBLPiuzmvm2wtoBWYYFKH2DDbGqusqVVWYaX2FpbbaYB7C5zBqsqaOu3IK7OtnomZJkYE24wqU7PKBK1MZpXJtCKrCgAAAO0+KPXYY4/poYceUmZmpoYMGaK///3vGjlyZLP7nn766frss88O2X722Wfr/fffb4PeAsAxCAyW4rs7W73amgPXKwql2ipny1nvbJafFJ0udTxJ6nFGm3cbviEkMECdE8Jtq1dX51BuSaX2FVY0BKrMZUllrXJKqmz7TgcKq4cFBThX/qvPrIoNU0pUiM3aAgAAANpFUOrVV1/VLbfcoieeeEKjRo3SnDlzNGXKFG3cuFHJycmH7P+///1PVVVVDbfz8vJsIOvnP/95G/ccAFqocfH0sFjpzD9LRXuk/RnS/u3OVQBNzSqzrbLvgX1N8fU1r0sJPZxBrsgUpvyh1fn7+9kC6KYN6RTbsL24otoGqmxR9cIKm11lCqubVQC35Zba1vAcfrLT/UyQKj02rOHSrCoIAAAAeFxQ6uGHH9ZVV12lyy+/3N42wSmT8fTss8/qjjvuOGT/+Pj4Jrf/85//KDw8nKAUgPbHFEg3U/pM6/ajAxlUJkAV0Sgob4JWe1Y4mxEc6QxO1Qepojs2LbYOtKKo0CDbeqc0LaxuCqo7VwCsbMisMoEqZ6ZVhb7ZWdCwf3xEkA1OmWl/dhXA6BDFhwfbQBgAAAB8l1uDUibjaeXKlbrzzjsbtvn7+2vixIlaunTpMT3HM888o1/84heKiIhwYU8BoI2ExkhpQ5puC0+Qek2R8rc6a1NVlUiZ3zmbMegCqetY5/WaSsnPXwoIavu+w2eYKXo2yNSoVpXD4VBBWbWzTtUPU//2FFSosLxa+aXOtnZP0YHn8PdTUlSIkk2LNpeh9npCZIgCCFYBAAD4BLcGpXJzc1VbW6uUlJQm283tDRs2HPXxy5cv19q1a21g6nAqKyttq1dU5Dwhrq6uts0V6p/XVc+PlmNMPBPjcoxC4qQek5ytrkYq3CW//Az55W+zWVR10Z3MQbS7+u1cJr91b0kxneSI7yGHyaQyRdQDj614OmPiedrTmEQG+6l3Urht9Uora5RZ5Cyqbqb/ZRdX2dpVZmXAPfvLbGvMxKMSI4NtRlV6rLOoenpMqMKCA7xiTNrDOAIAAPjM9L0TYYJRgwYNOmxRdOP+++/X7NmzD9k+b948O+3PlebPn+/S50fLMSaeiXE5XumSI1Va/E1DjamO+UuUUJIhybTFdpvDzAoMTlBpcJKyYoaqJqDpSmzNYUw8jzeMiclp7iapi59kQlGFZpHKaj8V2UupqMpPNXXSjmYeGxkkxYU4FBcixZvLYMndcarjGZOysqZBOAAAAF/m1qBUYmKiAgIClJWV1WS7uZ2amnrEx5aWltp6Uvfee+8R9zNTA00h9caZUp06ddLkyZMVHR0tVzB/BTUnqpMmTVJQEFNoPAFj4pkYFxdwnCWV5TZkUdnLstwf7ixT3eRzGrKm/LZ/LpXlObOqYjpJEUmqrqlhTDyML31PzBTAoooaZf+QWbXXFFYvqND+sgPZRft/aKqT4kODlBITqvjwICVEBts6VfERwYoNC3JpvaoTGZP6jG0AAAC4OSgVHBysESNG6JNPPtG0adPstrq6Onv7hhtuOOJjX3/9dTst71e/+tUR9wsJCbHtYOYk0tUn923xGmgZxsQzMS6tLDhdik2XNM55u7xAssGpfAWEHShWrew1zu31AkPlH5mmtP05Cs5OUWCXUazy50F85XuSGBysxOhw9e8Y17CtrKpGewvKtXu/qVNliqqX2xpVBRW1Kqg4sPpfPROPMsGp+pYYGWJbanSoosMC5ddKn+vjGRNfGEMAAIB2M33PZDFNnz5dJ510kp2GN2fOHJsFVb8a36WXXqoOHTrYaXgHT90zgayEhAQ39RwA2omwWKnD8EO3mxX/YjpKBbukwt1STYUtpp5cvEt+pqxf19EH9s1YLPkHStEdpOh0CqmjTYUHB6pncpRtBweqzCqA+aVVtuWVOC9r6hzKLTG1q6qaea4ApcWEKjUm1F6mxYTZAuumeDsAAAB8LCh14YUXKicnRzNmzFBmZqaGDh2qjz76qKH4+c6dO+2KfI1t3LhRX3zxha0LBQA4TunDnM2oq5NKMuXI3abc/e+rY4cRTffdPE+qLHZeN6v7RaY4A1qmxXaR4k2lIMC9gaqGKYDlNcotrWwIVOWVVtopgabAellVrbbmlNrWOLPKrARoiqqbYFX/9GibWQUAAAAvD0oZZqre4abrLVq06JBtffr0sSedAIBWYoL/0elyhCVpT1yehvQ9+8B9JmDVcaRUtMeZUVVVIhXvc7bdX0vxPaSxvz2wf8bnUkSiM2AV0jRgALiamZoXEx5kW4+kpvdV19bZzKrMwnLtK6zQvoIKe1leXausokrbtEsN0/0AAADgA0EpAICHB6z6T3VeN38QqCh0BqdskGqXFNP5wL7VFdLaNw7cDo2RwhMkR51UVyOlDZV6TXLeZzKvFj0g1dU67wsIlhJ7SSkDpKS+UqhrFqOA7woK8FeH2DDbDs6s2lfkDFRlFlY0uR8AAACuQ1AKAHDsTIFoU6PKtNSBh95v6lKlD3cGrUpznAEs0+o1DmCZaYAm66peXbW0b7WzGd3HSwOci2AAbZFZ1TeVQCgAAEBbIigFAGg9Jlg1YvqBrCmTTVVZ5CyS7hcghR1YUU2BYdJpd0j+Ac77TfAqe72Uvc6ZgRWZfGDf0jxp4wdSSn8psY8UHMHKgAAAAEA7R1AKAOAaQaFSQo+j1LFKO3A7PN5ZMN3Us6oock7nq5f9vbRnhbM1PD7QuY+5HD5dSuzp3J71vXO1QHOfqW1lirJHJDkvQyJd8U4BAAAAHAeCUgAAz3NwPSlTTL3HBGcWlSmwbpg6VKYZjbOmyvKknA3NP29QhDOTK6mP87YJfpkph+GJziAZAAAAgDZDUAoA4PliOjibKbheUyXV/tBMUMpcmkyoeqZI+tBfSTXlUkm2s7ZVSZZUvl+qLpWCG2VL7VkprXtL8g9yZm3FdJKif3itqHQpsFG2FgAAAIBWRVAKANC+mEDRkYJFphZV43pU9UwwqzTbOY2vnglomWl+5rJgp7M18JN+dKsU09F509S8MlMFTT0rAAAAACeMoBQAwDeYQFZ9gKle7ylSr8nObCqzYqApzF5o2i6pqrRpBtbm+dL2z53F2m02VSfn85kWGkPhdQAAAKCFCEoBAHybCSbVZ1d1GH5ge2WxFBhy4HZVifPSTAM0LWvtgfvMlMAz7nEWdzfK8n/IqoqkVhUAAABwGASlAABoTkhU09sjLpMGX+jMpCra7cysMq04U/IPOBCQMla9LOVvdU4BNNP9QqKdz2eayaoytbHqmbpXdr9wKTCMIBYAAAB8BkEpAACOVVCYlNjT2RrXqqooaLqfo84ZaJLDmWFlWvEP95kAVeOg1Oq50v6MA7dNYMoEqILCnQGsYZcduG/rp84sLMPP35nlZS7NawUESX3OOrBvxufOAu+mL3W1zsv6Zh436IIDgTRzvwmsAQAAAG2IoBQAACdaq+rgwurjfifV1TmDUWYaYEMr+iGI1IgptB4YKtVUOG+bVQNNU55z/8b2fdc0gNWkH6FNg1KZa6Tcjc3va6YWDrvkwO1VL0m5m501tEwz76f+elQqASsAAAC4BEEpAABcwUzDC412tiMZc92BbKXqMqm63Flk3Vy3GVeNdB4tJfZ2ZmA5HD/c/8OlCTQ11mGEFNfVGQQzQaX6rCrTAkKaFmYvyTmQ0XVw0MvsO+U+KeCH5y8vcE5DJFAFAACAE0RQCgAAT2CCPPV1pxqrrm4alDpWnUcd+75jf+tcgdA0E6AqzXZeL85yrjZYH5AyVjzrXKUwOl2K6SzF/rAKoSnqbrK1GtfWAgAAAI6AoBQAAL7OrDJoAkumNWaysUzWVuPb5flSXY1UsNPZdjTa32Rmjbv5wO3Ff3FOSzTZVqbmlXkdUyvLFH+PTJG6nXpgX1Mrq/7+xllcx8r0zfSrttpZk6te9nqp8oeVE83r2hbpvDSvdzyvBQAAgFZBUAoAADTPBGxCIpvenvQHqTRXKtzpXH2wYJdUtNdZB8vUx2qsLM85DbE5sZ2bBqWW/N0Z8DLTC03AqPFzRaVJI686cHvpY85phKY/JhBVXeEMfjlqpeiO0mn/d2Dftf91Zn01JyxemjjzwO0N70tpQ6WYDsd6hAAAAHACCEoBAIBjZwJBkaYYepKzblU9W+PK0XTfMddLNZVSbZWzmZUKq0udmUsHT1M0ASV7WecsCt+YyZ5qzATFTACrOfUF4+vFdZPCE5x9M69d9UMz/TGrKTa2d7WU3O9YjgIAAABaAUEpAABw4mwh9YOmwh08HfBIJt0r1dYcKLhupuFZDuf0v8ZGXObMkDKBJlNQPjDMWcvKXJopeY0Nu7j51zMBstrKptt6nOFccRAAAABtgqAUAADwDKagelissx1JXJcTf63AYGdrrMuYE39eAAAAHDP/Y98VAAAAAAAAaB0EpQAAAAAAAOCbQanHHntMXbt2VWhoqEaNGqXly5cfcf+CggJdf/31SktLU0hIiHr37q0PPvigzfoLAAAAAACAdl5T6tVXX9Utt9yiJ554wgak5syZoylTpmjjxo1KTk4+ZP+qqipNmjTJ3vfGG2+oQ4cO2rFjh2Jjj1J/AgAAAAAAAB7D7UGphx9+WFdddZUuv/xye9sEp95//309++yzuuOOOw7Z32zPz8/XkiVLFBQUZLeZLCsAAAAAAAC0H26dvmeynlauXKmJEyce6JC/v729dOnSZh/zzjvvaMyYMXb6XkpKigYOHKj77rtPtbW1bdhzAAAAAAAAtNtMqdzcXBtMMsGlxsztDRs2NPuYbdu26dNPP9XFF19s60ht2bJF1113naqrqzVz5sxD9q+srLStXlFRkb00+5vmCvXP66rnR8sxJp6JcfE8jInnYUy8a0wYRwAAAA+avtdSdXV1tp7UU089pYCAAI0YMUJ79uzRQw891GxQ6v7779fs2bMP2T5v3jyFh4e7tK/z58936fOj5RgTz8S4eB7GxPMwJt4xJmVlZS7pCwAAQHvk1qBUYmKiDSxlZWU12W5up6amNvsYs+KeqSVlHlevX79+yszMtNMBg4ODm+x/55132kLqjTOlOnXqpMmTJys6OlquYP4Kak5UTUH2+rpXcC/GxDMxLp6HMfE8jIl3jUl9xjYAAADcHJQyASST6fTJJ59o2rRpDZlQ5vYNN9zQ7GPGjh2ruXPn2v1M/Slj06ZNNlh1cEDKCAkJse1g5iTS1Sf3bfEaaBnGxDMxLp6HMfE8jIl3jAljCAAA4CGFzg2TxfT000/rhRde0Pr163XttdeqtLS0YTW+Sy+91GY71TP3m9X3brrpJhuMMiv1mULnpvA5AAAAAAAA2ge315S68MILlZOToxkzZtgpeEOHDtVHH33UUPx8586dDRlRhpl69/HHH+vmm2/W4MGD1aFDBxuguv322934LgAAAAAAANCuglKGmap3uOl6ixYtOmTbmDFjtGzZsjboGQAAAAAAALxy+h4AAAAAAAB8D0EpAAAAAAAAtDmCUgAAAAAAAGhzBKUAAAAAAADgm4XO25LD4bCXRUVFLnuN6upqlZWV2dcICgpy2evg2DEmnolx8TyMiedhTLxrTOrPP+rPRwAAAHyZzwWliouL7WWnTp3c3RUAAOCjzPlITEyMu7sBAADgVn4OH/tTXV1dnfbu3auoqCj5+fm55DXMX0FN0GvXrl2Kjo52yWugZRgTz8S4eB7GxPMwJt41Jua0ywSk0tPT5e9PFQUAAODbfC5TypwAduzYsU1ey5yo8guEZ2FMPBPj4nkYE8/DmHjPmJAhBQAA4MSf6AAAAAAAANDmCEoBAAAAAACgzRGUcoGQkBDNnDnTXsIzMCaeiXHxPIyJ52FMPA9jAgAA0Dp8rtA5AAAAAAAA3I9MKQAAAAAAALQ5glIAAAAAAABocwSlAAAAAAAA0OYISrnAY489pq5duyo0NFSjRo3S8uXL3d0ln7F48WKde+65Sk9Pl5+fn956660m95sSajNmzFBaWprCwsI0ceJEbd682W399QX333+/Tj75ZEVFRSk5OVnTpk3Txo0bm+xTUVGh66+/XgkJCYqMjNRPf/pTZWVlua3P3u7xxx/X4MGDFR0dbduYMWP04YcfNtzPeLjfAw88YH+G/e53v2vYxri0vVmzZtlxaNz69u3bcD9jAgAAcGIISrWyV199Vbfccotdleebb77RkCFDNGXKFGVnZ7u7az6htLTUHnMTGGzOgw8+qL/97W964okn9NVXXykiIsKOj/nFAq7x2Wef2V/ali1bpvnz56u6ulqTJ0+2Y1Xv5ptv1rvvvqvXX3/d7r93716df/75bu23N+vYsaMNeqxcuVIrVqzQGWecofPOO0/ff/+9vZ/xcK+vv/5aTz75pA0cNsa4uMeAAQO0b9++hvbFF1803MeYAAAAnCCz+h5az8iRIx3XX399w+3a2lpHenq64/7773drv3yR+Xi/+eabDbfr6uocqampjoceeqhhW0FBgSMkJMTxyiuvuKmXvic7O9uOzWeffdYwBkFBQY7XX3+9YZ/169fbfZYuXerGnvqWuLg4x7/+9S/Gw82Ki4sdvXr1csyfP99x2mmnOW666Sa7nXFxj5kzZzqGDBnS7H2MCQAAwIkjU6oVVVVV2cwDMyWsnr+/v729dOlSt/YNUkZGhjIzM5uMT0xMjJ1iyfi0ncLCQnsZHx9vL813xmRPNR4XMz2mc+fOjEsbqK2t1X/+8x+buWam8TEe7mWyCs8555wmx99gXNzHTPE2U8K7d++uiy++WDt37rTbGRMAAIATF9gKz4Ef5Obm2l/wUlJSmmw3tzds2OC2fsHJBKSM5san/j64Vl1dna2RM3bsWA0cONBuM8c+ODhYsbGxTfZlXFxrzZo1Nghlpq6aWjhvvvmm+vfvr9WrVzMebmKCg2bat5m+dzC+J+5h/mjx/PPPq0+fPnbq3uzZs3Xqqadq7dq1jAkAAEArICgFoE2zQMwvc41rssA9zC/ZJgBlMtfeeOMNTZ8+3dbEgXvs2rVLN910k627ZhbJgGc466yzGq6bGl8mSNWlSxe99tprdrEMAAAAnBim77WixMREBQQEHLLyjrmdmprqtn7BqX4MGB/3uOGGG/Tee+9p4cKFttB2PXPszdTXgoKCJvszLq5lMjx69uypESNG2BUSzQIBjz76KOPhJmYqmFkQY/jw4QoMDLTNBAnNwgzmusm+YVzcz2RF9e7dW1u2bOG7AgAA0AoISrXyL3nmF7xPPvmkyXQlc9tMk4F7devWzf6i0Hh8ioqK7Cp8jI/rmJrzJiBlpod9+umndhwaM9+ZoKCgJuOyceNGW7eFcWk75mdVZWUl4+EmEyZMsFMqTfZafTvppJNsDaP664yL+5WUlGjr1q1KS0vjuwIAANAKmL7Xym655RY7Dcb8AjFy5EjNmTPHFhC+/PLL3d01n/mFwfwFu3Fxc/MLnSmqbYrPmnpGf/zjH9WrVy8bHLnnnntsAdtp06a5td/ePmVv7ty5evvttxUVFdVQa8UUmTfTX8zllVdeab87Zpyio6N144032l/qRo8e7e7ue6U777zTTksy34ni4mI7PosWLdLHH3/MeLiJ+W7U11mrFxERoYSEhIbtjEvbu/XWW3XuuefaKXt79+7VzJkzbUb0L3/5S74rAAAArYCgVCu78MILlZOToxkzZthfvocOHaqPPvrokOLacI0VK1Zo/PjxDbfNLwuGCRSaYrW33XabDRJeffXVdsrFuHHj7PhQw8V1Hn/8cXt5+umnN9n+3HPP6bLLLrPXH3nkEbtS5U9/+lObrTNlyhT985//dEt/fYGZJnbppZfaws3mF2tTK8cEpCZNmmTvZzw8E+PS9nbv3m0DUHl5eUpKSrL/ZyxbtsxeNxgTAACAE+PnMHNrAAAAAAAAgDZETSkAAAAAAAC0OYJSAAAAAAAAaHMEpQAAAAAAANDmCEoBAAAAAACgzRGUAgAAAAAAQJsjKAUAAAAAAIA2R1AKAAAAAAAAbY6gFAAAAAAAANocQSkAcBE/Pz+99dZb7u4GAAAAAHgkglIAvNJll11mg0IHtzPPPNPdXQMAAAAASAp0dwcAwFVMAOq5555rsi0kJMRt/QEAAAAAHECmFACvZQJQqampTVpcXJy9z2RNPf744zrrrLMUFham7t2764033mjy+DVr1uiMM86w9yckJOjqq69WSUlJk32effZZDRgwwL5WWlqabrjhhib35+bm6ic/+YnCw8PVq1cvvfPOOw337d+/XxdffLGSkpLsa5j7Dw6iAQAAAIC3IigFwGfdc889+ulPf6pvv/3WBod+8YtfaP369fa+0tJSTZkyxQaxvv76a73++utasGBBk6CTCWpdf/31NlhlAlgm4NSzZ88mrzF79mxdcMEF+u6773T22Wfb18nPz294/XXr1unDDz+0r2ueLzExsY2PAgAAAAC4h5/D4XC46bUBwKU1pV5++WWFhoY22f7//t//s81kSl1zzTU2EFRv9OjRGj58uP75z3/q6aef1u23365du3YpIiLC3v/BBx/o3HPP1d69e5WSkqIOHTro8ssv1x//+Mdm+2Be4+6779Yf/vCHhkBXZGSkDUKZqYVTp061QSiTbQUAAAAAvoaaUgC81vjx45sEnYz4+PiG62PGjGlyn7m9evVqe91kLg0ZMqQhIGWMHTtWdXV12rhxow04meDUhAkTjtiHwYMHN1w3zxUdHa3s7Gx7+9prr7WZWt98840mT56sadOm6ZRTTjnBdw0AAAAA7QNBKQBeywSBDp5O11pMDahjERQU1OS2CWaZwJZh6lnt2LHDZmDNnz/fBrjMdMC//OUvLukzAAAAAHgSakoB8FnLli075Ha/fv3sdXNpak2ZKXf1vvzyS/n7+6tPnz6KiopS165d9cknn5xQH0yR8+nTp9uphnPmzNFTTz11Qs8HAAAAAO0FmVIAvFZlZaUyMzObbAsMDGwoJm6Kl5900kkaN26c/v3vf2v58uV65pln7H2mIPnMmTNtwGjWrFnKycnRjTfeqEsuucTWkzLMdlOXKjk52WY9FRcX28CV2e9YzJgxQyNGjLCr95m+vvfeew1BMQAAAADwdgSlAHitjz76SGlpaU22mSynDRs2NKyM95///EfXXXed3e+VV15R//797X3h4eH6+OOPddNNN+nkk0+2t039p4cffrjhuUzAqqKiQo888ohuvfVWG+z62c9+dsz9Cw4O1p133qnt27fb6YCnnnqq7Q8AAAAA+AJW3wPgk0xtpzfffNMWFwcAAAAAtD1qSgEAAAAAAKDNEZQCAAAAAABAm6OmFACfxMxlAAAAAHAvMqUAAAAAAADQ5ghKAQAAAAAAoM0RlAIAAAAAAECbIygFAAAAAACANkdQCgAAAAAAAG2OoBQAAAAAAADaHEEpAAAAAAAAtDmCUgAAAAAAAGhzBKUAAAAAAACgtvb/ASKjZSpp6ItjAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -360,7 +360,7 @@ "fig, axes = plt.subplots(3, 2, figsize=(12, 12), sharey=True) # 3 rows, 2 columns\n", "axes = axes.flatten() # Flatten to easily iterate\n", "\n", - "for i, (hist, ax) in enumerate(zip(histories, axes)):\n", + "for i, (hist, ax) in enumerate(zip(histories, axes, strict=False)):\n", " ax.plot(hist[\"loss\"], label=\"Train loss\", alpha=0.6)\n", " ax.plot(hist[\"val_loss\"], label=\"Val loss\", linestyle=\"--\", alpha=0.6)\n", " ax.set_title(f\"Fold {i + 1}\")\n", @@ -401,14 +401,14 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "/Users/arthurdanjou/Workspace/studies/.venv/lib/python3.12/site-packages/keras/src/layers/core/dense.py:93: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n", + "/Users/arthurdanjou/Workspace/studies/.venv/lib/python3.13/site-packages/keras/src/layers/core/dense.py:92: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n", " super().__init__(activity_regularizer=activity_regularizer, **kwargs)\n" ] }, @@ -416,26 +416,27 @@ "name": "stdout", "output_type": "stream", "text": [ - "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 30ms/step\n", + "WARNING:tensorflow:6 out of the last 6 calls to .one_step_on_data_distributed at 0x12a205120> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has reduce_retracing=True option that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details.\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step\n", " precision recall f1-score support\n", "\n", - " Sain 0.71 0.45 0.56 11\n", - " Malade 0.65 0.85 0.73 13\n", + " Sain 0.33 0.09 0.14 11\n", + " Malade 0.52 0.85 0.65 13\n", "\n", - " accuracy 0.67 24\n", - " macro avg 0.68 0.65 0.64 24\n", - "weighted avg 0.68 0.67 0.65 24\n", + " accuracy 0.50 24\n", + " macro avg 0.43 0.47 0.39 24\n", + "weighted avg 0.44 0.50 0.42 24\n", "\n", - "0.7333333333333333\n" + "0.6470588235294118\n" ] } ], "source": [ + "import numpy as np\n", + "import tensorflow as tf\n", + "from sklearn.metrics import classification_report, f1_score\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.preprocessing import StandardScaler\n", - "from sklearn.metrics import f1_score, classification_report\n", - "import tensorflow as tf\n", - "import numpy as np\n", "\n", "X_train, X_test, y_train, y_test = train_test_split(\n", " X, y, test_size=0.2, random_state=42, stratify=y\n", @@ -473,12 +474,12 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 11, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAHqCAYAAACZcdjsAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAg/BJREFUeJzt3Qd4U1UbB/B/9y4t3YXSUlbZe++9ZIiCggoCLoYyRJFPBXEvloAgiLgAQZai7L1BNsiGQlmllEL3br7nPSFdtNjQpmnT/+95Dsm9uUlOTkN733vOe46ZRqPRgIiIiIiIKB/M8/NkIiIiIiIiwcCCiIiIiIjyjYEFERERERHlGwMLIiIiIiLKNwYWRERERESUbwwsiIiIiIgo3xhYEBERERFRvjGwICIiIiKifGNgQURERERE+cbAgoioiPvggw9gZmaG8PBwo74/PdqPP/6o2unKlSvGrgoRkVEwsCAiyuTSpUt49dVXERgYCFtbWzg7O6N58+aYMWMG4uPjjV29IiMgIEAFHCXRp59+itWrVxu7GkRERQ4DCyKiB/7++2/UrFkTy5YtQ48ePTBz5kx89tlnKFeuHN566y2MGjXK2FWkIhxYvPDCCyr49Pf3N0q9iIiMzdLYFSAiKgqCg4Px7LPPqpPCrVu3wsfHJ/2xESNG4OLFiyrwKEyxsbFwcHAo1Pc0FQkJCbC2toa5eeFdP7OwsFCFiKikYo8FERGAL7/8EjExMViwYEGWoEKnYsWKWXosUlJS8NFHH6FChQqwsbFRQ4P+97//ITExMcvzZMx9TkOG5PgXX3zxofH5O3bswPDhw+Hp6YmyZctmeY7kWPTr108Nz3Jzc1P1kRPo7H799VfUr18fdnZ2KF26tAqYrl27lqd22L17Nxo2bKiGgcln++677/L0vIiICIwbN071+Dg6Oqo6du3aFcePH89y3Pbt29XnXLp0qWovb29vFTz17NnzoTq2adMGNWrUwOHDh9GsWTP1ecqXL4+5c+fm+Jq//fYb3nvvPZQpUwb29vaIiopSjx84cABdunRBqVKl1P7WrVtjz549OeaRSAApPxcXFxd1/ODBgxEXF5d+nBwjAd9PP/2k7kvR/RxzyrE4dOgQOnfuDHd39/T6DxkyJMt7S73l5+Xk5KTaTdpQht7p27bi6tWrqi2lTeU7NGbMGGzYsEHVS9ops7y0CxGRPthjQUQEYM2aNSqvQk5g8+Kll15SJ5dPP/003nzzTXWSJsOmzpw5g1WrVj12PSSo8PDwwMSJE9UJbGYSVEhAIu+zf/9+fPPNN7h37x5+/vnn9GM++eQTvP/+++pYqeOdO3fUkK5WrVrh6NGj6oQ5NydPnkSnTp3U+8uJtgRPkyZNgpeX13/W+/Lly2p4UN++fdXJ8+3bt1VQIierp0+fhq+vb5bjpZ5ysjt+/HiEhYVh+vTp6NChA44dO6ZOwHXk83Xr1k19nv79+6thasOGDVO9EdlP0CXQk/1yEi4BntyX3ic5CZcTd/ks0oOxcOFCtGvXDrt27UKjRo0eamOpv7TxkSNH8P3336sT9C+++EI9/ssvv6h2lee98sorap8EYDmRz6Vrz3feeUe1vQQdK1euTD9m06ZN6nO1b98+/T3kOyQn+LpANq9tK98X+Vy3bt1Sz5WgbfHixdi2bdtDddO3XYiI8kRDRFTCRUZGauTXYa9evfJ0/LFjx9TxL730Upb948aNU/u3bt2avk+2J02a9NBr+Pv7awYNGpS+vXDhQnVsixYtNCkpKVmOlefLYz179syyf/jw4Wr/8ePH1faVK1c0FhYWmk8++STLcSdPntRYWlo+tD+73r17a2xtbTVXr15N33f69Gn1mv/15yIhIUGTmpqaZV9wcLDGxsZG8+GHH6bv27Ztm3qtMmXKaKKiotL3L1u2TO2fMWNG+r7WrVurfVOmTEnfl5iYqKlTp47G09NTk5SUlOU1AwMDNXFxcenHpqWlaSpVqqTp3Lmzuq8jx5QvX17TsWPHh9p4yJAhWT7Dk08+qXFzc8uyz8HBIcvPLvvPUD63WLVqldr+559/cm23UaNGaZydnR/6mT9O20o7yfutXr06fV98fLwmKChI7Zd20rddiIj0waFQRFTi6YbMyFCUvFi7dq26HTt2bJb90nMh8pOL8fLLL+c6Tl9yPTJ7/fXXs9RHroSnpaWpq+4ybEpX5Mp1pUqVcrxyrZOamqqGzPTu3Vslq+tUrVpVDeX5LzIcTJfPIK919+5dNWynSpUq6sp/dgMHDszS3tLzI0PQdJ9Fx9LSUs3SpSO9ELItvQEyRCqzQYMGZentkN6PCxcuYMCAAao+uvaQK/vSQ7Bz507VXpm99tprWbZbtmypnqv7juhD1zv0119/ITk5OddjpD7Sc5Hftl2/fr0aBiZDoXRkSJt8pzJ7nHYhIsoLDoUiohJPxqyL6OjoPB0v49jlRE/yLjKTE3g5UZTHH5cMdcmNBAeZyRAcqYduTL+cLEonSfbjdKysrHJ9bRkyJTMa5fRcOYHNfsKfnZyISl7At99+qxLh5QRYR/JB/uuzyLAoac/sa0DIMJ/sCeyVK1dWt3JskyZNcm07aQ9dwJGbyMhIuLq6pm9nDqqE7jEZkqX7nuSVDFV66qmnMHnyZEybNk3ljEjgJif0Eizohr7J8C4ZliRBgQydksBQch/0bVv53sl3IvuaI9m/p4/TLkREecHAgohKPDlhlBPYU6dO6fW8/Cwal/nkMLPMV9z1fX85AZV969aty7HXQ65yG3IKVsntkLwHyXWQpHEJekaPHl1oV7+zt53ufb/66ivUqVMnx+dkb5Pceou0o9r0Iz+L5cuXq3wYyeGRHiFpnylTpqh98t6SvyE9CPKY/NykSK6D9OhIDo8h2vZx2oWIKC8YWBARAXjiiScwb9487Nu3D02bNn3ksTIlrZycyZVfGSqkI0m19+/fz7KOgVz1lX2ZJSUlqQRbfcn7Zb4qLzMYST0koVvI1Wo5AZZjdFf180oSjOXEXHc1O7Nz58795/PlBLpt27ZqVq3M5LPLjEg5fZbMpN7yeWrVqpVl/82bNx+advf8+fPqVve5c6NLqpbAURLDC4q+AaX0qkiRhHVJpn7uuefUTFCSBK4b3iXrpkiRn6f0YkhytgQT0tuQ17aV750kc0tbZq6jtGthtAsREXMsiIgAvP322+rkVU72JEDIaUVu3RSgMkuRkJmMMps6daq67d69e5aTOBmznpkEMLn1WDzK7Nmzs2zLbE9ChtGIPn36qCvuMvQm+xV22Zbx9LmR50kuhcw+FBISkr5fZiiSq+n/RZ6f/T1///133LhxI8fjZSarzEPP5ORZgi3dZ9GRmakyT3krQZlsSyAkMxo9ijwu7f/111+rqYRzGv71OOR7kj1YzIkMn8reJroeAt20xNl/JtIToQuudMfktW3l5yf7/vzzz/R9Mh3x/PnzC6VdiIjYY0FE9CAAkKvJzzzzjOqFkKEosoaCnMju3btXncjp1iuoXbu2Gp8uAYKcYMpY+oMHD6qhKzKGXq4u60igIgnBMta+Y8eOau0BOVHP6Sr+f5Hx9ZKYK+PvpWdF1quQ8fpSH91n+PjjjzFhwgSVfyB1kQRpeZ5MgSvTo8pUrLmRgEQSgCVhWa6ay0m9BC/Vq1fHiRMn/rPH58MPP1TrPsiUvTJ17aJFi9QUvjmR4TwtWrRQx0sgJ0GaXJ3PnmgsQ9RkGlb5PNILI+tfyNAhaftH5YzoTtJlulgJVuQzyHtJHoOcfEsiu1yxlyFK+pIT882bN6tAUuonPUSNGzd+6Dj5PkhexJNPPql+NhJIyUm+vK8uOJXvh6xTIdO8yrolkichbS4BiK43LK9tK0nts2bNUtPXynSzkgwvx0kCt9D1YhiqXYiION0sEVEm58+f17z88suagIAAjbW1tcbJyUnTvHlzzcyZM9W0nzrJycmayZMnq+k5raysNH5+fpoJEyZkOUbINKHjx4/XuLu7a+zt7dUUnxcvXsx1utmcpibVTYUqU78+/fTTqk6urq6akSNHqulEs1uxYoWatlamRZUi042OGDFCc+7cuf/8/Dt27NDUr19ffXaZvnXu3Lnp7/8o8rnffPNNjY+Pj8bOzk612b59+9SUsVJ0dFPDLlmyRLWXTBsrx3fv3j3LNLdCnle9enXNoUOHNE2bNlVT4Uq7zZo1K8txutf8/fffc6zb0aNHNX369FHTxsoUrfIa/fr102zZsuWhNr5z584jp5AVZ8+e1bRq1UrVWx7T/RyzH3vkyBFN//79NeXKlVPvK5/1iSeeUJ9HZ/ny5ZpOnTqpx6TN5dhXX31Vc+vWLb3bVly+fFm1pRzn4eGhniffB6nX/v379W4XIiJ9mMk/xg5uiIioZJDVn6VHR3qAZIrZR5FZlGQaVH2T6ikr6Q2SFbivX7+ueiaIiAyFORZEREQmQqYMzkxyLCQnRab3ZVBBRIbGHAsiIiITIQn8shaH5GjIWhSSh3P27FmVa0FEZGgMLIiIiEyEzAwlidkSSMjMY9WqVVNT28qkBEREhsYcCyIiIiIiyjfmWBARERERUb4xsCAiIiIionwrcTkWaWlpuHnzplo0SrdYEBERERERPUyyJmSBT1kQVBbYfJQSF1hIUOHn52fsahARERERFRvXrl1D2bJlH3lMiQsspKdC1zjOzs5GqUNycjI2btyITp06wcrKyih1MFVsW8Nh2xoO29Zw2LaGxfY1HLat4bBt9RMVFaUuyuvOoR+lxAUWuuFPElQYM7Cwt7dX788vdMFi2xoO29Zw2LaGw7Y1LLav4bBtDYdt+3jykkLA5G0iIiIiIso3owYWO3fuRI8ePVQyiERBq1evzvNz9+zZA0tLS7W6KBERERERleDAIjY2FrVr18bs2bP1et79+/cxcOBAtG/f3mB1IyIiIiKivDNqjkXXrl1V0ddrr72GAQMGwMLCQq9eDiIiIiJ6tNTUVJWHYKrks8mol4SEBPVZSzorKyt1Tl0Qil3y9sKFC3H58mX8+uuv+Pjjj41dHSIiIiKTWa8gNDRUjQwx9c/p7e2tZgjlmmZaLi4uqk3y2x7FKrC4cOEC3nnnHezatUtFmnmRmJioSuYps3TRqrGicd37mvLVAGNh2xoO29Zw2LaGw7Y1LLavabXt7du31XmSh4eHmjXJVE+6JbCQ4fgODg4m+xn1aYu4uDjcuXNH9d54eXk9dIw+38FiE1jIh5XhT5MnT0blypXz/LzPPvtMPSc7mb9Y/tMY06ZNm4z6/qaMbWs4bFvDYdsaDtvWsNi+xb9t5QTbx8dHXbWWoTGmHixaW1ub/GfMK/l5yxoVt27dwpEjR1SwkZkEHnllpsn+bCORL/SqVavQu3fvHB+XbjlXV9csY8DS0tLUh5d9Eii0a9cuTz0WsshHeHi4UdexkF8UHTt25PzJBYxtazhsW8Nh2xoO29aw2L6m07ZyrhQSEgJ/f3/Y2dnBlMm5Y3R0tDqZLuk9Fjrx8fG4evUqypUrBxsbG2Qm587u7u6IjIz8z3PnYtNjIR/k5MmTWfZ9++232Lp1K5YvX47y5cvn+DxpnOwNJOQ/qbF/CRaFOpgqtq3hsG0Nh21rOGxbw2L7Fv+2lZEhcpItF2vNzU17mTO5MC3k85r6Z80r+blLe0iqQfbvmz7fP6MGFjExMbh48WL6dnBwMI4dO4bSpUuriGnChAm4ceMGfv75Z/WDr1GjRpbne3p6wtbW9qH9RERERERUuIwaph06dAh169ZVRYwdO1bdnzhxotqWsV7SLUdEREREVNQtWLAAnTp1Mtjrt2nTBqNHj87z8TL0Xy7EX79+HYXBqD0W0jiPSvH48ccfH/n8Dz74QBUiIiIiKnlefPFFlYdbFNY1S0hIwPvvv4/ff//dYPVbuXKlXkOTJDdCFpWeNGmSCnoMjQPLiIiIiIjyafny5SonuHnz5no/N68zVEm6gCSd62Pw4MFYtGgRIiIiYGgMLIiIiIjIJO3YsQONGjVSE/nIdLqyHlpKSkqWYKBmzZpqJiw3Nzd06NBBrXEhtm/frp4r613IAnISMMjMSbn57bff0KNHj/RtGVXz008/4Y8//lCJ0VLkNa9cuaLuL126FK1bt1b5wnLif/fuXfTv3x9lypRRSyJIvZYsWfLIoVABAQH49NNPMWTIEBVwSI7yvHnzsjynevXq8PX1VbOvGhoDCyPYfv4O/r3H6c2IiIioiC+elpRS6KWgVkKQCYC6deuGhg0b4vjx45gzZ44aDvTJJ5+k5/LKibyclJ85c0ad9Pfp00e9vwQfsgSCnPifOHEC+/btwyuvvPLI6Wl3796NBg0apG+PGzcO/fr1Q5cuXdR7SWnWrFn64xLkjBo1Sr13586d1VCq+vXr4++//8apU6fU+73wwgs4ePDgIz/nlClT1PsePXoUw4cPx7Bhw3Du3Lksx0iAJAtMG1qxmW7WVFy+E4PRS08gLskcrruv4LU2FTmHMhERERU58cmpqDZxQ6G/7+kPO8PeOv+nqLIsgaxdNmvWLHWuFRQUhJs3b2L8+PHqhF5O9CWAkGBC1u8Q0ksgZNiQrNvwxBNPoEKFCmpf1apVc30vyaOIjIxUPQM6jo6OqidE1giRhQezk54Hee/MJBjRef3117FhwwYsW7ZMBQa5keBJAgohn23atGnYtm0bqlSpkn6M1EsCD0Njj0UhK+tqj+41vaGBGb7YcB5vLz+BxJRUY1eLiIiIyKRIT0DTpk2zXMCV4Uyy3IH0ZtSuXRvt27dXwUTfvn0xf/583Lt3Lz2XQRKvpSdBhjfNmDFDBSKPWmBOyLCmvMrcu6FbS+Sjjz5S9ZH3l8BEAov/miG1Vq1a6ffls0oQExYWluUYCXD0WUH7cbHHopBZW5rj417VkHw3BH9ctcDvh6/jyt1YzHm+PtwdH17Ij4iIiMgY7KwsVO+BMd63sBaFk9XN9+7di40bN2LmzJl49913ceDAAbXw8sKFC/HGG29g/fr1Kh/ivffeU8c3adLkodeS/AwzM7P0wCQvJHcjs6+++koFMNOnT1fBhTwuvRpJSUmPfJ3ss0RJPXSLAOpID4yHhwcMjT0WRiA/8DY+Gnz/Qj042Vrinyv30GvWHpwNjTJ21YiIiIjSz1dkSFJhl4IaIi5DlyQ3InPOxp49e1SSsyRI6z6j9GJMnjxZDRWytrbOkuQs66vJgs0SfMiCzIsXL87xveR51apVw+nTpx/aLz0ReSF169WrF55//nnVmxIYGIjz58+jIEjOhm7dOENiYGFELSu5Y9Xw5ghws8eN+/F46tu92HT6trGrRURERFRsSG7DsWPHspRr166pvAO5lVyFs2fPqtmZZD2HMWPGwNzcXPVMyIxKsmCzDDeSNSLu3LmjApLg4GAVUEhgIjNBSY/GhQsXHpln0blzZ5XAnZnM2iTJ35JMLYvVPWpa2UqVKqX3oMgwrldffRW3b+f/vFCGQB0+fNigC/fpcCiUkVX0dMTqEc0xfNER7L10F6/8cghvda6CYa0rMKmbiIiI6D/IbE7Zr8YPHToU33//PdauXYu33npL9QBI3oLsl+FOcrIta07s3LlTDT2KiopSCdwyw1LXrl3VCb0EIzJdrEwDK1PVjhgxQp3s52bo0KEqb0ICnVKlSql9L7/8sqqf7JfcDkmqlmAjJzLU6vLlyypAkelmZVYomZlKXi8/JKCSaWhbtmwJQ2NgUQS42FvjpyGN8MGf/2LRgRB8uf4cLt6Owad9asK2kMYZEhERERU3P/74oyq5kelis0/Xqss/kN4HyZ/IiZeXl97rPlSrVg3du3dXs1FJb4eQvAbp7cgupyl1JfD5rxW6JUjJTNbEyE56bDKTvI2JEyeiMHAoVBFhZWGOT56siY96VYeFuRlWHr2B/vP3Iyw6wdhVIyIiIqI8+Oqrr9RsTkWFDL+SKW1lvY7CwMCiiHmhaQB+GtwIzraWOBpyH71n7cG/N/PXBUZEREREhhcQEKByOooKd3d3vP3224U2vJ6BRRHUopK7yrsIdHfAzcgEPD1nH9afyn3uZCIiIiIiY2NgUUQFejiqGaNk5ihZ+fK1X49g1tYLBbbMPRERERFRQWJgUYSVsrfCwhcb4sVm2tkDvt54HqN+O4aEZK7UTURERERFCwOLIs7Swhwf9KyOT56sAUtzM/x5/CaembcfYVFM6iYiIiKiooOBRTHxXGN//Dy0EVzsrXD82n30nLUHJ68zqZuIiIiIigYGFsVIswruWD28uVpULzQqAX2/24u/TzCpm4iIiIiMj4FFMRPg7oCVw5uhTRUPJCSnYcTiI5i++TyTuomIiIjIqBhYFEPOtlZYMKghhrYor7anb76AkUuOIj6JSd1ERERExrJgwQJ06tSpQF+zTZs2GD16dPp2kyZNsGLFChRFDCyKKVmd+/0nquGLp2rCysJMDYnq990+hEYyqZuIiIhKhhdffBG9e/dGUZCQkID3338fkyZNMuj7vPfee3jnnXeQlpaGooaBRTH3TMNy+HVoY5R2sMbJG5HoOWu3Su4mIiIiosKzfPlyODs7o3nz5gZ9n65duyI6Ohrr1q1DUcPAwgQ0DnTDHyOao7KXI8KiE1XPxR/Hbhi7WkRERERGtWPHDjRq1Ag2Njbw8fFRV/pTUlKyBAM1a9aEnZ0d3Nzc0KFDB8TGxqrHtm/frp7r4OAAFxcXFTBcvXo11/f67bff0KNHj/TtjRs3wtbWFvfvZ73gO2rUKLRr107dv3v3Lvr3748yZcrA3t5e1WXJkiWP/EwWFhbo1q2ber+ihoGFifArbY8Vw5qhfZAnElPS1EJ6UzaeQ1oak7qJiIgoH5Jicy/JCXocG//fxxagGzduqBPwhg0b4vjx45gzZ47Kgfjkk0/U47du3VIn9UOGDMGZM2dUINGnTx81IY4EHzLEqnXr1jhx4gT27duHV155BWZmZrm+3+7du9GgQYP07fbt26uAJHM+RGpqKpYuXYrnnnsuffhU/fr18ffff+PUqVPqPV544QUcPHjwkZ9NAp5du3ahqLE0dgWo4DjZWmHewAb4cv1ZfLfzMmZuvYgLt2Mw9ZnasLfmj5qIiIgew6e+uT9WqRPw3O8Z219VBJLjcj7WvwUw+O+M7ek1gbi7WY/5oODW6Pr222/h5+eHWbNmqYAgKCgIN2/exPjx41WvgQQWEkBIMOHv76+eIz0GIiIiApGRkXjiiSdQoUIFta9q1aq5vpf0SkRGRsLX1zdLz8Kzzz6LxYsXY+jQoWrfli1b1LFPPfWU2paeinHjxqU/5/XXX8eGDRuwbNkyFTzkRt7n2rVrKs/C3Lzo9BMUnZpQgSV1T+hWFV89XQvWFuZY/28onp6zDzfvZ7tKQERERGTCpBeiadOmWXoZZDhTTEyM6s2oXbu26lWQYKJv376YP38+7t27p44rXbq0Sgzv3LmzGt40Y8YMFYjkJj5ee54lQ58yk54J6QmRgEYsWrQI3bt3Vz0Zuh6Mjz76SNVB3tPR0VEFFiEhIY/8bDJ0S4KKxMREFCW8jG2i+jbwQ3l3B7z262GcvhWlVuqeN7A+6pVzNXbViIiIqDj5n/akOEdmFlm337r4iGOzXc8efRLGJD0KmzZtwt69e1U+xMyZM/Huu+/iwIEDKF++PBYuXIg33ngD69evV8OXZDYmOV6me81O8jPMzMzSAxMdGYYlPR6SDzFs2DCsWrUKP/74Y/rjX331lQpapk+froILyeeQqWWTkpIeWXfpUZFjJcAoSthjYcIaBJTG6hHNEeTthPCYRDw7bz9WHb1u7GoRERFRcWLtkHuxstXj2GwnwTkdU4Bk6JLkRmReRHjPnj1wcnJSQ5CEBAPSizF58mQcPXoU1tbW6uRfp27dupgwYYIKPmrUqKGGNeXYRNbWqFatGk6fPv3QY9JrIT0Va9asUcOWpMcic3169eqF559/XvWgBAYG4vz58//52SQfQ+pW1DCwMHFlXbVJ3Z2qeSEpJQ1jlh7HF+vPMqmbiIiITILkNhw7dixLkfyD4cOHq1vJWzh79iz++OMPtcbEmDFj1Am+9Ex8+umnOHTokBp6tHLlSty5c0cFJMHBwSqgkMBEZoKSHo0LFy48Ms+ic+fOKoE7p8DiyJEjKmn86aefVjNU6VSqVCm910SGbr366qu4ffv2f35mSdwu6IX4CgKHQpUADjaWmPt8fXy98Ry+3X4Jc7ZfwsWwGEx7pg4cbfgVICIiouJLchiyX72XZOnvv/8ea9euxVtvvaV6AySHQfbLcKe4uDi15sTOnTvVMKSoqCiVwD1lyhS1ToSc3Esw8tNPP6kpYWWq2hEjRqgT/9wMHTpUzQolgU6pUqXS91esWFElYstMT/JemcnwqsuXL6ugRKablVmhZDYqeY3cSH6IBCK//vorihqeVZYQ5uZmeLtLECp7OeHtFSew6fRtPD1nL74f1ED1ahAREREVN5KvkDlnITuZLjb71K26Faul90HyJ3Li5eWVZUhUXlSrVk0Nc5LZqKS3IzPpHcmJBDurV6/+z8Aps2+++UYllpctWxZFDYdClTC965bBb680gbujDc6GRqPXrD04dCXC2NUiIiIiKva++uorNbOTIXl6eqqZpIoiBhYlkMwM9efI5qju64y7sUnoP38/fj90zdjVIiIiIirWAgICVE6HIb355puqR6UoYmBRQvm62OH315qiaw1vJKdq8NbyE/h07RmkMqmbiIiIiB4DA4sSTFbjnj2gHt5oV1Ftz9t5Ga/8fAjRCcnGrhoRERERFTMMLEo4Seoe26kKZvavCxtLc2w5G4an5uxFyN04Y1eNiIiIiIoRBhak9Kjti2WvNoWnkw3O345Br9m7ceDyXWNXi4iIiAqRbsYkKlnSCujnzulmKV1tPxf8ObIFXvnlEE5cj8Rz3x/Ax71r4NlG5YxdNSIiIjIgWTlaFo27efMmPDw81LasSm2qJ9FJSUlISEhQn7kk02g0qi1kYUBpC/m55wcDC8rCu5Qtlr7SFG8tP46/TtzCOytPqh6M/3ULgqVFyf7PR0REZKrkpLJ8+fK4deuWCi5M/WQ6Pj4ednZ2Jhs86UsW5ytXrly+Ay0GFvQQO2sLlXMhi+lN3XQeP+wJxr83I9VK3TKbFBEREZkeuVotJ5cpKSlITU2FqUpOTlYrbrdq1QpWVlYo6SwsLGBpaVkgQRYDC8qRfLneaF8JFT0dMe734zgQHIGuM3bhsz410a2mj7GrR0RERAb6+y8n26Z8wi0n0hI82dramvTnNAaObaFHkiBi7RstVf5FZHwyhi86grd+P46YxBRjV42IiIiIihAGFvSfAtwdsPy1phjZtiKkl+z3w9fR/ZtdOHbtvrGrRkRERERFBAMLyhMrC3OM61wFv73cBGVc7HD1bpxa72LW1gtcrZuIiIiIGFiQfhoHumHtqJZ4opaPCii+3nge/eftx4378cauGhEREREZEQML0lspOys1a9SUvrXhYG2Bg1ci0GX6Tqw5btrT0xERERFR7hhY0GPPGvFU/bKq96JuORdEJ6Tg9SVHMXbZMSZ2ExEREZVADCwoX/zdHLDs1aZ4o11FmJsBK4/cQLcZu3Ak5J6xq0ZEREREhYiBBRVIYvfYTlWw9NWmKrE7JCIOfefuwzdbmNhNREREVFIwsKAC0zCgNNaNboledXxVQCGrdj87bx+uRcQZu2pEREREZGAMLKhAOdtaYcazdTH9mTpwtLHEP1fuqaFRfxy7YeyqEREREZEBMbAgg+hdtwzWjWqJ+v6uiE5MwajfjmHM0mOITkg2dtWIiIiIyAAYWJDB+JW2x9JXmmB0h0oqsXvV0Rvo9s0uHL4aYeyqEREREVEBY2BBBmVpYY7RHSrj99eawq+0Ha5FxKvE7mmbziMlNc3Y1SMiIiKiAsLAggpFff/SWPtGS/SpWwYyUdSMLRfQ7zsmdhMRERGZCgYWVGicbK0w9Zk6mPFsHTjZWOJIyH10nbELq45eN3bViIiIiCifGFhQoetVp4xasbthgKtapXvM0uMY9dtRRDGxm4iIiKjYMmpgsXPnTvTo0QO+vr4wMzPD6tWrH3n87t270bx5c7i5ucHOzg5BQUGYNm1aodWXCjaxe8nLTTC2Y2VYmJvhj2M30XX6LvxzhYndRERERMWRUQOL2NhY1K5dG7Nnz87T8Q4ODhg5cqQKSM6cOYP33ntPlXnz5hm8rmSYxO432ldSid3lStvjxv14PPPdPkzdeI6J3URERETFjKUx37xr166q5FXdunVV0QkICMDKlSuxa9cuvPLKKwaqJRlavXKuamjUpD/+xYoj1/HN1ovYdTFcLbLn7+Zg7OoRERERkannWBw9ehR79+5F69atjV0VyidZpXtKv9qY2b8unGwtcTTkvlqxe8Xh69BoNMauHhEREREV5R6Lx1W2bFncuXMHKSkp+OCDD/DSSy/lemxiYqIqOlFRUeo2OTlZFWPQva+x3r8o61LNA7V8m2LcilP458o9vPn7cWw9cxsf9qwKZzur/3w+29Zw2LaGw7Y1HLatYbF9DYdtazhsW/3o005mmiJyOViSt1etWoXevXv/57HBwcGIiYnB/v378c4772DWrFno379/jsdK4DF58uSH9i9evBj29vYFUncqeLLWxeYbZlh33RxpGjO4WmvwfKVUVHQ2ds2IiIiISo64uDgMGDAAkZGRcHZ2Nr3AIrOPP/4Yv/zyC86dO5fnHgs/Pz+Eh4f/Z+MYMvLbtGkTOnbsCCur/74KX5Idvx6JN38/iasRcTA3A15tVR6vt60AK4ucR/GxbQ2HbWs4bFvDYdsaFtvXcNi2hsO21Y+cO7u7u+cpsCiWQ6EyS0tLyxI4ZGdjY6NKdvJFMvaXqSjUoahrUN5dJXZPXvMvlh26jjk7grH3UgRmPFsXAe65J3azbQ2HbWs4bFvDYdsaFtvXcNi2hsO2zRt92sioydsynOnYsWOq6IY4yf2QkBC1PWHCBAwcODD9eJmWds2aNbhw4YIqCxYswNdff43nn3/eaJ+BDM/BxhJfPl0bswfUg7OtperF6PbNLiw7dI2J3URERERFhFF7LA4dOoS2bdumb48dO1bdDho0CD/++CNu3bqVHmToeick2JAAxNLSEhUqVMAXX3yBV1991Sj1p8LVvZYP6pZzwdhlx7D/cgTeXn4CO87dwadP1kQpe15xICIiIiqxgUWbNm0eecVZgovMXn/9dVWo5PJ1scOil5pg3s7LmLLxHP4+eQtHQu5har86aFrBzdjVIyIiIiqxivU6FlQyWZibYVibClg1vDkC3R1wKzIBA77fjy/Wn0VSClfsJiIiIjIGBhZUbNUsWwp/vdECzzb0g3R8zdl+Cc9+fxBh8cauGREREVHJw8CCijV7a0t8/lQtzH2+HlzsrXDyRhS+OmGBH/ddRaoshkFEREREhYKBBZmELjV8sH5UKzQLLI2kNDN8svYc+s7di4th0cauGhEREVGJwMCCTIZ3KVssHFQfzwSmwsHGAkdC7qPbjN2YtfUCklOZe0FERERkSAwsyKSYm5uhmZcG615vjnZBnkhKTcPXG8+j56w9OHUj0tjVIyIiIjJZDCzIJPmUssWCQQ0w49k6cLW3wplbUeg1ew8+X3cWCcmpxq4eERERkclhYEEmy8zMDL3qlMGmsa3Ro7avSuaeu+MSus3YhX+uRBi7ekREREQmhYEFmTx3RxvM7F8X8wc2gKeTDS6Hx6Lv3H2Y+McpxCSmGLt6RERERCaBgQWVGB2reaneC1n3Qvy87yo6T9uJHefvGLtqRERERMUeAwsqUUrZWal1Lxa91Bh+pe1w4348Bv1wEG8uO477cUnGrh4RERFRscXAgkqk5hXdsWF0KwxpXh5mZsCKI9fRYepOrDt5y9hVIyIiIiqWGFhQiV61e2KPalj+WjNU9HREeEwihi06gmG/HkZYdIKxq0dERERUrDCwoBKvvr8r/n6jBV5vVxGW5mZYdyoUHafuxPLD16HRaIxdPSIiIqJigYEFEQAbSwu82akK/hzZAjXKOCMyPhnjfj+OQQv/wfV7ccauHhEREVGRx8CCKJNqvs5YPbw5xncJgrWlOXaev6Nmjvp53xWkpbH3goiIiCg3DCyIsrG0MMewNhWwflRLNAxwRWxSKib+8S+embcPl+7EGLt6REREREUSAwuiXAR6OGLpK03xYa/qcLC2wD9X7qHrjF2Ys/0SUlLTjF09IiIioiKFgQXRI5ibm2Fg0wBsGNMKrSp7ICklDV+sP4ve3+7B6ZtRxq4eERERUZHBwIIoD8q62uOnwQ3xdd/aapG9Uzei0HPWbkzZeA6JKanGrh4RERGR0TGwIMojMzMzPF2/LDaNbYWuNbyRkqbBzK0X0f2b3Th89Z6xq0dERERkVAwsiPTk6WSLOc/Xx5zn6sHd0QYXw2Lw9Ny9mLzmX8QlpRi7ekRERERGwcCC6DF1remDzWNb4al6ZSHr6C3ccwWdp+/Enovhxq4aERERUaFjYEGUDy721pjSrzZ+GtIIZVzscC0iHs99fwDjl59Qi+wRERERlRQMLIgKQOvKHmrmqIFN/dX20kPX0HHqDmz8N9TYVSMiIiIqFAwsiAqIo40lPuxVA8tebYpAdweERSfilV8OY+TiIwiPSTR29YiIiIgMioEFUQFrVL401o5qqVbvtjA3w18nbqnei9VHb0AjyRhEREREJoiBBZEB2FpZYHyXIKwe3hxVfZxxLy4Zo5cew9CfDuHm/XhjV4+IiIiowDGwIDKgmmVL4c+RzTGuU2VYW5hj69kwdJq2E4sOXEVaGnsviIiIyHQwsCAyMCsLc4xsVwl/v9ECdcu5ICYxBe+uOoUB3+/HlfBYY1ePiIiIqGgEFqmpqTh27Bju3ePKw0SPUsnLCctfa4aJT1SDnZUF9l+OQJcZO/HNlgsq2CAiIiIqUYHF6NGjsWDBgvSgonXr1qhXrx78/Pywfft2Q9SRyGRIMveQFuWxYXQrNK/ohoTkNEzddB6tv9yG73ddRkJyqrGrSERERFQ4gcXy5ctRu3ZtdX/NmjUIDg7G2bNnMWbMGLz77ruPVwuiEqacmz1+HdoY3/SviwA3e9yNTcLHf59Bm6+2Y/GBECSnphm7ikRERESGDSzCw8Ph7e2t7q9duxZ9+/ZF5cqVMWTIEJw8eVLflyMqsczMzNCzti82jW2Nz/vUhG8pW4RGJeB/q06iw9QdWHX0OlKZ4E1ERESmGlh4eXnh9OnTahjU+vXr0bFjR7U/Li4OFhYWhqgjkckndz/bqBy2jmuDST2qwd3RGlfvxmHM0uPoOmMn1p8K5foXREREZHqBxeDBg9GvXz/UqFFDXXHt0KGD2n/gwAEEBQUZoo5EJWbti8HNy2Pn223xVucqcLa1xPnbMXjt18PoNXsPdpy/wwCDiIiIiixLfZ/wwQcfqKDi2rVrahiUjY2N2i+9Fe+8844h6khUothbW2JE24p4vok/5u+8jB/2BOPE9UgM+uGgWtVbgo6GAaWNXU0iIiKi/AUW4umnn86yff/+fQwaNOhxXoqIclHKzgrjOlfBi80DMGf7Jfyy/yoOBkeg79x9aF3ZA+M6VVEL8BEREREVy6FQX3zxBZYuXZq+LcOi3NzcULZsWZw4caKg60dU4rk72uD9J6phx1tt0L9ROViam6lhUT1m7cawXw/jwu1oY1eRiIiISP/AYu7cuWrNCrFp0yZV1q1bhy5dumDcuHGGqCMRAfApZYfP+tTEljdb48m6ZWBmBqw7FYrO03di7NJjCLkbZ+wqEhERUQmm91Co0NDQ9MDir7/+Uj0WnTp1QkBAABo3bmyIOhJRJv5uDpj2TB281roCpm46hw3/3sbKozfw5/GbeKahH15vVwnepWyNXU0iIiIqYfTusXB1dVWJ20Kmm9XNCiWz1cgUtERUOKp4O+G7FxrgjxHN0bKSO1LSNFh0IAStv9qGT/4+jYjYJGNXkYiIiEoQvQOLPn36YMCAAWr9irt376Jr165q/9GjR1GxYkVD1JGIHqG2nwt+GdoYS19pgoYBrkhMScP8XcFo+cVWTN14DlEJycauIhEREZUAegcW06ZNw8iRI1GtWjWVX+Ho6Kj237p1C8OHDzdEHYkoDxoHumHZq02xcHBD1CjjjNikVHyz9SJafrFNzSoVl5Ri7CoSERGRCdM7x8LKyirHJO0xY8YUVJ2I6DHJopVtq3iiTWUPtWL3lE3ncTEsBl+sP4sFu4Mxsm0F9G9cDjaWFsauKhEREZmYx1rH4tKlS5g+fTrOnDmjtqX3YvTo0QgMDCzo+hHRYwYYXWv6oFN1b6w+egPTt5zHtYh4fLDmtBomNap9JfSpVwaWFnp3WhIRERHlSO+zig0bNqhA4uDBg6hVq5YqBw4cSB8aRURFh4W5GZ6qXxZbxrbBR71rwNPJBjfux+PtFSfQadpOrDl+E2lpGmNXk4iIiEpij8U777yjhj19/vnnD+0fP368SuomoqLF2tIcLzTxR9/6ZfHLvqv4dvtFXA6PxetLjuLb7ZcwrlNltAvyVD0dRERERIXSYyHDn4YOHfrQ/iFDhuD06dOPVQkiKhy2VhZ4uVUgdr7dFmM6VIaTjSXO3IrC0J8Ooc+cvdh7MdzYVSQiIqKSElh4eHjg2LFjD+2XfZ6engVVLyIyICdbK4zqUEkFGLLQnq2VOY6G3MeA7w9gwPz9OBJyz9hVJCIiIlMfCvXyyy/jlVdeweXLl9GsWTO1b8+ePfjiiy8wduxYQ9SRiAzE1cEa73QNwpDmAZi97SIWHwzB3kt30efbvehQ1RNvdqqCqj7Oxq4mERERmWJg8f7778PJyQlTpkzBhAkT1D5fX1988MEHGDVqlCHqSEQG5ulsi8m9auClloH4ZssFrDhyHZvPhKnSo7YvxnSoBD8XG2NXk4iIiExpKJQkd0ry9vXr1xEZGamK3JeejL179xqmlkRUKPxK2+OrvrWxaWxrPFHLR+2TmaM6TtuJCav+RUSisWtIRERERVW+JrGXngsp4sKFC2jZsmVB1YuIjKiChyNmDaiHv99ogfZBnkhN02D5kRv4+KgFvthwHlEJycauIhERERUxXB2LiHJV3bcUFrzYECuGNUOT8q5I1Zjh+91X0Oar7fhl3xWkpKYZu4pERERURDCwIKL/VN/fFT8PboBXglIR6O6AiNgkvP/Hv+gyYxe2nQuDRsNF9oiIiEo6BhZElOf8ququGvw1sik+7FUdrvZWuBgWg8EL/8HAHw7iXGi0satIRERExWFWqD///PORjwcHB+v95jt37sRXX32Fw4cP49atW1i1ahV69+6d6/ErV67EnDlz1JoZiYmJqF69upqNqnPnznq/NxE9HisLcwxsGoBedcpg1tYL+HHvFey6EI6uM3bi2Ubl1MJ7Hk6cQYqIiKikyXNg8agT/sxXNPURGxuL2rVrq1W7+/Tpk6dApGPHjvj000/h4uKChQsXokePHjhw4ADq1q2r13sTUf6UsrPCu92r4fkm/vh83VmsOxWKxQdC8OexmxjetgKGNC+vVvomIiKikiHPgUVaWsEnaXbt2lWVvJo+fXqWbQkw/vjjD6xZs4aBBZGR+Ls5YM7z9XEwOAIf/30aJ65H4sv157BofwjGdw1Cj1o+el90ICIiouKnWOdYSLATHR2N0qVLG7sqRCVeo/KlsXp4c0ztVxvezra4cT8ebyw5ij5z9uJIyD1jV4+IiIiK2srbRcnXX3+NmJgY9OvXL9djJBdDik5UVJS6TU5OVsUYdO9rrPc3ZWxb47dtj5pe6FDFHQv2XMG8XcE4GnIffb7di+41vfFWp0oo42JXSDUuPvi9NRy2rWGxfQ2HbWs4bFv96NNOZpoiMk+kDJX4r+TtzBYvXqxW+5ahUB06dMj1OEnunjx5co7Pt7e3z1ediejRIpOAv0PMcfCOGTQwg6WZBm18NejomwbbYn1Zg4iIqGSIi4vDgAEDEBkZCWdnZ9MLLH777TeV8P3777+je/fujzw2px4LPz8/hIeH/2fjGDLy27Rpk0pEt7KyMkodTBXbtmi27b83o/DZ+nM4EKwdEuXmYI3R7Svi6Xq+sLQo1iMyCwS/t4bDtjUstq/hsG0Nh22rHzl3dnd3z1NgUeyuGS5ZskQFFRJc/FdQIWxsbFTJTr5Ixv4yFYU6mCq2bdFq2zr+bvjtlabYfCYMn649g+DwWLz/52n8euAa3u1eFa0qexisvsUJv7eGw7Y1LLav4bBtDYdtmzf6tJHelwoHDRqkpn0tCJIfIWtSSNGthSH3Q0JC1PaECRMwcODALMOXZHvKlClo3LgxQkNDVZEIioiKNumV7FjNCxtGt8LEJ6qp6WrP3Y5Wi+u9uPAgLtzmAntERETFmd6BhZzES05DpUqV1HSvN27ceOw3P3TokJomVjdV7NixY9X9iRMnqm1ZNE8XZIh58+YhJSUFI0aMgI+PT3oZNWrUY9eBiAqXtaU5hrQojx1vtVFrXViam2H7uTvoMmMX3l99CndjMoYuEhERUfGh91Co1atX486dO/jll1/w008/YdKkSSrQGDp0KHr16qVXd0mbNm3wqBSPH3/8Mcv29u3b9a0uERVRLvbWmNhDFtgrh8/WncWm07fxy/6rWH30Bka2q4gXmwfAxpIL7BERERUXj5U16eHhoXoXjh8/rla9rlixIl544QX4+vpizJgxuHDhQsHXlIhMUqCHI+YPbIDFLzdGNR9nRCemqECjw9QdWHvy1iMvPhAREVHRka/pWGSokmTVS7GwsEC3bt1w8uRJVKtWDdOmTSu4WhKRyWtWwR1rXm+Br56uBU8nG1yLiMfwRUfQd+4+HLt239jVIyIiooIOLGSKrhUrVuCJJ56Av7+/mvJ19OjRuHnzphoatXnzZixbtgwffvihvi9NRCWchbkZ+jbww7ZxbfBG+0qwtTLHoav30Hv2Hoz+7ahazZuIiIhMJMdCkqXT0tLQv39/HDx4EHXq1HnomLZt28LFxaWg6khEJYyDjSXGdqyM/o388NWGc1h55AZWH7uJdadC8UqrQLzWuoI6hoiIiIpxj4UMcZLeidmzZ+cYVAgJKmTqWCKi/PApZYep/ergz5HN0SigNBJT0jBz60W0+Xo7lv4TgtQ05l8QEREV28BCkrRtbW3V/WvXrqlCRGRItcq6YOmrTTD3+Xrwd7PHnehEjF9xEk/M3I09F8ONXT0iIiJ6nMBC1pF4//33UapUKQQEBKgi99977z2Vf0FEZKgF9rrU8MHGMa3wXveqcLK1xJlbUXju+wN46ad/cOlOjLGrSEREVKLpPUj59ddfx8qVK/Hll1+iadOmat++ffvwwQcf4O7du5gzZ44h6klEpMjaFi+1DESfemUxY/N5/HogBJvPhKlF9p5v4o9R7SvB1cHa2NUkIiIqcfQOLBYvXozffvsNXbt2Td9Xq1Yt+Pn5qYRuBhZEVBhKO1hjcq8aeKFpAD5bewZbzobhx71XsPLIdTWj1MCmAWqVbyIiIiocev/VtbGxUcOfsitfvjysrXmVkIgKV0VPRyx4sSF+HdoYQd5OiEpIwcd/n0GnaTuwjgvsERERFd3AYuTIkfjoo4+QmJiYvk/uf/LJJ+oxIiJjaFHJHX+/0RKf96kJd0cbXLkbh2GLjqg1MJjgTUREVASHQh09ehRbtmxB2bJlUbt2bbXv+PHjSEpKQvv27dGnT5/0YyUXg4ioMBfYe7ZROTxR2xff7biEBbuDcfx6pErwbl7RDW93DkJtP66xQ0REVCQCC1mj4qmnnsqyT/IriIiKCkcbS7zZqYrKs5i97SIWHbiKPRfvotfFPehS3RvjOldGRU8nY1eTiIioZAcWCxcuNExNiIgKmIeTDT7oWR1DW5THtM3nseroDaz/NxQbT4fiqXplMbpjZZRxsTN2NYmIiEzCY0+ZcufOHezevVsVuU9EVFT5lbZXK3ivH9UKHat5QRbs/v3wdbT9ajs+XHMad2MycsaIiIiokAKL2NhYDBkyBD4+PmjVqpUqvr6+GDp0KOLi4h6zGkREhlfF2wnzBzbAyuHN0CSwNJJS0/DDnmC0+nIbpm06j+gELvJJRERUaIHF2LFjsWPHDqxZswb3799X5Y8//lD73nzzzceuCBFRYalXzhVLXm6Cn4c0Qo0yzohNSsWMLRfQ+qvtKuE7ITnV2FUkIiIy/cBixYoVWLBggVogz9nZWZVu3bph/vz5WL58uWFqSURUwMzMzNCqsgf+HNECswfUQ6C7AyJik/DRX6fR7uvtWPbPNaSkphm7mkRERKYbWMhwJy8vr4f2e3p6cigUERU75uZm6F7LBxvHtFJrYHg72+JmZALeXnECnafvxPpTXGSPiIjIIIFF06ZNMWnSJCQkJKTvi4+Px+TJk9VjRETFkaWFuVoDY/tbbfBut6pwsbfCpTuxeO1XLrJHRERkkOlmp0+fji5dujy0QJ6trS02bNig78sRERUptlYWeLlVIJ5p5Ifvd17G91xkj4iIyDCBRc2aNXHhwgUsWrQIZ8+eVfv69++P5557DnZ2nA+eiEyDs60Vxnaqghe4yB4REVHBBxbJyckICgrCX3/9hZdfflmfpxIRFftF9qZvvoCVR69zkT0iIqL85lhYWVllya0gIipJi+xN6VcbG0a3QicuskdERJT/5O0RI0bgiy++QEpKir5PJSIq9ip7OWEeF9kjIiLKf47FP//8gy1btmDjxo0q38LBwSHL4ytXrtT3JYmIiu0ie7suhOPLDWdx6kaUWmTvl/1XMaJtRTzXuJxKBCciIiop9A4sXFxc8NRTTxmmNkRExXCRvRYV3bHuVCimbDyHy+GxapG9BbsuY3SHyuhTr4yaypaIiMjU6R1YLFy40DA1ISIq5ovsda7uheWHr6skb90ie9/tvIS3OldB5+reKhAhIiIyVXpfRmvXrh3u37//0P6oqCj1GBFRScVF9oiIqCTTO7DYvn07kpKSHtovs0Xt2rWroOpFRFTsF9nb+XZbvNGuIuytLdIX2Xvu+/04fu3hizNEREQlZijUiRMn0u+fPn0aoaGh6dupqalYv349ypQpU/A1JCIq5ovsDWwWgFlbucgeERGZtjwHFnXq1FHjg6XkNORJVt2eOXNmQdePiKjYc3fMusjeqmyL7I1sU97YVSQiIiq8wCI4OBgajQaBgYE4ePAgPDw80h+ztraGp6cnLCw4tSIR0X8tsvdq60B8veEcNp6+rRbZW33sBpp5mqNBdCLKlLYydjWJiIgMG1j4+/ur27S0tMd7JyIiyrLI3pGQe/hy/VnsvxyBHbfM0WbKTjxd3w+vtgpEgHvWNYKIiIhMbrpZceHCBWzbtg1hYWEPBRoTJ04sqLoREZWIRfa2nQ3FRysPIzgaWHIwBEv/CUG3mj54rXUF1ChTytjVJCIiMkxgMX/+fAwbNgzu7u7w9s46L7vcZ2BBRJR38nuzZUV3jK6RCs/qTTF/91VsPRuGv07cUkUW4BvWugKaBJbmOhhERGRagcXHH3+MTz75BOPHjzdMjYiISqgG/q5oWtETZ25FYe6OS1hz/CZ2nr+jSt1yLirA6FDVSy3IR0REVOzXsbh37x769u1rmNoQERGq+jhjxrN1sX1cW7zQxB82luY4GnIfr/xyGJ2m71SreyenMt+NiIiKeWAhQcXGjRsNUxsiIkpXzs0eH/Wugd3j22FE2wpwsrXExbAYjPv9OFp/uQ0/7A5GXFKKsatJRET0eEOhKlasiPfffx/79+9HzZo1YWWVdWrEN954Q9+XJCKiR/BwssFbnYPwausKWHwgBAt2B+NmZAI+/Os0Zm69gBeblcegZv5wsbc2dlWJiKgE0zuwmDdvHhwdHbFjxw5VMpPEQgYWRESGW8lbZop6sVkAVh65ge92XsLVu3GYtvm8ut+/UTm81LI8fErZGbuqRERUAukdWMhCeUREZDy2VhYY0Lgc+jUoi3WnQjFn+yWcvhWlejJ+3ncFT9Yto3o3Kng4GruqRERUgjzWOhZERGR8lhbm6FHbF0/U8sHOC+H4dttFHAiOwLJD19WK3p2reWNYmwqo7edi7KoSEVEJkOfk7WrVqiEiIiJ9e/jw4QgPD0/flsXy7O3tC76GRET0SDIMtXVlDyx9tSlWDGuGjtW8oNEA6/8NRa/Ze/Dc9/ux+0I4NLKTiIjI2IHF2bNnkZKSMfvIr7/+iqioqPRt+YOVkJBQ8DUkIqI8q+/vivkDG2DTmFboU68MLM3NsOfiXTy/4IAKMtadvIXUNAYYRERU8PSeblYnpytfXBWWiKhoqOTlhKn96mD7W21UsretlTlOXI/EsEVH0HHqDiz9JwSJKanGriYREZmQxw4siIio6Cvrao8PelbHnvHt8Ea7iihlZ4XL4bEYv+IkWn25DfN3XkZMItfCICKiQgwspDcie48EeyiIiIoHN0cbjO1UBXveaYf3uleFl7MNbkcl4pO1Z9D8862YuvEc7sYkGruaRERUEmaFkqFP7du3h6Wl9inx8fHo0aMHrK21CzJlzr8gIqKiydHGEi+1DMQLTf2x+ugNfLfjsurB+GbrRczbdRnPNtSuhSE9HURERAYJLCZNmpRlu1evXg8d89RTT+n15kREZBw2lhZ4pmE5PF3fDxv/DcW32y/h5I1I/Lj3Cn7dfxU96/iqxfgqezkZu6pERGTqgQURERV/FuZm6FrTB11qeGPvpbv4dvtFNYuUrOwtpUNVL7UWhsw2RUREZLDk7c8//xz379/Pz0sQEVERIDlzzSu6Y9FLTfDHiOboWsMbkka3+cxtPDVnL575bh+2nwvjWhhERGSYwOLTTz/NsmgeEREVf7JS95zn62Pz2Nbo16AsrCzM1IreLy78B92+2Y0/j99ESmqasatJRESmFFjwyhURkemq4OGIL5+ujZ1vt8VLLcrD3toCZ25F4Y0lR9F2ynYs3BPMqWqJiCgd17EgIqJH8illh/eeqIa977TD2I6V4WpvhWsR8Zi85jSafrYFn649gxv3441dTSIiKs6BxenTpxEQEFBwtSEioiLLxd4ab7SvhL3vtMfHvWsg0N0B0QkpmLfzslps7/UlR3H8GvPuiIhKKr0Di2vXruH69evqvp+fHw4dOoTRo0dj3rx5hqgfEREVMXbWFni+ib/KwVgwqAGaBrohNU2DNcdvotfsPeg7dy/WnwpV+4iIqOTQO7AYMGAAtm3bpu6HhoaiY8eOOHjwIN599118+OGHer3Wzp071SJ7vr6+akaS1atXP/L4W7duqfevXLkyzM3NVUBDRETGYW5uhvZVvbDklSb4+40W6FOvjEr0/ufKPbz262G0/Xo7ftwTjFjmYRARlQh6BxanTp1Co0aN1P1ly5ahRo0a2Lt3LxYtWoQff/xRr9eKjY1F7dq1MXv27Dwdn5iYCA8PD7z33nvqeUREVDRU9y2Fqf3qYPf4dhjRtgJK2VkhJCIOHzzIw/hs3RncimQeBhGRKcvzAnk6ycnJsLGxUfc3b96Mnj17qvtBQUGqR0EfXbt2VSWvJJ9jxowZ6v4PP/yg13sREZHheTnb4q3OQRjRtiJWHLmBH3YHIzg8Ft/tuIwFu4LRvZYPXmoRiJplSxm7qkREZOwei+rVq2Pu3LnYtWsXNm3ahC5duqj9N2/ehJubW0HXj4iIiiF7a0u80MQfW8a2xvcDG6BJYGmkpGnwx7Gb6DFrN/p9tw8b/2UeBhFRie6x+OKLL/Dkk0/iq6++wqBBg9KHJP3555/pQ6SKEhk+JUUnKioqvedFijHo3tdY72/K2LaGw7Y1HFNv29aVSqvy780oLNx7FX+fDMXB4AhV/Evb48Vm5dCnrq8KRgqaqbetsbF9DYdtazhsW/3o005mmsdY5S41NVWdoLu6uqbvu3LlCuzt7eHp6anvy2krYmaGVatWoXfv3nk6vk2bNqhTpw6mT5/+yOM++OADTJ48+aH9ixcvVvUlIqLCdT8R2BVqjj23zRCfaqb22Vto0MxLg5beaXDRjrYlIqIiIC4uTk2eFBkZCWdn50ceq/flofj4eLXiti6ouHr1qgoIqlatis6dO6OomTBhAsaOHZu+LQGRTJPbqVOn/2wcQ0Z+MoxMZtSysrIySh1MFdvWcNi2hlMS23aATOCRmIJVx27ix70huBoRh803zbA91ALda3pjcDN/VPfN/+/okti2hYntazhsW8Nh2+pHN9onL/QOLHr16oU+ffrgtddew/3799G4cWP1QwkPD8fUqVMxbNgwFCWSaK5LNs9M6mzsL1NRqIOpYtsaDtvWcEpa27pYWWFwiwoY2CwQW87cxve7g9XwqD+O31JF8jIk0btdkKea2jY/SlrbFja2r+GwbQ2HbZs3+rSR3snbR44cQcuWLdX95cuXw8vLS/Va/Pzzz/jmm2/0eq2YmBgcO3ZMFREcHKzuh4SEpPc2DBw4MMtzdMfLc+/cuaPuywrgRERUPFmYm6FTdW8se7Up/hzZHL3q+MLS3Az7L0fgpZ8Pof3UHfhl/1XEJXE9DCKioszyccZZOTk5qfsbN25UvReyWF2TJk1UgKEPWbW7bdu26du6IUuSFC5rYsj0tbogQ6du3brp9w8fPqxyJfz9/VWOBxERFW+1yrpgxrN18U7XIPy09yoWH7iqpqt9f/UpTNl4Ds81LoeBTQPUtLZERFTMA4uKFSuqFbJlZqgNGzZgzJgxan9YWJjeOQuSgP2o3PGcFtx7jFxzIiIqZnxK2ang4vV2FbH88HX8sCcYV+/GYfa2S5i38zJ61PbF0Bbl1cJ8RERUNOg9FGrixIkYN26cWqxOppdt2rRpeu9F5t4EIiKi/HKwscSgZgHY+mYbfPdCfTQKKI3kVA1WHrmB7t/sxoD5+7H17G2kcT0MIqLi12Px9NNPo0WLFmqYkm4NC9G+fXvVi0FERGSIPIzO1b1VOX7tPhbsDsbfJ29h76W7qgR6OGBI8/J4ql5Z2FlbGLu6REQlkt49FsLb21v1Tshq29evX1f7pPciKCiooOtHRESURW0/F3zTvy52vd0Wr7YKhJOtJS7ficV7q0+h6edb8PWGcwiLSjB2NYmIShy9A4u0tDR8+OGHKFWqlEqaluLi4oKPPvpIPUZERFQYfF3sMKFbVeyb0B6TelSDX2k73I9LxqxtF9H8i614c9lxnLkVbexqEhGVGHoPhXr33XexYMECfP7552jevLnat3v3brXCdUJCAj755BND1JOIiChHjjaWGNy8vJotatPpUHy/KxiHrt7DiiPXVankbI5k35voXNMXTracs56IqMgEFj/99BO+//579OzZM31frVq1UKZMGQwfPpyBBRERGS0Po0sNH1WOhtxTeRjrToXiQpQ5xq04hf/9cRptKnvgidq+aB/kqRLDiYio4Oj9WzUiIiLHXArZJ48REREZW91yrpg1wBVX70Th06U7cCHBEZfD47Dx9G1VbK3M1YreT9TyRdsqnkz4JiIyRmAhM0HNmjXroVW2ZV/mWaKIiIiKQh5GN780dO3aHJfuJuDvE7fw14mbuHI3DmtPhqpib22B9lW90L2mD9pU8YCtFYMMIqJCCSy+/PJLdO/eHZs3b05fw2Lfvn24du0a1q5d+1iVICIiMiQzMzNU9XFW5c1OlfHvzSj89SDIuH4vHmuO31RF8jU6VtMGGS0ru8PGkkEGEZHBAovWrVvj/PnzmD17Ns6ePav29enTR+VX+Pr66vtyREREhR5k1ChTSpXxXargxPVIFWBIb8bNyASsOnpDFZnGtlM1bzxR2wfNK7jD2vKxZmgnIiox9AoskpOT0aVLF8ydO5dJ2kREZBJBhqyLIWVC16o4eu2+CjLWnryF21GJ6TNLlbKzQpfq3uheywfNKrjB0oJBBhFRvgILKysrnDhxQp+nEBERFQvm5mao7++qyvvdq6kpa7VBRijCYxKx9NA1VUo7WKsVwHvU8kHjQDc1GxURET3GUKjnn38+fR0LIiIiUw0yGpUvrcqkHtVxIPiuGiol09dGxCZhycEQVdwdrdG1hg+eqOWDBgGlGWQQUYmmd2CRkpKCH374QSVv169fHw4ODlkenzp1akHWj4iIyKgkWGhWwV2VyT2rY//lCNWTsf5f6clIwi/7r6ri6WSDbjW1QUa9cq4qOCEiKkn0DixOnTqFevXqqfuSxJ19rCoREZGpktyKFpXcVfmodw3suRiuZpfa8G8owqIT8ePeK6r4lLJVM0tJTkYdPxf+fSSiEkHvwGLbtm2GqQkREVExYmVhjjZVPFX55Mka2H0hXA2XkgX4bkUm4PvdwaqUcbFTvRiyGF+NMs4MMojIZOU5sEhNTcW///6LSpUqwc7OLstj8fHxuHDhAmrUqAFzc86UQUREJYusdyGL7ElJSE7FjvN3VJCx+cxt3Lgfj+92XlbF381e9WRIkFHVx4lBBhGZlDxHAb/88guGDBkCa2vrHGeLkscWL15c0PUjIiIqVmTlbpk16pv+dXH4vY6Y81w9FUzYWpnj6t04fLv9Erp9swvtp+zA1I3ncC402thVJiIq3B4LmQlq3LhxsLB4eBVSS0tLvP3225g1a5aaNYqIiIgAO2sLdK3po0pcUgq2nAlTid/bzt3B5fBYfLP1oiqVPB1VPob0ZFT0dDR2tYmIDBtYnDt3Dk2aNMn18YYNG+LMmTOPVwsiIiITZ29tiR61fVWJSUzB5tO3VeL3zvN3cCEsBtM3X1AlyNtJzS7VraY3Kno6GbvaREQFH1jExsYiKioq18ejo6MRFxeX93cmIiIqoRxtLNG7bhlVIuOTHwQZN7HrQjjOhkarMnXTedWT0fVBkFHFizkZRGQigYUkbe/duxe1atXK8fHdu3erY4iIiCjvStlZ4an6ZVW5H5eETadvq4X4dl3Q9mRc2HIB32y5gEAPB3SrIcOqvFHNh7NLEVExDiwGDBiA9957D82aNXsouDh+/DgmTpyo8iyIiIjo8bjYW6NvAz9VpCdjy5nbWHsyFDsv3MHlO7GYte2iKjK7lKz4LUnhnMKWiIpdYDFmzBisW7dOrbbdoUMHBAUFqf1nz55Vq3A3b95cHUNEREQF05PRp15ZVaITkrH1bBjWnQzFtnNhanapuTsuqVLW1U7lZHSt4c3F+IioeAQWMqXsxo0bMW3aNDWt7M6dO6HRaFC5cmV88sknGD16tDqGiIiICpaTrRV61SmjSmxiigouJMiQYOP6vXjM23lZFd9Stuk5GXX9XGFuziCDiIroytsSOMhwJw55IiIiMg4HG0s1La2U+KRUbD8XhrWnQrH1zG3cjEzAgt3Bqng526jhUtKbUd/fFRYMMoioKAUWREREVDTXyZAVv2XqWkn8llmmbkcl4se9V1TxcLJBl+reKvG7UUBpWFrkeX1cIqI8Y2BBRERkIit+d6rurUpiSip2XwhXid+bTofiTnQiftl/VRU3B2t0ruGtZphqEsggg4gKDgMLIiIiE2NjaYH2Vb1USUqpib2XJMi4hY2nb+NubBIWHwhRxdXeCp2qaXsymld0hxWDDCLKBwYWREREJsza0hxtqniq8klqGvZfvqt6Mjb8G4qI2CQsPXRNFZmFqmM1L5X4LUGGBCdERAYNLLZt24a2bdvq+zQiIiIyMumRaFnJQ5WPelXHwSsRqidj/anbCI9JxPLD11VxsrFEBxVk+KBlJXc1zIqIqMADiy5duqBs2bIYPHgwBg0aBD8/P31fgoiIiIxMciuaVXBXZXLPGjh0JUIlfq87dUslfq86ekMVB2vtsCrpyWhd2VMljBMRFUhgcePGDfzyyy/46aefMHnyZLRr1w5Dhw5F7969YW1tre/LERERkZHJVLSNA91UmfhENRwJuaeGS0mQcSsyAX8ev6mKvbUF2gZ5qsTvtkEesOIMtkSUid5ZWu7u7mqF7WPHjuHAgQNqgbzhw4fD19cXb7zxBo4fP67vSxIREVERIYvqNQgojYk9qmHP+HZYNbwZXmkViDIudohLSsXfJ25hxOIjqPfRJoxYcgx7b5uplcBl0VwiKtnylbxdr149eHt7w83NDZ9//jl++OEHfPvtt2jatCnmzp2L6tWrF1xNiYiIqNCDjLrlXFWZ0DUIJ29Eqp4MycsIiYjDxtNh0t+BpdN3w6eULZoGuqFJBTd161fa3tjVJ6LiEFgkJyfjjz/+UIHEpk2b0KBBA8yaNQv9+/fHnTt38N5776Fv3744ffp0wdeYiIiICp2ZmRlqlXVRZXyXKjh9KwrrT97E2kOXEBJnroZMrTx6QxVR1tVOBRhNJdCo4AafUnbG/ghEVNQCi9dffx1LlixRXZ4vvPACvvzyS9SoUSP9cQcHB3z99ddqaBQRERGZZpBR3bcUKnvYo2LCebTt0AEnbsZg3+Vw7Lt0FyeuR+L6vXj8fvi6KiLAzV4FGE0k2Ah0g6ezrbE/BhEZO7CQXoiZM2eiT58+sLGxyTUPQ6alJSIiItMnM0W1qOSuiohNTME/VyKw7/Jd7L90Vw2hunI3TpUlB6+pYyp4OGh7MwLd1Qrgbo45n1MQkYkGFjIEyt/fH02aNMk1qFAvammJ1q1bF0T9iIiIqJhxsLFMX5RPRCUk45/gCNWbIcGGDKO6dCdWlV/3h6hjqng5pfdoSKDhYs+ZJolMOrCwsrLCihUr8P777xuuRkRERGRSnG2t1FoYUsT9uCQceBBoyErgZ0Ojce62tvy49wrMzICq3s4PejTc0CiwtHoNIjKxoVCyXsXq1avVlLNERERE+pLeiM7VvVURd2MS0wMN6dG4GBajejWkLNgdDHMzoEaZUtpZpwLd0LB8aTja5GtiSyIyAL3/V1aqVAkffvgh9uzZg/r166tk7cxkLQsiIiKivJL8im41fVQRYdEJ2H85o0cjODxWJYRL+W7nZbWgX00JNB70aDQIcIW9NQMNImPT+3/hggUL4OLigsOHD6uSfZYIBhZERESUH55OtuhZ21cVERqZkD7jlPRoXIuIx7Fr91WZs/0SrCzMULusS3qgUc/fFbZWFsb+GEQljt6BRXBwsGFqQkRERJQD71K2eLJuWVXE9Xtx6UGGzDp1MzIBh67eU2Xm1ouwtjRHXb+MQKNOORfYWDLQIDI09hsSERFRsVLW1R59G0jxU+tqySrgukBDbsOitTkbUqbjAmytzFHf3xXNKrijbRVPVPVxUqMsiKgIBBbXr1/Hn3/+iZCQECQlJWV5bOrUqQVVNyIiIqJHkgDB381BlWcblVOBxuXw2PRA48DluwiPScKei3dV+WrDOXg726JtkIcKMppXdFfT4xJR/un9P2nLli3o2bMnAgMDcfbsWbXq9pUrV9R/5Hr16hVAlYiIiIgeP9Co4OGoyvNN/NX5yYWwGBVo7Dx/B3suhSM0KkEt1CfF2sIcjQNLqzU32gV5orx71klpiMiAgcWECRMwbtw4TJ48GU5OTmpdC09PTzz33HPo0qWLvi9HREREZNBAo7KXkyqDmgUgITlVzTS17WwYtp4LU4nguy6Eq/LRX6cR4GaPtkGeqjdDAg7mZhAZMLA4c+YMlixZon2ypSXi4+Ph6OiopqDt1asXhg0bpu9LEhERERUKmS1Ktyr4BxqNWv17+7kwbD0bhoPBEbhyNw4L91xRxd7aQg2VkiBDhk75lLIzdvWJTCuwkHUrdHkVPj4+uHTpEqpXr662w8PDC76GRERERAbqzajo6ajKSy0DEZ2QjD0Xw7Ht7B1sOxemksA3nb6tigjydlLDpaRHQ2adsrQwN/ZHICregUWTJk2we/duVK1aFd26dcObb76JkydPYuXKleoxIiIiouLIydYKXWr4qJKWplErf+uGTMmaGWdDo1X5dvsllLKzQuvKHqono3VlT5R2sDZ29YmKX2Ahsz7FxMSo+5JnIfeXLl2qVuTmjFBERERkCszNzVCjTClVXm9fCRGxSdhxPkz1Zuw4fweR8cn48/hNVWTm2jp+Lminhkx5orqvM6ezpRJJ78BCZoPKPCxq7ty5BV0nIiIioiJFeiR0i/SlpKapHgzJy5AivRhHQ+6rMmXTeXg62aBNFQ81bKpFJQ84cjpbKiEe+5sueRZhYWFIS0vLsr9cuXIFUS8iIiKiIklyKxoElFbl7S5BuBUZn56XITkakpux7NB1VawszNAwoLQKMiRhvIKHA3szyGTpHVicP38eQ4cOxd69e7Psl3mi5T9KampqQdaPiIiIqEiT2aIGNC6nSmJKqppdSnoyJD9DZpnae+muKh//fQblStujbRXJzfBEk0A3NUsVUYkNLAYPHqymmf3rr7/UrFCMuomIiIi0ZN2LlpU8VJnUozqCw2NVkCFT2h64HIGQiDj8tO+qKrZW5mhewV27bkaQJ8q4cDpbKmGBxbFjx3D48GEEBQUZpkZEREREJkJW8h7aorwqsYkp2ulsz2mTwGUF8C1nw1QRVbyc0CbIQyWB1/R1NHbVifSm9wTM1apVK7D1Knbu3IkePXrA19dX9XysXr36P5+zfft21KtXDzY2NqhYsSJ+/PHHAqkLERERkSE52FiiU3VvfNanFvZNaIe1b7TEW52roIG/K8zNgHO3o/Hdjst4Zt5+NP58O+afNcd3O4Nx4PJdxCdxqDmZYI/FF198gbfffhuffvopatasCSsrqyyPOzs75/m1YmNjUbt2bQwZMgR9+vT5z+ODg4PRvXt3vPbaa1i0aBG2bNmCl156SQ3J6ty5s74fhYiIiMgo5IJqNV9nVUa0rYh7sUnYeeGOysuQ6WzvxSXjVII5Tm26AOACLM3N1DS29fxdUf9B4UrgVOwDiw4dOqjb9u3b5zt5u2vXrqrklUxtW758eUyZMkVtyyJ9sljftGnTGFgQERFRseXqYI1edcqokpqmwdGrd/Hr+r1IcPTFkZD7aqap49cjVVm454p6jm8pW9SVIKOcNtCQIMWKq4FTcQostm3bBmPZt29femCjIwHF6NGjjVYnIiIiooJkYW6G2mVL4YavBt261VaT5ty4H4/DV+/hyNV7OBxyD2duReNmZAJunriFv0/cUs+TZPBaZV20PRrlXFXvBlcEpyIdWLRu3RrGEhoaCi8vryz7ZDsqKgrx8fGws3u4SzAxMVEVHTlWJCcnq2IMuvc11vubMrat4bBtDYdtazhsW8Ni+xZe23o5WqFbdU9VhCSCn7wRpXozjly7rxbsi4xPUVPdStEp72aPuuVcUE+Kn4taR0NWFS/J+L3Vjz7tlKfA4sSJE6hRowbMzc3V/UepVasWipLPPvsMkydPfmj/xo0bYW9vD2PatGmTUd/flLFtDYdtazhsW8Nh2xoW29d4bRsgxQ3oXRq4kwAER5ull9vxZgi+G6fKyqM31fF2FhoEOGlQ3kmDAEfA30kD2xK6lAa/t3kTFxdXsIFFnTp1VG+Bp6enui+5FJJTkZ2hF8jz9vbG7du3s+yTbUkYz6m3QkyYMAFjx47N0mPh5+eHTp066ZVoXtCRn3yZO3bs+FDyO+UP29Zw2LaGw7Y1HLatYbF9i3bb3o9LxrHr91WvxtGQ+yo/Iz45DWfum+HMfe0x0nlR2csJ9cqVUj0a0rvh52pn0uuU8XurH91onwILLGQ2Jg8Pj/T7xtK0aVOsXbs2yz75Ysj+3Mi0tFKyky+Ssb9MRaEOpoptazhsW8Nh2xoO29aw2L5Fs209SlmhYyl7dKzuq7ZTUtNwNjRa5WroiuRuyD4piw9eV8e5O9qgvv+DXA1/V1T3LWWSK4Tze5s3+rRRngILf3//HO/nV0xMDC5evJi+LUGLLMBXunRplCtXTvU23LhxAz///LN6XKaZnTVrlpruVqao3bp1K5YtW4a///67wOpEREREZIosLcxRo0wpVQY1k0FUQGhkAo6EZCSFn7oRifCYRGz497Yqwlo9zzk90KhXzhWezrZG/jRkEsnbd+/ehZubm7p/7do1zJ8/XyVO9+zZEy1bttTrtQ4dOoS2bdumb+uGLA0aNEgtfHfr1i2EhISkPy5TzUoQMWbMGMyYMQNly5bF999/z6lmiYiIiB6DdylbdKvpo4pISE5VwYWuR0OCjvCYJG2SeMh9zN+lHbniV9oufZrbuuVcEeTtpAIXKtnyHFicPHlSrZItwUSlSpXw22+/oUuXLmqRO0nqlrUkli9fjt69e+f5zdu0aZNjroZOTqtqy3OOHj2a5/cgIiIioryRIU8NAkqrIuQ8LSQiLsvwKVkh/FpEvCqrj2mTwh2sLVSA0TCgNBoGuKJOORfYW+t9/ZqKuTz/xGX4kay0LSte//LLL3jiiSfUKtjSYyFef/11fP7553oFFkRERERUdEkSt7+bgyp96pVV+6ITktX0trpA41jIfUQnpmD3xXBVdGtx1PB1VgGKBBr1/UvDw+nhnFcqoYHFP//8o3IaZDrZ2rVrY968eRg+fLjqrdAFFk2aNDFkXYmIiIjIyJxsrdCykocqQlYKP387GoeuROCfK/fwz5UI3IpMSF8pfMFu7fCp8u4OaODvioblJdgojQA3e5OefaokynNgERERoaZ7FY6OjnBwcICrq2v643I/OjraMLUkIiIioiJJeieq+jir8kJTbVK4zDalDTQicOiKdvhUcHisKr8f1s0+ZY0G/jLsSjuEqpqvM6yYp1Gs6TX4LXtUySiTiIiIiLIr42KHMnXKoFedMmo7Mi5ZJYJLoCHl+DWZfSoJ6/8NVUXYWUmehkv68CnJ2XC0YZ5GcaLXT+vFF19MXxMiISFBTf8qPRciMTHRMDUkIiIiomKtlL0V2gZ5qpJ59ikZOiU9G4eu3kNkfDL2Xrqriq4npJqPc3qPhgyj4jS3JhJYyBSwmT3//PMPHTNw4MCCqRURERERlZDZpyogLU2Di3di0odOye31e/E4eSNSlYV7rqjn+bvZq+FT0qMhz63g4cARNMUxsFi4cKFha0JEREREJZK5uRkqezmp8lxj7WLMtyLj03s05PZsaBSu3o1TZcURbZ5GaQdrtZZGIxWkaFcJt7ZknoaxcOAaERERERU5PqXs0LO2FF+1HZWQrFYI1/VoyJS3EbFJ2HT6tirC1socdfxctEOnAkqjXjkXNYsVFQ4GFkRERERU5DnbWqFNFU9VRFJKGk7djEzv0ZDbe3HJ2H85QhVhbgYEeTujUXltj4YMo3KztzDyJzFdDCyIiIiIqNiRIU/1yrmq8kor7Srhl+7Eps88JT0bsmr46VtRqvy4V5unUdbVDh7m5rhifxnVy7ggyMdJzWLFXI38Y2BBRERERMWeBAYVPR1V6d+onNp3OyohfejUoasROH0zSiWFX4c5jm65mP5cJxtLFWBI74butoq3E6e71RNbi4iIiIhMkpezLbrX8lFFxCSm4FBwOFZtOwgzl7I4FxaLi2HRiE5MebBq+L0sz/crbaeCjKreTgjycUaQtxP83RzUVLj0MAYWRERERFQiSA9E8wpuiDynQbduNWFlZYXk1DRcvhOrZp06cyta3Z69FY3QqARci4hXRZccrksQr+KVtXdDAg5XB2uUdAwsiIiIiKjEsrIwV8OepPSqk7H/XmwSzoZmBBpye+52NBKS03D8eqQqmXk726YHGlUf3AZ6OKjXLykYWBARERERZSM9EE0ruKmik5qmwdW70rsRjbO3onDmQeAhvRqhUQmqbD93J/14KwvJ+3B6MJQqo5fDw9HGJJPFGVgQEREREeWB5FYEejiq0q2mNm9DRCck4/zt6CxDqST4kJyOMxKA3IoCjma8jpuDdZZhVFV9nFXSuaxIXpwxsCAiIiIiygdZhK++f2lVdGT6W5mBSte7IbdnQqNwJTwWd2OTsOfiXVV0JB9cAhZdoBH0YHhWcZoKl4EFEREREVEBMzMzg19pe1U6VvNK3x+flIoLYRJsaAMNXf6GLO53MSxGlb9O3Eo/3snWEu91r4pnGmqn0C3KGFgQERERERUSO2sL1Crrokrm3o2w6EQ1ZCpzD4cEGdEJKShlZ4XigIEFEREREZGReze8nG1VaVPFM31/UkoaLofHwNfFDsUBAwsiIiIioiLI2tJcJXgXFyVnYl0iIiIiIjIYBhZERERERJRvDCyIiIiIiCjfGFgQEREREVG+MbAgIiIiIqJ8Y2BBRERERET5xsCCiIiIiIjyjYEFERERERHlGwMLIiIiIiLKNwYWRERERESUbwwsiIiIiIgo3xhYEBERERFRvjGwICIiIiKifGNgQURERERE+cbAgoiIiIiI8o2BBRERERER5RsDCyIiIiIiyjcGFkRERERElG8MLIiIiIiIKN8YWBARERERUb4xsCAiIiIionxjYEFERERERPnGwIKIiIiIiPKNgQUREREREeUbAwsiIiIiIso3BhZERERERJRvDCyIiIiIiCjfGFgQEREREVG+MbAgIiIiIqJ8Y2BBRERERET5xsCCiIiIiIjyjYEFERERERHlGwMLIiIiIiLKNwYWRERERESUbwwsiIiIiIgo3xhYEBERERGRaQQWs2fPRkBAAGxtbdG4cWMcPHgw12OTk5Px4YcfokKFCur42rVrY/369YVaXyIiIiIiKmKBxdKlSzF27FhMmjQJR44cUYFC586dERYWluPx7733Hr777jvMnDkTp0+fxmuvvYYnn3wSR48eLfS6ExERERFREQkspk6dipdffhmDBw9GtWrVMHfuXNjb2+OHH37I8fhffvkF//vf/9CtWzcEBgZi2LBh6v6UKVMKve5ERERERFQEAoukpCQcPnwYHTp0SN9nbm6utvft25fjcxITE9UQqMzs7Oywe/dug9eXiIiIiIhyZgkjCg8PR2pqKry8vLLsl+2zZ8/m+BwZJiW9HK1atVJ5Flu2bMHKlSvV6+QWiEjRiYqKSs/VkGIMuvc11vubMrat4bBtDYdtazhsW8Ni+xoO29Zw2Lb60aedzDQajQZGcvPmTZQpUwZ79+5F06ZN0/e//fbb2LFjBw4cOPDQc+7cuaOGTq1ZswZmZmYquJAeDhk6FR8f/9DxH3zwASZPnvzQ/sWLF6shV0RERERElLO4uDgMGDAAkZGRcHZ2RpHtsXB3d4eFhQVu376dZb9se3t75/gcDw8PrF69GgkJCbh79y58fX3xzjvvqHyLnEyYMEElh2fusfDz80OnTp3+s3EMGflt2rQJHTt2hJWVlVHqYKrYtobDtjUctq3hsG0Ni+1rOGxbw2Hb6kc32icvjBpYWFtbo379+mo4U+/evdW+tLQ0tT1y5MhHPlfyLKS3Q74cK1asQL9+/XI8zsbGRpXs5Itk7C9TUaiDqWLbGg7b1nDYtobDtjUstq/hsG0Nh22bN/q0kVEDCyG9CYMGDUKDBg3QqFEjTJ8+HbGxsWqWKDFw4EAVQHz22WdqW4ZH3bhxA3Xq1FG3MtRJghEZPkVERERERMZh9MDimWeeUXkTEydORGhoqAoYZME7XUJ3SEiImilKR4ZAyVoWly9fhqOjo5pqVqagdXFxMeKnICIiIiIq2YweWAgZ9pTb0Kft27dn2W7durVaGI+IiIiIiIoOoy+QR0RERERExR8DCyIiIiIiyjcGFkRERERElG8MLIiIiIiIKN8YWBARERERkWnMCkVEREREpGg0QGoSkJKoLamJgLkV4KRdikC5vCPjMXVcQsbxzj5A9Sczjt3wLpBwH0hJUsdbJMWjUdgdWCxfCrhXAjpOzjh28wdAQhRgbgGYW2bcmlkAjl5A41cyjj3+W6Zjdcc/KDZOQOXOGcdePwQkxWY9RvccSxttPXRi7wKa1IxjrOwBi+KxkB8DCyIiIiLST1oaEBsG3A/Rlpgw7cm9RxAQ1E17THI88Pe4Byf/mU78dQFB+VZAxw+1x6amAF+Wz3gsu8pdgAFLM7YXPa0NPnIS0DJrYHFsMRAfkWW4jo/ciToKxDTI+twTy4CoGzm/rme1rIHFzq+BuxdyPtbFP2tg8fdY4NbxnI918ADeupixvfR5IGRvxvbTPwA1nkJxwMCCiIiIiB4OHGJua4MGawfAu4Z2vwQQP3QBIq/lfGJf69mMwAJmwLFfc38P5zIZ9y0sgaQYQJP28HEW1toeg8y8awFpKYClLWBprb21eHDrGZT12BZjgLRkwMJG9Q6kmFni5MmTqFW9KiycPLMe2+x1ICFS+9rpJVVbHLMdW6kj4FVd27ugjknJKI7eWY91laApSfuYOl73uimAvVu2D6zJupn9sxdhDCyIiIiISrKkOGD/txm9D1IyBw61ngH6zNPet3MF7gVrAwA54ZXgwKUc4OQNWNkCZRtlvK4M8Wk/KdvJv/bkXhUn1W+QYeShB8HBg8flWNk2zyEl+OUtef98zd/IsqlJTkbIzbWoUa8bLKyyDTFqMizvr9vls7wf2++nvB87ZH1GcCeBhwyHKiYYWBhJo8szYLFyBeBdE/Cqpo14S5XL+T8PERERkb55ClE3swULme77Nwd6zdIeK2P5t33ycG+BLnCwLZWxT8b6D16vDSTkMelpyI2ZGdBybN7r7FZB309p2szNAXNrFCcMLIwhNQlekcdgHnkYOPNHxn5rR8CzKlCpE9D6bWPWkIiIiIoyGUYTHZo1cJDk5noDtY+nJgPTa+Q8tEhkHqojvQmNX9MGENL7oCtOvjkHDuUaG+hDUXHHwMIozLC/whg0DnCExZ2zQNi/wJ1z2rGF1//R/mfWkW6w2Q21Y/NUz0YNbfKQe2XtLwIiIiIyPWmpsE2KAO5eBLyrPtiXBvzaB7h3BYi8rs0byKxcs4zAQs4RSvlp76tAwT9r0OAa8PjDeohywcDCGCyscMe5FtKaZBrbJ1cW7l4Cbp/STmemI+MY5ZeKlIubMvZLt6UEF3WeA5qNzOj21HU9EhERUdEgAYFMdxp/D4i7qx1iVLZ+xuNr39bORBQXoX08PgKWcRHorElFWlQTYOiGjKEx4eczZi2ScwFdjoMEDjK8OrM3jnGINRUqBhZFhYxZlFkMss9kIL8whmwAbv+bUcJOA4lR2lv5RaUjXaLfNs7o1ZC8DSkyvErmUyYiIqKCCRIyBQHq1sYZqNYz47hfntT2KshxckzmIUmS4PxSpouFZ/96aIpTuUSYhhySdnvM0K5roIYq+Tw6x4FBBRUyBhZFncywUK6JtuhIz4TM1nD7dNauTAk6ZIq0q3u0JTO5ktHqLaDeCxljM+V1HvULiYiIyNSpACFbkKBKhPbEvclrGcdOqwlEXc85b6Fsw6yBxR3pWbie9RhrJ8DeNetCb0LyKuXvskw7al9a3SZbOWHtzsPo1v0Jte5ClilOiYoonlUWRzLUSTdGMrPyLYFXd2l7MmRIlQQecj/6FnD/atbpykL2Ab/0edBL8qBnQ5fDkX2eZiIioqJITsalB196ERwyrQVwaoX2QltidEaRFZJln8w81OmjjGOn1QCSY3N+fQkWMgcWsr6ALqiQHgqZelUFA27a0QGZ9ZqpHaokj9lJsFBaO4VqTuq/+PC+5GTAjD0OVLwwsDAl8gvLp5a2ZCZXXaQ3w6NKxr6wM9qVLWUVyOwrQdq7Az1nZixwI0vQy1zWti7M3yAiooKhet+vawOD9ABATv4fbJcqC9Tok3GsDC3K/LgUXUBQoT3wwsqM1/5zFJAUnfP7lsm20rKc+CdIAOCaKQh4ECxkn/504B/axeLkmP+aQKVCO/3bhKiYY2BREshVEunNyKzBUKBi+wd5Gw96OKR3QxLI48K1z8l85efP17VXZ2SGCdVb8uBWtgNaZr1SREREpkNO6iXpWC4wSZHVg9X9RJglxsEpPlNuQEoisGvKw0GCrsjfou5THrxumnY61NxU7JARWMhFreuHcg8WUhKyPbe9dlIUyS+0ddbeqvsPplPN7I2jeR8WzHUWiB6JgUVJJQldpQO1pWqPrKtvyhS4mbt0ZVo7oRLGJXn836yvNXgd4NBMe//fVcDRXzOCDt2QLbkvs10xkYyIKGdyIixDdWT4jJ1Lxu/k0BPaE3Z5XHqaM5/cy+/qsg+uwMvJ/77ZD538q+fJ8yu0zRhyIz3ZMm2p7jFd0KB7bs2ntEnCqg4xwJflcz2JqOwiOYAva3fIbEc7vsj9M2Y+qZfhuXLlX4b7ZD7x193PPsNR79naVZjlIpfuGN397L0H+qxyzFxDogLD/02UlbU9UKZe1n3tJwIt39R2Wd+/ps3XkORxdT8kawK5DKu6uDnn15Y/CBKE6P4I3jymDWJUAOKX+0I8RETFhYz1V1fqH0wtGv/g1iNIm8cmpGd486QHj93POFZO4EWrt4F272rvy+/aHzrn/n5NR2b8TpVhqzu/yv1YCVYyj+W/eTT3Y+W1dCwe5AVIACD35Xe5nMhbWENjboUkS8dMx1oCjYdpJx7JfOKvu5XVmjMbH4w8q9Yr78cSkVHwLI7yRsaUSo5G5jyNnNTsq+0F0QUdugBEptGTK2GZ1+g4/Qewe2rGtlzpUvNxP+jpaPu/jKtb0oWu/pjlkvhGRFTQkuOBiGDtSX96oJApWJA8NBmuI24cBn59StvjkNOMQW3fzQgspIfgzJrc3zfz863stL9T1Qm9lfZ3oPwu1BVZz0hHTtwbvZLxmDrW6sG2TdaeaDl2wLIHj2cNFlSRngMdOWZiRNYJQB5ISU7GybVr8WAZNq2un+eldYnIBDGwoIKlWzsju9QUIPom4Oybsc/VHyjf+kEA8mAF0Ui5H6KdLlcCC51dU4Hd07RXu7IMs3pwW66pNvghIsr8eyfuLixT4zP2Rd7QrhmQuadAFyjIdrPXgbrPZ1zRX9g199eXCyW6wELWFZDX0LG0084YJL0Ecpv5Sr0kJXf7OuNx20zHyZX9zD238vtNcgDyQoKBbo/oschMgoXKj+gJyUzyG+TCDxHRf2BgQYVD/lBmT5iTLnldt7wMH4gJzejpkOFWMjRKR6bMlWn+5FbKtQNZX2v0yfTAIjBsIyyW/qKdJ9zBU/vH39Ej437p8to/qkRUfJKHZXiRWrX4wWJjbpW0FyeETEKxe/qDNQgiHgQLEar3QP6n+5WV9Xue0h4rv1vWvZ37e0ngoaObHUhO+GVWvPRA4MH9gOYZx0qvwvADGY/LUKDcSDJxowc5CUREJoSBBRUNktQtvRlSyjV++PHec4COHz3o3QjJOtRKejsyBSEucZdhfmNv7u819kxGz8n+ucDlbYCDx4MAxDPrfVcJQvjfhKhAhxdlDhAy35cpQ33raI+7ug9YMyrjmLSUrK/T9Uug8ava+zL86OSyXN/SMjXTjEHyf79a76wBgq63QLbdKmYcK+v8vH05b59Lhh3J8UREJRjPmKh4kK546XWQUrb+Iw8N9ugAn6Z9YZlwF4gJ05bYOw9uw7TrdOjIuOjz63N/sbFnAWcf7f39c4DL2xmEEGUmw4hkEobMAULmXoMGQ4DANtpjz60HljyT+2tZO2YEFiL8XNbHdcOLZDpsOVZHgoFOHz8IEh4sRPbgfrKlAy5s2IRKumNlsgl9ZgwiIqI841kQmZx7DhWhqdsNsMrDcCcZjiDDGWIk8LitDTzS74cDDnoEIW+eyxhHzSCEijMJwmXNAN3/B3UrgXm49r7MFKebpjpkH7Dk2dxfq1yzjMBCN4WqjNfXBQiZA4HMvQWSqzVoTdZgQRKZcyL/pyQ3IieyejERERUKntlQyebXSFvyQmZbCWiRexCSuSdETsoeGYSc1+aACBkbfmmLdhiGJF+mD9F4cFulm3YaYN0wEpnjnjkipC8JDCQ3KUsP3p2M+x0mZUznKd/f3/rn/loyFFFHcpekFyBbT0F60OD/YI0bUaY+8E6INkFZeiEfRfIQyrfK76cmIqJCxMCCyJBBiDppu53pZE6CkLvahFAdWfU8eGfur/XWpYzAYuN7wD/fA1YO2QKQUtr7MhxEtwp66EltImr243K76kvFT/RtbY9B5qF+mXsYOk4Gqj+Z0eO29MFsRzmRXKXMsxb51nvQ0+b+YOIDXa+bJ+CeadppGZo46nje6qumNs00jSkREZkUBhZEhiAJ6DkloeekyXCgUmftVJdq+svMt5Haq7s6sk8kx2qLrA+SWaePMu4f/gn4Z/7D7ydz1kuQMXRTxqw6/67WTvGbW6+Ju4xQ56rpBpvxKPO6BdGhwJXdWXsTMt9KsFDjwQxHN48Avw/K2wxHEiyUbagNEiRYUIGCZ8aMaZnXQ/CpBbyyzRCfloiITBgDCyJjk5XOs692npsnv9POU59TACL3JQjQkaRz37oZx+kW7kpN1PacZF73Q05kcwpCdEYeBkppgxDz7Z8BhxdoZ8FRxVYbrOi2e83WTukrzv4NnN+Q8Zg6zla7EJfcytV0OcEVEZe1Jf2YTK8p2zKsRp5nSLLasJy8ywJm6SUh41Z+TroZxe6c036+7Mfobhu+lDEdqfRIrf9fzselJsKsmywU6Z6xev2KobnXMepmxn1Zz8WvSabplDP1Ksi2W4WMY71rAi9tNkizERERCQYWRMWJJHzL2HUp/6Xlm9qiI2uFJMVkBCMyFl6nUidtT4UuAMkStMixmQKWpGjtvtykpWbcl+E3Rx4xA49f44zA4t9VwJYPcz/2xbUZJ+oH5wObJmUEHbpARRe8dPkMKNsgY4X3PTNyDwCeXQJUerDI2amVwJ8jc69D35+A6r0z1k7YMjn3Yyu2z6hvcgJw+2Suh5qlJGUNFvybZw0QMgcOsl6CjncNYOiG3OtARERUiBhYEJWktUIkIVZK9sUKK3fSlkd5MLtOWos3YSGzaaXmcFVf9mVeYTiwrXaK0FTdMUkPrtI/uM2cayL35ap65t6C9PdI0AYN6XWJyxgOllvPg45MfSoBTm7ktXUk/0RWUE4PWLLdStvpSK+MrNCsHs8U1OiOLfMgsBHS0/H8yqzHZrpNs7AFNm7VHutVDRi89tE/CyIioiKIgQUR6UcCgFKZgodHKd9SW/Ii80rsueUipB87GKja8+HgQxe4yFSlOhXaAf1/y/WkPktwU/NpbckLGWYmw77yQnIapAcjN5wSlYiITAADCyIqHjJPT6rreckLSVDXJakTERGRwXCaFyIiIiIiyjcGFkRERERElG8MLIiIiIiIKN8YWBARERERUb4xsCAiIiIionxjYEFERERERPnGwIKIiIiIiPKNgQUREREREeUbAwsiIiIiIso3BhZERERERJRvDCyIiIiIiCjfGFgQEREREVG+MbAgIiIiIqJ8Y2BBRERERET5xsCCiIiIiIjyzRIljEajUbdRUVFGq0NycjLi4uJUHaysrIxWD1PEtjUctq3hsG0Nh21rWGxfw2HbGg7bVj+6c2bdOfSjlLjAIjo6Wt36+fkZuypERERERMXmHLpUqVKPPMZMk5fww4SkpaXh5s2bcHJygpmZmdEiPwlsrl27BmdnZ6PUwVSxbQ2HbWs4bFvDYdsaFtvXcNi2hsO21Y+EChJU+Pr6wtz80VkUJa7HQhqkbNmyKArky8wvtGGwbQ2HbWs4bFvDYdsaFtvXcNi2hsO2zbv/6qnQYfI2ERERERHlGwMLIiIiIiLKNwYWRmBjY4NJkyapWypYbFvDYdsaDtvWcNi2hsX2NRy2reGwbQ2nxCVvExERERFRwWOPBRERERER5RsDCyIiIiIiyjcGFkRERERElG8MLIxg9uzZCAgIgK2tLRo3boyDBw8au0rF3meffYaGDRuqhQ89PT3Ru3dvnDt3ztjVMkmff/65Wlxy9OjRxq6KSbhx4waef/55uLm5wc7ODjVr1sShQ4eMXa1iLzU1Fe+//z7Kly+v2rVChQr46KOP1EJPpJ+dO3eiR48eanEs+b+/evXqLI9Lm06cOBE+Pj6qrTt06IALFy4Yrb6m0rbJyckYP368+p3g4OCgjhk4cKBa5JcK5rub2WuvvaaOmT59eqHW0dQwsChkS5cuxdixY9VsBEeOHEHt2rXRuXNnhIWFGbtqxdqOHTswYsQI7N+/H5s2bVK/kDt16oTY2FhjV82k/PPPP/juu+9Qq1YtY1fFJNy7dw/NmzeHlZUV1q1bh9OnT2PKlClwdXU1dtWKvS+++AJz5szBrFmzcObMGbX95ZdfYubMmcauWrEjv0flb5VcFMuJtOs333yDuXPn4sCBA+okWP6uJSQkFHpdTalt4+Li1HmCBMhyu3LlSnXBrGfPnkapqyl+d3VWrVqlzh8kAKF8klmhqPA0atRIM2LEiPTt1NRUja+vr+azzz4zar1MTVhYmFyW1OzYscPYVTEZ0dHRmkqVKmk2bdqkad26tWbUqFHGrlKxN378eE2LFi2MXQ2T1L17d82QIUOy7OvTp4/mueeeM1qdTIH8Xl21alX6dlpamsbb21vz1Vdfpe+7f/++xsbGRrNkyRIj1dI02jYnBw8eVMddvXq10Opl6u17/fp1TZkyZTSnTp3S+Pv7a6ZNm2aU+pkK9lgUoqSkJBw+fFh1E+uYm5ur7X379hm1bqYmMjJS3ZYuXdrYVTEZ0iPUvXv3LN9fyp8///wTDRo0QN++fdUQvrp162L+/PnGrpZJaNasGbZs2YLz58+r7ePHj2P37t3o2rWrsatmUoKDgxEaGprl90KpUqXUMF/+XTPM3zYZruPi4mLsqpiEtLQ0vPDCC3jrrbdQvXp1Y1fHJFgauwIlSXh4uBr36+XllWW/bJ89e9Zo9TLFXxQy/l+GmNSoUcPY1TEJv/32m+qKl6FQVHAuX76shuvI8Mj//e9/qn3feOMNWFtbY9CgQcauXrH2zjvvICoqCkFBQbCwsFC/ez/55BM899xzxq6aSZGgQuT0d033GBUMGVomORf9+/eHs7OzsatjEmSIpKWlpfq9SwWDgQWZ5JX1U6dOqauTlH/Xrl3DqFGjVO6KTDhABRsES4/Fp59+qralx0K+uzJWnYFF/ixbtgyLFi3C4sWL1ZXIY8eOqQsOMoaabUvFjeQN9uvXTyXKy8UIyj8ZQTJjxgx10Ux6gahgcChUIXJ3d1dXzm7fvp1lv2x7e3sbrV6mZOTIkfjrr7+wbds2lC1b1tjVMZlfvjK5QL169dSVHSmSLC/JmnJfrgTT45FZdKpVq5ZlX9WqVRESEmK0OpkKGdogvRbPPvusmlVHhjuMGTNGzSBHBUf3t4t/1wwfVFy9elVd4GFvRcHYtWuX+ttWrly59L9t0sZvvvmmmrmTHg8Di0Ikwxvq16+vxv1mvmIp202bNjVq3Yo7uYojQYXM7LB161Y1xSQVjPbt2+PkyZPqiq+uyFV2GVIi9yVYpscjw/WyT4ssOQH+/v5Gq5OpkBl1JIctM/muyu9cKjjyu1YCiMx/12QImswOxb9rBRdUyPS9mzdvVtNSU8GQiw0nTpzI8rdNejTlosSGDRuMXb1ii0OhCpmMpZZueDkxa9SokZovWaZDGzx4sLGrVuyHP8mQhz/++EOtZaEb2ytJhDKvOj0+ac/suSoynaT8gWMOS/7IFXRJMpahUHLyIGvazJs3TxXKH5m7XnIq5GqkDIU6evQopk6diiFDhhi7asVOTEwMLl68mCVhW07CZHIMaV8ZYvbxxx+jUqVKKtCQ6VHlBE3WE6LHb1vp0Xz66afVUB3piZfeYd3fNnlcLlZS/r672QM1mfpbAuUqVaoYobYmwtjTUpVEM2fO1JQrV05jbW2tpp/dv3+/satU7MlXOaeycOFCY1fNJHG62YKzZs0aTY0aNdT0nEFBQZp58+YZu0omISoqSn1H5Xetra2tJjAwUPPuu+9qEhMTjV21Ymfbtm05/n4dNGhQ+pSz77//vsbLy0t9j9u3b685d+6csatd7Ns2ODg4179t8jzK/3c3O043m39m8o+xgxsiIiIiIiremGNBRERERET5xsCCiIiIiIjyjYEFERERERHlGwMLIiIiIiLKNwYWRERERESUbwwsiIiIiIgo3xhYEBERERFRvjGwICIiIiKifGNgQURExYqZmRlWr15t7GoQEVE2DCyIiCjPXnzxRXVin7106dLF2FUjIiIjszR2BYiIqHiRIGLhwoVZ9tnY2BitPkREVDSwx4KIiPQiQYS3t3eW4urqqh6T3os5c+aga9eusLOzQ2BgIJYvX57l+SdPnkS7du3U425ubnjllVcQExOT5ZgffvgB1atXV+/l4+ODkSNHZnk8PDwcTz75JOzt7VGpUiX8+eef6Y/du3cPzz33HDw8PNR7yOPZAyEiIip4DCyIiKhAvf/++3jqqadw/PhxdYL/7LPP4syZM+qx2NhYdO7cWQUi//zzD37//Xds3rw5S+AggcmIESNUwCFBiAQNFStWzPIekydPRr9+/XDixAl069ZNvU9ERET6+58+fRrr1q1T7yuv5+7uXsitQERU8phpNBqNsStBRETFJ8fi119/ha2tbZb9//vf/1SRHovXXntNnczrNGnSBPXq1cO3336L+fPnY/z48bh27RocHBzU42vXrkWPHj1w8+ZNeHl5oUyZMhg8eDA+/vjjHOsg7/Hee+/ho48+Sg9WHB0dVSAhw7R69uypAgnp9SAiosLDHAsiItJL27ZtswQOonTp0un3mzZtmuUx2T527Ji6Lz0ItWvXTg8qRPPmzZGWloZz586poEECjPbt2z+yDrVq1Uq/L6/l7OyMsLAwtT1s2DDVY3LkyBF06tQJvXv3RrNmzfL5qYmI6L8wsCAiIr3IiXz2oUkFRXIi8sLKyirLtgQkEpwIye+4evWq6gnZtGmTClJkaNXXX39tkDoTEZEWcyyIiKhA7d+//6HtqlWrqvtyK7kXMnxJZ8+ePTA3N0eVKlXg5OSEgIAAbNmyJV91kMTtQYMGqWFb06dPx7x58/L1ekRE9N/YY0FERHpJTExEaGholn2WlpbpCdKSkN2gQQO0aNECixYtwsGDB7FgwQL1mCRZT5o0SZ30f/DBB7hz5w5ef/11vPDCCyq/Qsh+ydPw9PRUvQ/R0dEq+JDj8mLixImoX7++mlVK6vrXX3+lBzZERGQ4DCyIiEgv69evV1PAZia9DWfPnk2fsem3337D8OHD1XFLlixBtWrV1GMyPeyGDRswatQoNGzYUG1LPsTUqVPTX0uCjoSEBEybNg3jxo1TAcvTTz+d5/pZW1tjwoQJuHLlihpa1bJlS1UfIiIyLM4KRUREBUZyHVatWqUSpomIqGRhjgUREREREeUbAwsiIiIiIso35lgQEVGB4ehaIqKSiz0WRERERESUbwwsiIiIiIgo3xhYEBERERFRvjGwICIiIiKifGNgQURERERE+cbAgoiIiIiI8o2BBRERERER5RsDCyIiIiIiyjcGFkREREREhPz6P3L0ACDizs5iAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAHqCAYAAACZcdjsAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAh+RJREFUeJzt3QdcldUbB/AfG0GGspHhFnHvLe69K0tzm5WWZWal/8w02+VKLbNMG5qaqZWae+89ESciDhBUQPb8f55zvSzBQMB7L/y+n8+Je9/73veee1/I97nnPM8xSktLSwMREREREVEBGBfkyURERERERIKBBRERERERFRgDCyIiIiIiKjAGFkREREREVGAMLIiIiIiIqMAYWBARERERUYExsCAiIiIiogJjYEFERERERAXGwIKIiIiIiAqMgQURkYGZOnUqjIyMEB4ertPXp8dbsmSJ+pyuXbum664QET0VDCyIiB7jypUreOWVV1CxYkVYWlrC1tYWLVq0wJw5cxAXF6fr7umN8uXLq4CjJPr000+xdu1aXXeDiEjnGFgQEeVi/fr1qFWrFlauXImePXti7ty5+Oyzz+Dl5YV33nkHb775pq67SHocWAwePFgFn97e3jrpFxHR02b61F+RiMgABAYG4oUXXlAXhdu3b4ebm1v6Y6+99houX76sAo+nKSYmBtbW1k/1NYuL+Ph4mJubw9j46X2fZmJiohoRUUnBEQsiohx8+eWXiI6OxqJFi7IEFVqVK1fOMmKRnJyM6dOno1KlSrCwsFBTg/73v/8hISEhy/Nkzn1OU4Zk/2HDhj0yP3/Xrl0YM2YMnJ2d4eHhkeU5kmPRv39/NT3LwcFB9UcuoLP77bff0KBBA5QqVQply5ZVAVNwcHCePoe9e/eiUaNGahqYvLfvv/8+T8+7d+8eJkyYoEZ8SpcurfrYtWtXnDp1Kst+O3fuVO9zxYoV6vNydXVVwVOvXr0e6WObNm1Qs2ZNHDt2DM2bN1fvp0KFCliwYEGOx1y+fDkmT56McuXKwcrKClFRUerxQ4cOoUuXLrCzs1Pb/fz8sG/fvhzzSCSAlPNib2+v9h8+fDhiY2PT95N9JOD7+eef1W1p2vOYU47F0aNH0blzZzg6Oqb3f8SIEVleW/ot58vGxkZ9bvIZytS7/H62IigoSH2W8pnK79Bbb72FTZs2qX7J55RZXj4XIqLH4YgFEVEO/vnnH5VXIRewefHSSy+pi8tnn30Wb7/9trpIk2lT58+fx5o1a564HxJUODk5YcqUKeoCNjMJKiQgkdc5ePAgvvnmG9y/fx+//PJL+j6ffPIJPvjgA7Wv9DEsLExN6WrdujVOnDihLphzc+bMGXTq1Em9vlxoS/D04YcfwsXF5T/7ffXqVTU96LnnnlMXz6GhoSookYtVf39/uLu7Z9lf+ikXu++99x7u3LmD2bNno0OHDjh58qS6ANeS99etWzf1fgYMGKCmqY0ePVqNRmS/QJdAT7bLRbgEeHJbRp/kIlwu3OW9yAjG4sWL0a5dO+zZsweNGzd+5DOW/stnfPz4cfz444/qAv2LL75Qj//666/qc5Xnvfzyy2qbBGA5kfel/TwnTpyoPnsJOlavXp2+z5YtW9T7at++ffpryO+QXOBrA9m8frby+yLv6/bt2+q5ErQtW7YMO3bseKRv+f1ciIhylEZERFlERkamyf8ee/funaf9T548qfZ/6aWXsmyfMGGC2r59+/b0bXL/ww8/fOQY3t7eaUOHDk2/v3jxYrVvy5Yt05KTk7PsK8+Xx3r16pVl+5gxY9T2U6dOqfvXrl1LMzExSfvkk0+y7HfmzJk0U1PTR7Zn16dPnzRLS8u0oKCg9G3+/v7qmP/1z0d8fHxaSkpKlm2BgYFpFhYWaR999FH6th07dqhjlStXLi0qKip9+8qVK9X2OXPmpG/z8/NT22bMmJG+LSEhIa1u3bppzs7OaYmJiVmOWbFixbTY2Nj0fVNTU9OqVKmS1rlzZ3VbS/apUKFCWseOHR/5jEeMGJHlPfTt2zfNwcEhyzZra+ss5y77OZT3LdasWaPuHzlyJNfP7c0330yztbV95Jw/yWcrn5O83tq1a9O3xcXFpfn4+Kjt8jnl93MhInocToUiIspGO2VGpqLkxYYNG9TP8ePHZ9kuIxeiILkYo0aNynWevuR6ZDZ27Ngs/ZFvwlNTU9W37jJtStvkm+sqVark+M21VkpKipoy06dPH5WsrlW9enU1lee/yHQwbT6DHOvu3btq2k61atXUN//ZDRkyJMvnLSM/MgVN+160TE1NVZUuLRmFkPsyGiBTpDIbOnRoltEOGf24dOkSBg4cqPqj/Tzkm30ZIdi9e7f6vDJ79dVXs9xv1aqVeq72dyQ/tKND69atQ1JSUq77SH9k5KKgn+3GjRvVNDCZCqUlU9rkdyqzJ/lciIhywqlQRETZyJx18eDBgzztL/PY5UJP8i4ykwt4uVCUx5+UTHXJjQQHmckUHOmHdk6/XCzKIEn2/bTMzMxyPbZMmZKKRjk9Vy5gs1/wZycXopIX8O2336pEeLkA1pJ8kP96LzItSj7P7GtAyDSf7AnsVatWVT9l36ZNm+b62cnnoQ04chMZGYkyZcqk388cVAntYzIlS/t7klcyVemZZ57BtGnTMGvWLJUzIoGbXNBLsKCd+ibTu2RakgQFMnVKAkPJfcjvZyu/d/I7kX3Nkey/p0/yuRAR5YSBBRFRNnLBKBewZ8+ezdfzCrJoXOaLw8wyf+Oe39eXC1DZ9u+//+Y46iHfchdlCVbJ7ZC8B8l1kKRxCXrGjRv31L79zv7ZaV/3q6++Qt26dXN8TvbPJLfRIs2stvyRc7Fq1SqVDyM5PDIiJJ/PjBkz1DZ5bcnfkBEEeUzOmzTJdZARHcnhKYrP9kk+FyKinDCwICLKQY8ePbBw4UIcOHAAzZo1e+y+UpJWLs7km1+ZKqQlSbURERFZ1jGQb31lW2aJiYkqwTa/5PUyfysvFYykH5LQLeTbarkAln203+rnlSQYy4W59tvszC5cuPCfz5cL6LZt26qqWpnJe5eKSDm9l8yk3/J+ateunWX7rVu3Him7e/HiRfVT+75zo02qlsBREsMLS34DShlVkSYJ65JM/eKLL6pKUJIErp3eJeumSJPzKaMYkpwtwYSMNuT1s5XfO0nmls8ycx/lc82sqD4XIip5mGNBRJSDd999V128ysWeBAg5rcitLQEqVYqEVDLKbObMmepn9+7ds1zEyZz1zCSAyW3E4nHmz5+f5b5UexIyjUb069dPfeMuU2+yf8Mu92U+fW7keZJLIdWHrl+/nr5dKhTJt+n/RZ6f/TX/+OMP3Lx5M8f9pZJV5qlncvEswZb2vWhJZarMJW8lKJP7EghJRaPHkcfl8//6669VKeGcpn89Cfk9yR4s5kSmT2X/TLQjBNqyxNnPiYxEaIMr7T55/Wzl/Mm2v//+O32blCP+4YcfnsrnQkQlD0csiIhyIBda8m3y888/r0YhZCqKrKEgF7L79+9XF3La9Qrq1Kmj5qdLgCAXmDKX/vDhw2rqisyhl2+XtSRQkYRgmWvfsWNHtfaAXKjn9C3+f5H59ZKYK/PvZWRF1quQ+frSH+17+PjjjzFp0iSVfyB9kQRpeZ6UwJXyqFKKNTcSkEgCsCQsy7fmclEvwUuNGjVw+vTp/xzx+eijj9S6D1KyV0rXLl26VJXwzYlM52nZsqXaXwI5CdLk2/nsicYyRU3KsMr7kVEYWf9Cpg7JZ/+4nBHtRbqUi5VgRd6DvJbkMcjFtySyyzf2MkUpv+TCfOvWrSqQlP7JCFGTJk0e2U9+HyQvom/fvurcSCAlF/nyutrgVH4/ZJ0KKfMq65ZInoR85hKAaEfD8vrZSlL7vHnzVPlaKTcryfCynyRwC+0oRlF9LkRUAj22ZhQRUQl38eLFtFGjRqWVL18+zdzcPM3GxiatRYsWaXPnzlVlP7WSkpLSpk2bpspzmpmZpXl6eqZNmjQpyz5CyoS+9957aY6OjmlWVlaqxOfly5dzLTebU2lSbSlUKf367LPPqj6VKVMm7fXXX1flRLP7888/VdlaKYsqTcqNvvbaa2kXLlz4z/e/a9eutAYNGqj3LuVbFyxYkP76jyPv++23305zc3NLK1WqlPrMDhw4oErGStPSlob9/fff1eclZWNl/+7du2cpcyvkeTVq1Eg7evRoWrNmzVQpXPnc5s2bl2U/7TH/+OOPHPt24sSJtH79+qmysVKiVY7Rv3//tG3btj3yGYeFhT22hKwICAhIa926teq3PKY9j9n3PX78eNqAAQPSvLy81OvKe+3Ro4d6P1qrVq1K69Spk3pMPnPZ95VXXkm7fft2vj9bcfXqVfVZyn5OTk7qefL7IP06ePBgvj8XIqLHMZL/6Dq4ISKikklWf5YRHRkBkhKzjyNVlKQMan6T6ikrGQ2SFbhv3LihRiaIiAoLcyyIiIiKKSkZnJnkWEhOipT3ZVBBRIWNORZERETFlCTwy1ockqMha1FIHk5AQIDKtSAiKmwMLIiIiIopqQwlidkSSEjlMV9fX1XaVooSEBEVNuZYEBERERFRgTHHgoiIiIiICoyBBRERERERFRhzLHKQmpqKW7duqYWktAsIERERERGVNGlpaWpBT1kAVBbUfBwGFjmQoMLT01PX3SAiIiIi0gvBwcHw8PB47D4MLHIgIxXaD9DW1vapv35SUhI2b96MTp06wczM7Km/PuUPz5dh4fkyHDxXhoXny3DwXBmWJB2fr6ioKPWFu/b6+HEYWORAO/1JggpdBRZWVlbqtfkHr/94vgwLz5fh4LkyLDxfhoPnyrAk6cn5ykt6AJO3iYiIiIiowBhYEBERERFRgTGwICIiIiKiAmOOBRERERGlS0lJUfP6ST8kJSXB1NQU8fHx6twUNsnbMDExKZRjMbAgIiIiIrVeQUhICCIiInTdFcp2XlxdXVW10qJaX83e3l69RkGPz8CCiIiIiNKDCmdnZ1WFiIsE68/CzdHR0ShduvR/LlD3JEFLbGws7ty5o+67ubkV6HgMLIiIiIhKOJliow0qHBwcdN0dyhZYJCYmwtLSstADC1GqVCn1U4ILOf8FmRbF5G0iIiKiEk6bUyEjFVTyWD087wXNrWFgQUREREQKpz+VTEaFdN4ZWBARERERUYExsCAiIiIiKiSLFi1Cp06diuz4bdq0wbhx4/K8f3h4uMqduHHjBooak7eJiIiIyGANGzZMJZ6vXbtW112BrDXxwQcf4I8//iiy/q1evVqtPZFXjo6OGDJkCD788EMV9BQljlgQERERERWCVatWwdbWFi1atMj3c/OaOF22bFnY2Njk69jDhw/H0qVLce/ePRQlBhZEREREVGzt2rULjRs3hoWFhVqnYeLEiUhOTs4SDNSqVUuVXZVSux06dEBMTIx6bOfOneq51tbWahE5CRiCgoJyfa3ly5ejZ8+e6fenTp2Kn3/+GX/99ZdKkJYmx7x27Zq6vWLFCvj5+alSsnLhf/fuXQwYMADlypVTlZqkX7///vtjp0KVL18en376KUaMGKECDi8vLyxcuDDLc2rUqAF3d3esWbMGRYmBhR66F5OITTeMkJySquuuEBERUQmlFk9LTH7qTV63sNy8eRPdunVDo0aNcOrUKXz33XdqOtDHH3+sHr99+7a6kJeL8vPnz6uL/n79+qk+SPDRp08fdeF/+vRpHDhwAC+//PJjKyjt3bsXDRs2TL8/YcIE9O/fH126dFGvJa158+bpj0uQ8+abb6rX7ty5s5pK1aBBA6xfvx5nz55Vrzd06FAcO3bsse9zxowZ6nVPnDiBMWPGYPTo0bhw4UKWfSRA2rNnD4oScyz0jPwij//jDPYFmyBsyTHMf7E+nG0sdd0tIiIiKmHiklLgO2XTU39d/486w8q8cC5Rv/32W3h6emLevHkqIPDx8cGtW7fw3nvvYcqUKepCXwIICSa8vb3Vc2SUQMi0ocjISPTo0QOVKlVS26pXr57ra0VERKj9ZWRAS1bLlpGQhIQEuLq6PvIcGXmQ185MghGtsWPHYuPGjSo/o23btrm+tgRPElAIeW+zZs3Cjh07UK1atfR9pF8SeBQljljoGfmlf6GRByxM0nDk2n30+GYvjlwr2vlwRERERMWRjAQ0a9YsyyiDTGeKjo5WVZLq1KmD9u3bq2Diueeeww8//ID79++n5zJI4rWMJMj0pjlz5qhAJDdxcXHqp0xryqvMoxvaFdCnT5+u+iOvL4HJ5s2b/7OiU+3atdNvy3uVIEZW0s5MApzY2FgUJY5Y6KEuNVxwOyAFK2/a4XJYDF5YeBCTuvpgZMsKXLiGiIiInopSZiZq9EAXr/u0mJiYYMuWLdi/f7+6gJ87dy7ef/99HDp0CBUqVMDixYvxxhtvqFEDyYeYPHmy2r9p06aPHMvBwUFdp2kDk7yQ3I3MvvrqKxXAzJ49WwUX8rhMlUpMTHzscbJXiZJ+pKZmnVIvIzBOTk4oShyx0FMupYBVrzRBrzruSElNw8frz+P1308gOiEj2YiIiIioqMjFqUxJetqtML9ElalLkhuROW9j3759KsnZw8Mj/X3KKMa0adPUVCFzc/MsSc716tXDpEmTVPBRs2ZNLFu2LMfXMjc3h6+vL/z9/R/ZLiMReSF96927NwYNGqRGUypWrIhLly6hMEjOhryXosTAQo9ZW5hizgt1Ma1XDZgaG2H96dvoM38fLt95oOuuEREREekNyW04efJklhYcHKzyDuSn5CoEBASo6kyynsP48eNhbGysRiakotLRo0dx/fp1tUZEWFiYCkgCAwNVQCGBiVSCkhENuch/XJ5F586dVQJ3ZlK1SZK/JZlaFqt7XFnZKlWqpI+gyDSuV155BaGhoQX+fGQKlCSAF+XCfYJTofScRNFDm5dHzXJ2eG3pcVy+E43e8/bhi2dro0ftjOQgIiIiopJKqjll/zZ+5MiR+PHHH7Fhwwa88847agRA8hZku0xpErLmxO7du9XUo6ioKJXALRWWunbtqi7oJRiRcrFSBlZK1b722mvqYj83I0eOVHkTEujY2dmpbaNGjVL9k+2S2yFJ1RJs5ET6dfXqVRWgSLlZqQolIxjy+gUhAZWUoW3VqhWKEgMLA9HAuwzWvdESY5edwIGrd/H6shM4HhSBSd18YGbCgSciIiIqmZYsWaJabqRc7OHDh3N8TEYfJH8iJy4uLvle98HX1xfdu3dX1ahktENIXoOMdmSXU1ldCXyyr9AtuRIS9GhJkJKZrImRnYzYZCZ5G1IFq6jxitSAOJa2wK8jG+NVP03Js5/2BWLAwoMIjYrXddeIiIiICJoEbKnmpC9k+pWUtJX1OooaAwsDY2pijIldffD94AawsTDF0aD76P7NXhy8WrAhMiIiIiIquPLly6ucDn3h6OiId99996lUFmVgYaA613DF32NbwsfVBuHRCXjxx0NYuPtKoa5WSURERESUVwwsDFgFR2usGdMC/eqVUyVpP90QgNG/HceD+NyrDRARERERFQUGFgaulLkJZvSvg+l9asLMxAgbz4Wg17x9uBDCkrRERERE9PQwsCgGZM7c4Kbe+OPV5nC3s0RgeIxa7+Kvkzd13TUiIiIiKiEYWBQjdT3tse6NVmhVxRFxSSl4c/lJfPjXWSQmZ13SnYiIiIiosDGwKGbKWptjyfDGGNuusrr/84EgPL/wAG5Hxum6a0RERERUjDGwKIZMjI3wdqdq+GlYQ9hamuLE9QhVknbf5XBdd42IiIiIiikGFsVYOx8XrBvbCr5utrgXk4jBiw5h/o7LSE1lSVoiIiKiorBo0SJ06tSpUI/Zo0cPvPXWW+n3mzZtij///BP6hoFFMeflYIXVY5rjuQYekHjiq00X8PKvxxAZx5K0REREZPiGDRuGPn36QB/Ex8fjgw8+wIcfflikrzN58mRMnDgRqan6lUfLwKIEsDQzwZfP1sZn/WrB3MQYW8+Hote8vfC/FaXrrhEREREVG6tWrYKtrS1atGhRpK/TtWtXPHjwAP/++y/0CQOLElSSdkBjL6wa3Qzl7Esh6G4s+n67D6uO3dB114iIiIiKzK5du9C4cWNYWFjAzc1NfdOfnJycJRioVasWSpUqBQcHB3To0AExMTHqsZ07d6rnWltbw97eXgUMQUFBub7W8uXL0bNnz/T7mzdvhqWlJSIiIrLs9+abb6Jdu3bq9t27dzFgwACUK1cOVlZWqi+///77Y9+TiYkJunXrpl5PnzCwKGFqe9hj3diW8KvqhITkVEz44xT+t+YMEpJTdN01IiIi0keJMbm3pPh87JutQmVO+xSymzdvqgvwRo0a4dSpU/juu+9UDsTHH3+sHr99+7a6qB8xYgTOnz+vAol+/fohLS1NBR8yxcrPzw+nT5/GgQMH8PLLL6sva3Ozd+9eNGzYMP1++/btVUCSOR8iJSUFK1aswIsvvpg+fapBgwZYv349zp49q15j8ODBOHz48GPfmwQ8e/bsgT4x1XUH6OkrY22OxcMa4ZvtlzBn2yUsO3Qd525G4ttBDdRoBhEREVG6T91zf6xKJ+DFPzLuf1UZSIrNeV/vlsDw9Rn3Z9cCYu9m3WdqJArTt99+C09PT8ybN08FBD4+Prh16xbee+89TJkyRQUWEkBIMOHt7a2eIyMG4t69e4iMjFSJ05UqVVLbqlevnutrRUREqP3d3d2zjCy88MILWLZsGUaOHKm2bdu2Te37zDPPqPsyUjFhwoT054wdOxabNm3CypUrVfCQG3md4OBglWdhbKwfYwX60Qt66oyNjTCuQ1UVYNhbmeHUjUj0+GYPdl8M03XXiIiIiAqFjEI0a9YsyyiDTGeKjo7GjRs3UKdOHTWqIMHEc889hx9++AH3799X+5UtW1Ylhnfu3FlNb5ozZ44KRHITF6cZkZGpT5nJyISMhEhAI5YuXYru3burkQztCMb06dNVH+Q1S5curQKL69evP/a9ydQtCSoSEhKgLzhiUcK1qeaMf15viTFLj+PMzUgMXXwYb3WoitfbVlbBBxEREZVw/9NcEOfIyCTr/XcuP2bfbN9njzsDXZMRhS1btmD//v0qH2Lu3Ll4//33cejQIVSoUAGLFy/GG2+8gY0bN6rpS1KNSfaXcq/ZOTg4qABGG5hoyTQsGfGQfIjRo0djzZo1WLJkSfrjX331lQpaZs+erYILyecYN24cEhMTH9t3GVGRfSXA0BccsSB4lrXCH682U8ndaWnAzC0XMfLnI4iIffwvNBEREZUA5ta5NzPLfOyb7QI4p30KmUxdktwIyZnQ2rdvH2xsbODh4aHuSzAgoxjTpk3DiRMnYG5uri7+terVq4dJkyap4KNmzZpqWlNOzM3N4evrC39//0cek1ELGan4559/1LQlGbHI3J/evXtj0KBBagSlYsWKuHjx4n++N8nHkL7pEwYWlF6SVsrRfvVsbViYGmPHhTD0mLsXZ28W7lxHIiIiosImuQ0nT57M0iT/YMyYMeqn5C0EBATgr7/+UmtMjB8/Xl3gy8jEp59+iqNHj6qpR6tXr0ZYWJgKSAIDA1VAIYGJVIKSEY1Lly49Ns+ic+fOKoE7p8Di+PHj+OSTT/Dss8+qClVaVapUSR81kalbr7zyCkJDQ//zPUvidmEvxFdQnApFWTzX0BO+7rZ49bdjCL4Xh37f7cf03jXwfCMvXXeNiIiIKEeSw5D923tJlv7xxx+xYcMGvPPOO2o0QHIYZLtMaRKy5sTu3bvVNKSoqCiVwD1jxgy1ToRc3Esw8vPPP6uSsFKq9rXXXlMX/rkZOXKkqgolgY6dnV369sqVK6tEbKn0JK+VmfTl6tWrKiiRcrNSFUqqUckxHlftSgKR3377DfqEgQU9ooa7Hda93gpvrTyJ7QF38N6fZ3A8KALTetdQIxtERERE+kLyFTLnLGQn5WJzK90qow+SP5ETFxeXLFOi8sLX11dNc5JqVDLakZmMjuREgp21a9c+9rjr1q1TQZDWN998oxLLtdO59AWnQlGO7KzM8OOQhpjQqSqkkMKKo8F4dsF+BN/LpYQcEREREUGSsaWyU1FydnZWlaT0DQMLypVUhXq9XRX8MqIxyliZ4ezNKJV3sSPgjq67RkRERKSXypcvr3I6itLbb7+tRlT0DQML+k+tqjhh3RutUMfTHpFxSRi+5Ahmbr6AlNSMCgtEREREVLIxsKA8kRW5V77SFIOaapK4v9l+GcMWH8a9GJakJSIiIiIGFpQPFqYm+LhPLczsXweWZsbYcykcPefuxangCF13jYiIiIh0jIEF5Vu/+h5YM6YFyjtY4WZEHJ5bcABLDwVlWXyGiIiIDE9qaqquu0AGfN5ZbpaeSHU3W/w9tiUmrDyFzf6heH/NWRwLuo9P+tRCKXOWpCUiIjIksmq0LBh369YtODk5qfuyIjXpx0V/YmIi4uPj1TkqTPKlsBxbFgWUY8t5LwgGFvTEbC3N8P3gBvh+91V8uTEAq4/fhP+tKCwY1ADlHa113T0iIiLKI7morFChAm7fvq2CC9IfaWlpiIuLQ6lSpYos2JOF+by8vAocuDCwoAKRX/BX/Sqhdjk7jP39BAJCHqDnvL2Y2b8uOvrqXxk0IiIiypl8Wy0Xl8nJyUhJSdF1d+ihpKQktTp469atYWZmhsJmYmICU1PTQgladBpYyIcki4gcO3ZMRciyuqEsYZ4b2Ufq9h49ehSXL1/GG2+88ciy6LLy4vDhw7Nss7CwUMNHVHSaV3bE+jdaYczSYzh+PQKjfjmKMW0qYXzHqjA1YSoPERGRIZCLS7l4LYoLWHryC38J9iwtLfX+vOj0ii8mJgZ16tTB/Pnz87R/QkKCmvc3efJk9bzcyJLnEoRoW1BQUCH2mnLjameJ5S83w7Dm5dX9b3dewZCfDiM8OkHXXSMiIiKiIqbTEYuuXbuqlp+VDOfMmaNu//TTT4+Ntl1dXQulj5Q/5qbGmNqrBup52WPin2ew/8pd9PhmL74dVB/1vcrountEREREVESKZY5FdHQ0vL29VRZ9/fr18emnn6JGjRqPHQmRphUVFZU+p03a06Z9TV28dmHpVsMZVRyb4LXfTyLwbiye//4AJnWphkFNPItdlYnicL5KEp4vw8FzZVh4vgwHz5VhSdLx+crP6xql6cniA3Kx+V85Fpm1adMGdevWfSTH4sCBA7h06RJq166NyMhIfP311yqX49y5c/Dw8MjxWFOnTsW0adMe2b5s2TKVJU9PLj4ZWHbFGKfuaWbdNXBMxTPlU2Gt31MEiYiIiAhAbGwsBg4cqK6rJd2gRAUWOUVZ1atXx4ABAzB9+vQ8j1h4enoiPDz8Pz/AoiB93rJlCzp27Kj3STp5Ib9iP+0PwlebLyElNQ1lrMzwXueq6FvXHcbGhj96UdzOV3HH82U4eK4MC8+X4eC5MixJOj5fcl3s6OiYp8CiWE6FykxOQL169VQVqdxI1ShpOT1Xl39wun79wvRqmypoWN4Bk1afwaU70Zi45hz+PHEL0/vUhI/r0w/eikJxOl8lAc+X4eC5Miw8X4aD58qwmOnofOXnNYt9HVCpw3zmzBm4ubnpuislXsPyZbHhzVaY1NUHpcxMcOTafXT/Zi8+We+P6IRkXXePiIiIiArAWNdJ1idPnlRNBAYGqtvXr19X9ydNmoQhQ4ZkeY52f3muLD8ut/39/dMf/+ijj7B582ZcvXoVx48fx6BBg1S52ZdeeukpvzvKiZmJMV7xq4Stb/uhSw1XNTXqhz2B6DBjF/49c1tNmyIiIiIiw6PTqVCy0F3btm3T748fP179HDp0qFroTtag0AYZWjKtSUsW1pMEa6kAde3aNbXt/v37GDVqFEJCQlCmTBk0aNAA+/fvh6+v71N7X/TfytmXwoLBDbAj4A6m/H0WwffiMHrpcfhVdcK0XjVQ3tFa110kIiIiIkMJLCQB+3HfUEtwkd1/faM9a9Ys1cgwtPVxxpZKfvh2x2Us2HUVuy6GodPs3WrV7lf9KsHSzETXXSQiIiKiPCj2ORak/yR4GN+pGjaOa4WWlR2RmJyK2VsvofPs3dh54Y6uu0dEREREecDAgvRGRafS+HVkY8wbWA/ONhYIuhuLYYuPYMzSY7gdGafr7hERERHRYzCwIL0i65n0qO2ObW/7YWTLCjAxNsKGMyEqufvHPVeRlJKq6y4SERERUQ4YWJBesrE0wwc9fPHP6y1R38seMYkp+Hj9efScuxdHrt3TdfeIiIiIKBsGFqTXfN1tserV5vjimVqwtzJDQMgDPLfgAN754xTuRmeslk5EREREusXAgvSesbERnm/khe1vt8ELjTzVtj+O3UC7Gbuw7NB1pKZy7QsiIiIiXWNgQQajrLU5Pn+mNv4c3RzV3WwRGZeE/605g77f7cfZm5G67h4RERFRicbAggxOA+8y+Of1FpjSwxelLUxxKjgCvebtxdS/zyEqPknX3SMiIiIqkRhYkEEyNTHGiJYVVPWoHrXdILOhluy/hvYzduGvkzf/cyFFIiIiIipcDCzIoLnYWmLewPpq/YsKjtYIe5CAN5efxIs/HsLlO9G67h4RERFRicHAgoqFVlWc1Mrdb3esCgtTY+y/chdd5+zGV5sCEJeYouvuERERERV7DCyo2LAwNcHY9lWw5S0/tK3mhKSUNMzfcQUdZu7CVv9QXXePiIiIqFhjYEHFjpeDFX4a1gjfD24AdztL3IyIw0u/HMVLPx9F8L1YXXePiIiIqFhiYEHFkpGRETrXcMXWt/3wil9FmBobYev5UHSctQvzd1xGYnKqrrtIREREVKwwsKBizcrcFJO6VseGN1uhcYWyiE9KxVebLqj8i/2Xw3XdPSIiIqJig4EFlQhVXWyw4uWmmNm/DhxLm+NKWAwG/ngI45afwJ0H8bruHhEREZHBY2BBJWp6VL/6Htg2vg0GN/WGkRGw9uQttP96F37efw0pshgGERERET0RBhZU4thZmWF6n5r467UWqO1hhwcJyfjw73PoPX8vTgZH6Lp7RERERAaJgQWVWLU97LFmTAsVZNhYmuLszSj0/XYf/rfmDCJiE3XdPSIiIiKDwsCCSjQTYyM1LWr7223Qr145pKUByw5dR7sZu/DH0WCkyQYiIiIi+k8MLIgAONlYYObzdbH85aao4lwa92IS8c6q0+j//QFcCHmg6+4RERER6T0GFkSZNK3ogPVvtMLErj4oZWaCI9fuo9s3e/DphvOISUjWdfeIiIiI9BYDC6JszE2N8apfJbW4XucaLqpa1MLdV9Fh5i78e+Y2p0cRERER5YCBBVEuytmXwveDG+KnYQ3hWbYUbkfGY/TS4xi2+AiuhcfountEREREeoWBBdF/aOfjgi1v+eGNdpVhbmKMXRfD0Gn2bszeehHxSSm67h4RERGRXmBgQZQHlmYmGN+pGv4d1wotKzsiMTkVs7deQpfZu7Hncriuu0dERESkcwwsiPKhklNp/DqyMeYOqAdnGwtcuxuLET8fx08XjBF8P1bX3SMiIiLSGQYWRPlkZGSEnnXcse1tP4xoUQHGRsCpe8bo8s1+fLkxANGsHkVEREQlEAMLoidkY2mGKT198deYZqhim6qmR3278wrafLUTK48Eq2pSRERERCUFAwuiAvJxtcFrvqn4bmBdeDtYITw6Ae/+eRq95u3Foat3dd09IiIioqeCgQVRITAyAjpUd8bmt1rj/W7VYWNhinO3ovD8woMY/dsxXL/L/AsiIiIq3hhYEBUiC1MTjGpdETvfaYMXm3ip/It/z4aoxfU+/zcAD+KTdN1FIiIioiLBwIKoCDiUtsAnfWthw5ut0KKyAxJTUrFg1xW0/XoXVhy5zvwLIiIiKnYYWBAVIR9XW/w2sgl+HNIQFRytVf7Fe3+eQc+5e3HgCvMviIiIqPhgYEH0FMrTdvB1waZxrTG5e3XYWJrC/3YUBvxwEK/+egxBd2N03UUiIiKiAmNgQfSUmJsa46VWFbHrnbYY3NRb5V9sPBeCjjN347N/zzP/goiIiAwaAwuip6ystTmm96mJf99sjVZVHFX+xfe7rqLt1zvx+2HmXxAREZFhYmBBpCPVXG3wy4jG+GlYQ1RU+ReJmLT6DLp/swf7r4TruntERERE+cLAgkjH+RftfFywcVxrfNDDF7aWpggIeYCBPxzCK78eZf4FERERGQwGFkR6kn8xsmUF7HynLYY084aJsRE2nQtV6198tuE8oph/QURERHqOgQWRnuVffNRb8i9aqfyLpJQ0fL/7Ktp+tRPLDjH/goiIiPQXAwsiPVTVRZN/sXhYI1R0ssbdmET8b83D/IvLzL8gIiIi/cPAgkiP8y/a+jir9S8+7OkLu1JmmvyLHw9h1C9HERjO/AsiIiLSHwwsiPScmYkxhreogJ0T2mDow/yLLf6h6DRrFz5Z74/IOOZfEBERke4xsCAyEGWszTGtd01sfLMV/Ko6qfyLH/YEqvUvfjsYhOSUVF13kYiIiEowBhZEBqaKiw1+lvyL4Y1Qycka92ISMXntWXT/Zi/2Mf+CiIiIdISBBZGBalvNWa1/MfVh/sWF0Ad48cdDeOln5l8QERGRAQYWKSkpOHnyJO7fv184PSKifOVfDGtRAbveaYNhzcur/Iut5zX5Fx+vY/4FERER6XFgMW7cOCxatCg9qPDz80P9+vXh6emJnTt3FkUfieg/2FuZY2qvGtg0rhXaVtPkX/y4NxBtvtqBX5l/QURERPoYWKxatQp16tRRt//55x8EBgYiICAAb731Ft5///2i6CMR5VFlZxssHt4YS4Y3QmXn0rgfm4QP1p5Ft2/2YM+lMF13j4iIiIqxfAcW4eHhcHV1Vbc3bNiA5557DlWrVsWIESNw5syZougjEeVTm2rOavXuj3rXgL2VGS6GRmPwosMYueQIroRF67p7REREVAzlO7BwcXGBv7+/mga1ceNGdOzYUW2PjY2FiYlJUfSRiJ4w/2JIs/LYNaEtRrSoAFNjI2wLuIPOs3bjo3/8ERnL/AsiIiLSYWAxfPhw9O/fHzVr1lQrA3fo0EFtP3ToEHx8fAqxa0RUGOyszDClpy82vdUa7XyckZyahp/2BaLN1zvwy4FrzL8gIiKiQmGa3ydMnTpVBRXBwcFqGpSFhYXaLqMVEydOLJxeEVGhq+RUGj8Na4RdF8NUxahLd6Ix5a9z+PVAECb38FWL7hERERE91XKzzz77rErW9vDwUPcjIiIwdOhQ9O7dO1/H2b17N3r27Al3d3c1+rF27drH7n/79m0MHDhQ5XQYGxurClU5+eOPP9ToiaWlJWrVqqVyQYhIQwIIyb+Y3rsGyliZqQBj6E+HMXzxYVy+w/wLIiIiekqBxRdffIEVK1ak35dpUQ4ODirIOH36dL6OFRMToypMzZ8/P0/7JyQkwMnJCZMnT06vTJXd/v37MWDAAIwcORInTpxAnz59VDt79my++kZUnJmaGGNws/LYOaEtRrbU5F/suBCGLrN3Y9o/5xARm6jrLhIREVFxDywWLFig1qwQW7ZsUe3ff/9Fly5dMGHChHwdq2vXrvj444/Rt2/fPO1fvnx5zJkzB0OGDIGdnV2O+8jj0pd33nkH1atXx/Tp09U6G/PmzctX34hKSv7FBz18sfmt1uhQXZN/sXjfNbT5eid+3n8NScy/ICIioqIKLEJCQtIDi3Xr1qkRi06dOuHdd9/FkSNHoGsHDhxITyjX6ty5s9pORDmr6FQaPw5thF9HNkY1FxtExCbhw7/PoeucPdh54Y6uu0dERETFMXm7TJkyKnFbggspNysjDiItLU2VoNU1CXykJG5mcl+2P26KlTStqKgo9TMpKUm1p037mrp4bSrZ56tpeXusHd0EK4/dxOxtl1XOxbDFR+BXxRGTulZDJSdrGLridL6KO54rw8LzZTh4rgxLko7PV35eN9+BRb9+/VQCdZUqVXD37l01nUlIPkPlypVhiD777DNMmzbtke2bN2+GlZUVdEWmmZHhKE7nyx7AuzWAzTeMsTvECLsuhauVu1u6pqGLRyqszWDwitP5Ku54rgwLz5fh4LkyLFt0dL5krboiCyxmzZqlch1k1OLLL79E6dKl0ys2jRkzBromq4KHhoZm2Sb3tauF52TSpEkYP358lhELGZGRKV62trbQRWQovzyy+KCZWTG4givmivP5ehbAtbsx+HzjRWwLCFNBxqlIc7zRrjIGNPJQi/AZmuJ8voobnivDwvNlOHiuDEuSjs+XdiZPkQQW8oZyStKW8rP6oFmzZti2bVuWUrRyMmR7bmQtDu16HNnfqy7/4HT9+pQ/xfV8VXG1x6JhjbH3Ujimr/PHhdAHmL4+AMsOB6v1L9pWc4YhKq7nqzjiuTIsPF+Gg+fKsJjp6Hzl5zXzHViIK1euYPbs2Th//ry67+vrqy7kK1asmK/jREdH4/Lly+n3AwMDcfLkSZQtWxZeXl5qJOHmzZv45Zdf0veRx7XPDQsLU/fNzc1VH8Sbb74JPz8/zJgxA927d8fy5ctx9OhRLFy48EneKhE91LKKI9a/0RIrjgZjxuaLuBIWg+GSf1HVCZO7V0cVFxtdd5GIiIh0KN/zGDZt2qQu4g8fPozatWurdujQIbUtv3O/5IK/Xr16qgmZjiS3p0yZkj696vr161meo93/2LFjWLZsmbrdrVu39MebN2+utksgIWtdrFq1Si28J6uFE1HB1794sYk3dkxog5dbV4SZiZFaybvLnD2Y+vc53I/h+hdEREQlVb5HLCZOnKimPX3++eePbH/vvffU/K+8atOmjaomlZslS5Y8su1x+2s999xzqhFR0bArZYb/dauOgY298MmG89jiH4ol+69hzYmbGNehCgY19TbI/AsiIiJ6cvn+l1+mP8mq1tmNGDEC/v7+BegKERma8o7W+GFIQyx9qQl8XG0QGZeEaf/4o/Ps3dgRwPUviIiISpJ8BxZOTk7peQ6ZyTZnZ8NM4iSigmlRWfIvWuHTvrXgYG2Oq5J/seQIhvx0GJdCH+i6e0RERKSPU6FGjRqFl19+GVevXlX5DGLfvn344osvspRsJaKSxcTYCAObeKFHHTfM234Zi/cFYrfkX1wOx6AmXhjXoSrKWJvruptERESkL4HFBx98ABsbG1V1Sao2CXd3d0ydOlVVZCKiks3WMiP/4tMN57HZPxQ/Hwh6mH9RFYObMf+CiIioOMr3v+5GRkYqefvGjRuIjIxUTW7LSMb+/fuLppdEZJD5FwuHNMSyh/kXUfHJ+GidJv9ie0BongoxEBERkeEo0NeGMnIhTVy6dAmtWrUqrH4RUTHR/GH+xWf9MvIvRiw5qvIvLjL/goiIqNjgfAQieir5FwMae2HHO23wil9FmJsYY8+lcHSdswdT/jqLe1z/goiIyOAxsCCip5p/MalrdWwZ3xpdargiJTUNvxwIQpuvdmDR3kAkJqfquotERET0hBhYENFT5+1gjQWDG2DZqCao7mar8i+mr/NHl9m7se088y+IiIiKdVWov//++7GPBwYGFkZ/iKgEaV7JEevGtsQfR4Px9eYLuBoeg5E/H0WrKo74oIcvqrpocriIiIioGAUWffr0yVPFKCKi/OZfvNDYC91ru2H+jiv4aW+gyr+Q0YsXm3jjrY5VUZbrXxARERWfqVCpqan/2VJSUoq2t0RUbNlYmmFiV5/0/IvUNODXg0Hw+2oHftxzlfkXREREeo45FkSkl/kXv49qCl83WzyIT8bH68+r9S+2+jP/goiISF8xsCAivdSskgP+GdsSXzxTC46lzREYHoOXftGsf3EhhOtfEBER6RsGFkSk1/kXzzfywo4JbTC6TaVM61/sxuS1Z3A3OkHXXSQiIqKHGFgQkUHkX7zXxQdbx/uha01N/sVvB6+jzdc7mX9BRESkJxhYEJHB8HKwwneDGmD5y01Rw535F0RERAYdWAwdOhS7d+8umt4QEeVB04oO+Pv1lvjymdpwLG2Rnn8xeNFhBIRE6bp7REREJVK+A4vIyEh06NABVapUwaeffoqbN28WTc+IiP4j/6J/I0/sfKcNxkj+hakx9l4OR7c5e/D+GuZfEBER6X1gsXbtWhVMjB49GitWrED58uXRtWtXrFq1CklJSUXTSyKiXJS2MMW7XXywbbwfutXS5F8sPXQdbb7aiR92M/+CiIhIr3MsnJycMH78eJw6dQqHDh1C5cqVMXjwYLi7u+Ott97CpUuXCr+nRESP4VnWCt++2AArtPkXCcn4ZMN5dJq1C5vPhTD/goiISJ+Tt2/fvo0tW7aoZmJigm7duuHMmTPw9fXFrFmzCq+XRER51ESbf/FsbTjZWODa3Vi8/OsxDFp0COdvM/+CiIhIbwILme70559/okePHvD29sYff/yBcePG4datW/j555+xdetWrFy5Eh999FHR9JiIKC/5Fw091foXr7XV5F/su3wX3b/Zgw/+9scDztokIiIqdKb5fYKbmxtSU1MxYMAAHD58GHXr1n1kn7Zt28Le3r6w+khE9MT5F+909sELjbzw+cYArD99G8uP3ICliQmiHAIxslUlWJia6LqbREREJXPEQqY4yejE/PnzcwwqhAQVgYGBhdE/IqJCyb+YP7A+Vr7SDDXcbRCfYoQvN11Cx5m7sfHsbeZfEBER6SKwkCRtS0tLdTs4OFg1IiJD0LhCWax+pSlerJQCZxsLXL8Xi1d/O44XFh7E2ZuRuu4eERFRyQoskpOT8cEHH8DOzk6VmpUmtydPnsxys0Sk94yNjdDYOQ2b32yBN9pVhoWpMQ4F3kPPeXvx7qpTuBMVr+suEhERlYzAYuzYsVi4cCG+/PJLnDhxQjW5vWjRIrzxxhtF00siokJmbWGK8Z2qYfuENuhd1x0yG2rl0Rto+/VOzN9xGfFJKbruIhERUfFO3l62bBmWL1+uFsXTql27Njw9PVVC93fffVfYfSQiKjLl7Ethzgv1MKRZeUxf54+TwRH4atMFLDt0HRO7+qBHbTcYGRnpuptERETFb8TCwsJCTX/KrkKFCjA3Ny+sfhERPVUNvMtg9ejmmPNCXbjZWeJmRBzG/n4Czy44oIINIiIiKuTA4vXXX8f06dORkJCQvk1uf/LJJ+oxIiJDzr/oXbcctr/dBuM7VkUpMxMcC7qPPvP3YfyKk7gdGafrLhIRERWfqVCSU7Ft2zZ4eHigTp06atupU6eQmJiI9u3bo1+/fun7rl69unB7S0T0FJQyN8Eb7auoRfZkWtSfx29g9Ymb2HD2Nl71q4SXW1eElXm+//dJRERUrOX7X0ZZo+KZZ57Jsk3yK4iIihtXO0vM6F8HQ5t7q/yLI9fuY/bWS1h+OBjvda2G3nXKqVEOIiIieoLAYvHixUXTEyIiPVXbw14trrfhTAg++/c8btyPw1srTmHJvmuY0tMXDbzL6rqLREREhpdjoRUWFoa9e/eqJreJiIozqQzVvbYbto73w7tdqsHa3ASnbkTime8O4PVlx3Hjfqyuu0hERGRYgUVMTAxGjBgBNzc3tG7dWjV3d3eMHDkSsbH8h5WIijdLMxOMaVMZO95pgxcaeUIq0a47fRvtZuzCV5sCEJ2QrOsuEhERGUZgMX78eOzatQv//PMPIiIiVPvrr7/UtrfffrtoeklEpGecbSzx+TO1sW5sSzStWBaJyamYv+OKWmBv5dFgpKam6bqLRERE+h1Y/Pnnn2qVbVkgz9bWVrVu3brhhx9+wKpVq4qml0REeqqGux1+H9UU3w9uAG8HK4Q9SMC7q06j57y9OHj1rq67R0REpL+BhUx3cnFxeWS7s7Mzp0IRUYnNv+hcwxWb32qN97tVh42lKc7disILCw/i1V+PIehujK67SEREpH+BRbNmzfDhhx8iPj4+fVtcXBymTZumHiMiKqksTE0wqnVF7JzQBoOaekEq0W48F4KOM3fjsw3nERWfpOsuEhER6U+52dmzZ6NLly6PLJBnaWmJTZs2FUUfiYgMikNpC3zcpxYGNy2Pj9f7Y8+lcHy/+ypWHbuB8Z2q4oVGXjDh+hdERFTSA4tatWrh0qVLWLp0KQICAtS2AQMG4MUXX0SpUqWKoo9ERAapmqsNfhnRGDsvhGH6en9cDYvB+2vO4tcDQZjc3RctqzjquotERES6CSySkpLg4+ODdevWYdSoUYXXCyKiYpx/0dbHWQURSw8GYdbWSwgIeYBBiw6hQ3Vn/K9bdVR0Kq3rbhIRET3dHAszM7MsuRVERJQ3ZibGGNaiAna90wbDmpeHqbERtp6/g06zduOjf/wRGcv8CyIiKmHJ26+99hq++OILJCdzESgiovyytzLH1F41sHFca7TzcUZyahp+2hcIv6934Of915CUkqrrLhIRET2dHIsjR45g27Zt2Lx5s8q3sLa2zvL46tWrn6wnREQlSGXn0vhpWCPsvhimErwvhkbjw7/P4ZcD1zC5hy/aVnPWdReJiIiKNrCwt7fHM888k9+nERFRDlpXdcKGSq2w/EgwZm65iCthMRi++Aj8qjphcvfqqOJio+suEhERFU1gsXjx4vw+hYiIHsPUxBiDmnqjZx13zN9xGYv3BWLXxTDsvRyOF5t4YVyHqihrba7rbhIRERVujkW7du0QERHxyPaoqCj1GBERPRm7UmaqStSWt/zQuYYLUlLT8MuBIPh9tQM/7rmKxGTmXxARUTEKLHbu3InExMRHtku1qD179hRWv4iISqzyjtb4fnBDLBvVBNXdbPEgPhkfrz+PzrN3Y4t/KNLS0nTdRSIioiefCnX69On02/7+/ggJCUm/n5KSgo0bN6JcuXJ5PRwREf2H5pUcsW5sS6w6FoyvNl1EYHgMRv1yFM0rOeCDHr4q6CAiIjK4wKJu3bpqoSdpOU15klW3586dW9j9IyIq0UyMjfB8Iy90r+2Ob3dcxo97A7H/yl10/2YPnm/kifEdq8HJxkLX3SQiIsp7YBEYGKiG3ytWrIjDhw/Dyckp/TFzc3M4OzvDxMSkqPpJRFSilbYwxbtdfDCgsRc+3xiA9adv4/fDwfjn1G283q4yhrcoDwtT/j+YiIgMILDw9vZWP1NTmTxIRKQrnmWtMH9gfQxrfg/T1/nj9I1IfP5vAH47GKRW9H6ugSfsrMx03U0iIiqB8l1uVly6dAk7duzAnTt3Hgk0pkyZUlh9IyKiXDQqXxZrx7TAmhM38eWmANy4H6cSvL/efAG965TD4GbeqFnOTtfdJCKiEiTfVaF++OEHVK9eXQUQq1atwpo1a9Lb2rVr83Ws3bt3o2fPnnB3d1e5G3l5vlSlql+/PiwsLFC5cmUsWbIky+NTp05NzwXRNh8fn/y+TSIivWdsbIRnGnhgx4Q2+LRvLfi42iA+KRUrjgajx9y96DN/H/48dgPxSSm67ioREZUA+R6x+Pjjj/HJJ5/gvffeK/CLx8TEoE6dOhgxYgT69euXpzyP7t2749VXX8XSpUuxbds2vPTSS3Bzc0Pnzp3T96tRowa2bt2aft/U9IkGZoiIDIKVuSkGNvHCgMaeOBZ0H78eDMKGM7dxMjhCtY/X+6N/I08MauKtplIREREVhXxfcd+/fx/PPfdcobx4165dVcurBQsWoEKFCpgxY4a6LyMne/fuxaxZs7IEFhJIuLq6FkofiYgMhYzQNixfVjUpR7viSDCWHbqOmxFx+H7XVSzcfRVtqjqpaVJ+VZ1VxSkiIiKdBRYSVGzevFmNGjxtBw4cQIcOHbJsk4Bi3Lhxj+SAyPQqS0tLNGvWDJ999hm8vLxyPW5CQoJqmVcRF0lJSao9bdrX1MVrU/7xfBmWknK+7CyM8XJLb4xs7oWdF8Kw9HAw9ly+ix0XwlTzKFMKAxp54Nn65VDW2hz6qKScq+KC58tw8FwZliQdn6/8vK5RWj6XcJWL9JkzZ6opSbVq1YKZWdbqI2+88UZ+DpfRESMjlafRp0+fXPepWrUqhg8fjkmTJqVv27Bhg+pLbGysWkvj33//RXR0NKpVq4bbt29j2rRpuHnzJs6ePQsbG5scjyt5GbJfdsuWLYOVFacNEFHxEBYH7As1xqE7RohN0YxWmBqloZ5DGlq6psK7tPy/WNe9JCIifSLX2AMHDkRkZCRsbW0LN7CQqUi5HszICFevXs3P4Qo9sMguIiJClcqVYGjkyJF5HrHw9PREeHj4f36ARRUZbtmyBR07dnwkcCP9w/NlWHi+oJK5150JwdJDwTh7SzNCK3zdbDCoiSd61HJDKXPdr4nBc2VYeL4MB8+VYUnS8fmS62JHR8c8BRb5ngolCdS6InkToaGhWbbJfXmTOQUVwt7eXgUkly9fzvW4UmFKWnZy8nT5B6fr16f84fkyLCX5fMn7HtCkvGqngiNUsvffp27B//YD/G+tPz7feBHPNvDEoKZeqOhUWtfdLdHnyhDxfBkOnivDYqaj85Wf18x3uVldknwJqQSVmURwsj03Mi3qypUrqnIUERFlVcfTHl8/VweHJrXH/7r5wKusFaLik/HTvkC0m7ELgxcdwqZzIUhO4eKoRERUSIGFr68v7t27l35/zJgxaqqQliyWl998BLnoP3nypGra0RC5ff36dXVfpjwNGTIkfX9JGJepVu+++y4CAgLw7bffYuXKlXjrrbfS95kwYQJ27dqFa9euYf/+/ejbty9MTEwwYMCAfPWNiKgkKWNtjpdbV8LOCW2wZHgjdKjurPIt9lwKxyu/HkOrL3dg7rZLuPMgXtddJSIiQw8s5EI+OTk5/f5vv/2WXj1JSKpGfHz+/sE5evQo6tWrp5oYP368uq1dvVuSr7VBhja/Y/369WqUQta/kLKzP/74Y5ZSszdu3FBBhCRv9+/fHw4ODjh48CCcnJzy1TciopK66F6bas74cWgj7H6nLUa3qaSqRt2OjMeMLRfR/LPteH3ZcRy6elf9f5+IiEjriVeOy+kfFEnAzo82bdo89h+m7Ktqa59z4sSJXJ+zfPnyfPWBiIhyJovpvdfFB+M6VMG/Z0Lwy4FrOH49AutO31atmosNBjXzRt965VDagguREhGVdPyXgIiIHsvC1AR96pVT7ezNSCw9FIS1J27hQugDfLD2LD7fcB796nuohfequuRc1puIiIq/PE+FktGI7CMS+R2hICIiw1aznB0+61cbB//XHh/29EVFJ2vEJKaoylKdZu3G898fwLrTt5CYzGRvIqKSJs8jFjJlqX379jA11TwlLi4OPXv2hLm5ZsXWzPkXRERUvNmVMsPwFhUwrHl57L9yF78eCMKW86E4FHhPNScbCwxo5IkBTbzgZpdzOXAiIiqhgcWHH36Y5X7v3r0f2eeZZ54pnF4REZFBkJHrFpUdVbsdGYffDwfj98PXEfYgAd9sv4z5O6+gY3UXNU2qeSUHjnQTERVjTxxYEBERZSYjE+M7VsXrbStjs3+IGsWQ0YuN50JUk2lTg5p445kGHmrEg4iIipcCLZD3+eefIyIiovB6Q0REBs/c1Bg9artjxSvNsPmt1hjc1BvW5ia4GhaDj9b5o+mn2zDxz9M4dytS110lIiJ9CSw+/fTTLIvmERERZSZVoqb3qYlD73dQP6u6lEZcUgqWHwlG92/2ot+3+7DmxA3EJ6XouqtERKTLcrNcHImIiPJC1rmQkYtBTbxw5Np9tSbGxrMhal0MadPXncfzjTwxsLGXWj+DiIgMD9exICKip0aStxtXKKvanQfxWHE4GMsOX1cre3+38woW7LqCdtWc1cJ7zcvb67q7RET0tAILf39/lCtXriCHICKiEsrZxhJj21fB6DaVsPX8Hfx2MAh7L4djW8Ad1TzLlEJ9WyO0ik9CWTMmexMRFbvAIjg4WH3j5OHhAU9PTxw+fBjLli2Dr68vXn755aLpJRERFVumJsboUtNVtSth0Vh68Dr+OBaM4PtxCL5vgq1f78YLjbwwvEV5eJThNCkiomKTvD1w4EDs2LFD3Q4JCUHHjh1VcPH+++/jo48+Koo+EhFRCVHJqTSm9PTFof+1xye9feFaKg0xCSlYtDcQfl/txBu/n8CZG6wmRURULAKLs2fPonHjxur2ypUrUbNmTezfvx9Lly7FkiVLiqKPRERUwliZm6J/Qw9MrJOCHwfXQ4vKDkhJTcPfp26h57y9eGHhAWw7H4rUVBYRISIy2KlQSUlJsLCwULe3bt2KXr16qds+Pj64fft24feQiIhKLFmo26+qEzrUcMfZm5H4cc9VrDt9Gwev3lOtkpM1RrWqiD71ysHSzETX3SUiKtHyPWJRo0YNLFiwAHv27MGWLVvQpUsXtf3WrVtwcHAoij4SERGhZjk7zH6hHna/2xYvt64IGwtTXAmLwcTVZ9Dyi+2Ys/US7sUk6rqbREQlVr4Diy+++ALff/892rRpgwEDBqBOnTpq+99//50+RYqIiKiouNuXwv+6Vcf+Se0wuXt1lLMvhfDoRMzaehHNP9+G99ecwdWwaF13k4ioxMn3VCgJKMLDwxEVFYUyZcqkb5eKUFZWrNZBRERPh42lGV5qVRFDm5fHhjO38cOeqzh7MwpLD11Xa2N0rO6CUa0roqF3GVXNkIiI9CywiIuLUytua4OKoKAgrFmzBtWrV0fnzp2Loo9ERES5MjMxRu+65dCrjrvKu5A8DFkHY7N/qGp1Pe1VHkbnGi6qtC0REelJYNG7d2/069cPr776KiIiItCkSROYmZmpUYyZM2di9OjRRdNTIiKix5BRiWaVHFS7fOcBftwTiNUnbuJkcAReW3YcnmVLYUSLCujf0BPWFgVaH5aIiHKQ769ujh8/jlatWqnbq1atgouLixq1+OWXX/DNN9/k93BERESFrrKzDT5/pjb2vdcOb7SrjDJWZgi+F4dp//ij2Wfb8MXGAIRGxeu6m0REJTuwiI2NhY2Njbq9efNmNXphbGyMpk2bqgCDiIhIXzjZWGB8p2rYP7E9Pu5TExUcrREVn4zvdl5RlaTeXnkKASFRuu4mEVHJDCwqV66MtWvXIjg4GJs2bUKnTp3U9jt37sDW1rYo+khERFQgpcxNMKipN7aO98P3gxugUfkySEpJw5/Hb6DL7D0Y8tNh7LkUpnIIiYjoKQUWU6ZMwYQJE1C+fHlVXrZZs2bpoxf16tV7wm4QEREVPRNjI3Su4Yo/Xm2ONWOao3stNxgbAbsvhmHwosPoOmcP/jx2A4nJqbruKhGRwcl39tqzzz6Lli1bqlW2tWtYiPbt26Nv376F3T8iIqIiUc+rDOa/WAbB92KxaG8gVh4NRkDIA7z9xyl8uSkAw5pXwMAmXrArZabrrhIRGYQnKovh6uqq2o0bN9R9Dw8PLo5HREQGybOsFab2qoG3OlTF0sNBWLLvGkKjElSC97ztl9C/kaeqJiX7ERFRIU6FSk1NxUcffQQ7Ozt4e3urZm9vj+nTp6vHiIiIDJGdlRnGtKmMPe+1xdfP1UE1FxvEJKZg8b5r8PtqhypZeyo4QtfdJCIqPiMW77//PhYtWoTPP/8cLVq0UNv27t2LqVOnIj4+Hp988klR9JOIiOipsDA1wbMNPPBM/XLYfSlcLbi351I41p++rVrjCmXVgnvtfZxhLAkaRET0ZIHFzz//jB9//BG9evVK31a7dm2UK1cOY8aMYWBBRETFZsE9v6pOqvnfisKPe6/in1O3cDjwnmoVHa0xslUFPFPfA5ZmJrruLhGR4U2FunfvHnx8fB7ZLtvkMSIiouLG190WM/vXxZ532+FVv0qwsTTF1fAYvL/mLJp/vh2ztlzE3egEXXeTiMiwAgupBDVv3rxHtsu2zFWiiIiIihtXO0tM7OqDA5PaY0oPX5SzL4V7MYmYs+2SCjAmrT6DK2HRuu4mEZFhTIX68ssv0b17d2zdujV9DYsDBw6oBfM2bNhQFH0kIiLSK6UtTDGiZQUMaeaNjedC8MPuqzh1IxK/H76uWofqzioPQ/IxZEoVEVFJkO8RCz8/P1y8eFGtWREREaFav379cOHCBbRq1apoeklERKSHTE2M0aO2O9a+1gIrX2mGDtVdIHHE1vN38PzCg+g9f5/Ky0hOYdVEIir+8jVikZSUhC5dumDBggVM0iYiInpIRiVkdEKaTIWSBfdkBe/TNyIx9vcTasqUjHA838hTjXYQEaGkj1iYmZnh9OnTRdcbIiIiA1fJqTQ+7VsL+ye2w7gOVeBgbY6bEXGYvs4fzT7bhs/+Pa/uExGhpE+FGjRokFrHgoiIiHLnUNoC4zpUxb6J7VSgUdHJGg/ik/H9rqto+cV2DFh4ECuPBuNBfJKuu0pEVCjyPR6bnJyMn376SSVvN2jQANbW1lkenzlzZuH0jIiIqBiQNS4GNvHCC408sT3gjpomdeDq3fT2wdqz6Ojrgn71y6FVFSeYmeT7Oz8iIsMMLM6ePYv69eur25LEnRkrXxAREeVMVunu4Oui2o37sfjr5C2sPn4DV8JisO70bdVk2lTPOu4qyKhVzo7/rhJR8Q4sduzYUTQ9ISIiKiE8yljhtbaVMaZNJZy5GYnVx2+q6lF3YxKxZP811So5WaNffQ/0ruuu9ici0nd5Hm9NSUlRidtxcY8mnMk2eSw1leX0iIiI8kpGJGp72GNqrxo4+L/2WDyskRqxsDA1ViMZX226gJZf7MDz3x/AiiPXEcV8DCIqDoHFr7/+ihEjRsDc3DzHalHy2LJlywq7f0RERCWC5Fa09XHG3AH1cHRyB3z5bG00q+ig1sU4FHgP7/15Bg0/3orXlh7HVv9QJHFtDCIy1KlQUglqwoQJMDExefQgpqZ49913MW/ePFU1ioiIiJ6cjaUZ+jf0VO1WRBzWnryJNcdv4tKdaKw/c1u1spKPUdsNfet7oI4H8zGIyIACC1lZu2nTprk+3qhRI5w/f76w+kVEREQA3O1LYUybyhjtVwnnbkVhzYmbKvE7PDoBPx8IUq2iozX61iuHPvXKwbMs8zGISM8Di5iYGERFReX6+IMHDxAbG1tY/SIiIqJMZESiZjk71SZ19cHey+EqyNh0LgRXw2MwY8tF1RqVL4O+9TzQvZYb7KzMdN1tIipB8hxYVKlSBfv370ft2rVzfHzv3r1qHyIiIipapibGaFPNWbXohGRsPBuCNSduYP+Vuzhy7b5qU/8+h/bVndVIhuxnbsr1MYhITwKLgQMHYvLkyWjevPkjwcWpU6cwZcoUlWdBRERET09pC1M828BDtduRcWqalORjXAh9gH/PhqhWxsoMPWq7o2/9cqjnac98DCLSbWDx1ltv4d9//1WrbXfo0AE+Pj5qe0BAgFqFu0WLFmofIiIi0g03u1J41a8SXmldEf63o1SA8depWwh7kIBfDwapVsHRGn3qllMjGV4OzMcgIh0EFlJSdvPmzZg1a5YqK7t7926kpaWhatWq+OSTTzBu3Di1DxEREemWjEjUcLdTbVK36tj3MB9DpkwFhsdg1taLqjX0LqMSvnvUdoO91aPl5ImIimzlbQkcZLoTpzwREREZBhNjI7Su6qTax32SVbK3BBkSbBwNuq/aR//4o62Pk0r6lp8Wpo+WliciKtTAgoiIiAyXtYUp+tX3UC00Kh5/nbyJ1cdvIiDkATadC1XNrpTkY7ihX/1yqO9VhvkYRJRnDCyIiIhKIBdbS7zcupJq529r18e4idCoBCw9dF01bwer9HyM8o7Wuu4yEek5BhZEREQlXHU3W9Xe6+KDA1fuYvWJGyofI+huLOZsu6RaPS979FP5GO4oY818DCJ6FAMLIiIiSs/HaFnFUTXJx9h8LhSrT9zE3kthOHE9QrWP1vmrdTEkyGhX3Zn5GET05IHFjh070LZt2/w+jYiIiAyIlbmpqhgl7U5UPP4+dUvlY0gZ2y3+oarZWpqie213lY9Rx720rrtMRIYWWHTp0gUeHh4YPnw4hg4dCk9Pz6LpGREREekFZ1tLvNSqomoXQh6oqVJ/nbiFkKh4/H74umoeZUqhqqUxHALvoUklJ5iZcKVvopIm33/1N2/exOuvv45Vq1ahYsWK6Ny5M1auXInExMR8v7ishdGzZ0+4u7urqhNr1679z+fs3LkT9evXh4WFBSpXrowlS5Y8ss/8+fNRvnx5WFpaokmTJjh8+HC++0ZERESPquZqg0ldq2PfxHZY9lITteK3tbkJbtyPw/bbxhj001E0mL4FY38/gbUnbuJ+TP6vD4iohAQWjo6OaoXtkydP4tChQ2qBvDFjxqjg4I033sCpU6fyfKyYmBjUqVNHBQJ5ERgYiO7du6upWPL6sijfSy+9hE2bNqXvs2LFCowfPx4ffvghjh8/ro4vwc+dO3fy+1aJiIjoMfkYzSs74uvn6uDo5I745vnaaOSUijJWZoiKT8Y/p25h3IqTaPDxFjy3YD++23kFF0MfqMV1iah4KlDytowcuLq6wsHBAZ9//jl++uknfPvtt2jWrBkWLFiAGjVqPPb5Xbt2VS2v5JgVKlTAjBkz1P3q1atj7969ajVwCR7EzJkzMWrUKDVVS/uc9evXq75NnDixIG+XiIiIclDK3ARda7oi7XoqOndpg3MhMdgeEIpt5++oNTKOXLuv2hcbA9SUqfY+zmhX3QVNKpSFpRmTv4mKiyeaAJmUlKSmQnXr1g3e3t5qxGDevHkIDQ3F5cuX1bbnnnuu0Dt74MABdOjQIcs2CShku5DpWMeOHcuyj7Gxsbqv3YeIiIiKdiSjgXcZvNPZBxvHtVZTpqb3qYm21Zxgbmqspkz9fCAIQ386jPrTt+DlX45ixZHrKkGciErYiMXYsWPx+++/q6HMwYMH48svv0TNmjXTH7e2tsbXX3+tpkYVtpCQELi4uGTZJvejoqIQFxeH+/fvIyUlJcd9AgICcj1uQkKCalpyPG0AJe1p076mLl6b8o/ny7DwfBkOnqvicb6crU3xQgN31WITk3Hg6j3suBCOnRfCEPogAZv9Q1UTtcrZom1VJ7Sp5ogabrYwNuaq30WBf1uGJUnH5ys/r5vvwMLf3x9z585Fv379VAJ1bnkYUpbWUHz22WeYNm3aI9s3b94MKysr6MqWLVt09tqUfzxfhoXny3DwXBW/89XcDGhWA7gZC5y7b4Rz940RFG2EMzejVPtmxxXYmqXBt0waapRJQzW7NFhwxlSh49+WYdmio/MVGxtbNIGFRCwyzalp06a5BhXqoKam8PPzQ2GTfA6ZbpWZ3Le1tUWpUqVgYmKiWk77yHNzM2nSJJXwnXnEQsrodurUSR37aZPPWX55OnbsCDMzs6f++pQ/PF+GhefLcPBclazzFfYgAbsuhWPHhTDsu3wXUYkpOHjHCAfvAGYmRmhaoayaTiVN8jToyfFvy7Ak6fh8aWfyFHpgIW/mzz//xAcffABdkKTwDRs2ZNkmH7RsF+bm5mjQoAG2bduGPn36qG2pqanqvpTIzY0ESTkFSvJ+dfkHp+vXp/zh+TIsPF+Gg+eqZJwv97JmGNCkNAY0KY+E5BQcDrynkr+3BYQi+F4c9ly+q9pH6wNQ1aU02vm4oH11Z9TztIcp18x4IvzbMixmOjpf+XnNfE+Fkgt2WW9CSs4WVHR0tEr2zlxOVsrIli1bFl5eXmokQdbN+OWXX9Tjr776qkoSf/fddzFixAhs375draEhVZ+0ZORBFu5r2LAhGjdujNmzZ6uyttoqUURERKTfLExN0KqKk2of9vTFlbDoh0HGHRwLuo+LodGqLdh1BfZWZmhT1UlVmfKr4gQ7K14oE+lKvgOLKlWq4KOPPsK+ffvU6IAka2cma1nk1dGjR9WaFFra6UgSGMjCd7dv38b169fTH5dSsxJESFAzZ84ctQL4jz/+mF5qVjz//PMICwvDlClTVLJ33bp1sXHjxkcSuomIiEj/yQK6lZ1tVHvFrxIiYhOx62IYtgfcUQngEbFJWHvylmpSkaqhdxk1kiEjGpWcrNXziUhPA4tFixbB3t5elXWVlpn88eYnsGjTps1jF8rJaVVtec6JEycee1yZ9vS4qU9ERERkmOytzNG7bjnVklNScfx6hJoutf38HVy6E41DgfdU+3RDALwdrNDOxxntfVzQuEJZVe6WiPQosJDpSkRERES6JrkVEjBIm9S1Oq7fjdUszBdwB4eu3kPQ3Vgs3ndNtdIWpmhVxVEFGm19nOFYOvciNESkg5W3iYiIiPSFl4MVhrWooFp0QjL2XgpXgcb2gDCERyfg37MhqsnsqDoe9g9XAHeGr5stp0wR6SqwuHHjBv7++2+V/yCrXWc2c+bMwugXERER0ROTEYouNV1VS01Nw5mbkWokQwKNszejcDI4QrUZWy7C1dZSBRgSaDSv5IhS5lw0g+ipBBZSurVXr16oWLGiWs1aVt2+du2aypWoX7/+E3WCiIiIqKjICt51PO1VG9+xKkKj4rEj4A62nr+DfZfDERIVj2WHrqtmYWqMFpU1U6akudtzzQyiIgsspATshAkT1ErVNjY2al0LZ2dnvPjii+jSpUt+D0dERET0VLnYWuKFxl6qxSel4MDVuyrQkJK2NyPiVMUpacLH1SY9yKjLNTOICjewOH/+PH7//XfNk01NERcXh9KlS6sStL1798bo0aPze0giIiIinbA0M0Hbas6qTeuVptbH0FaZOn79PgJCHqj27U7NmhmtqzipIMOvqhPKWJvruvtEhh1YyLoV2rwKNzc3XLlyBTVq1FD3w8PDC7+HRERERE+BJHBXc7VRbUybyrgXI2tmyOhFGHZduKPWzPj71C3VjI2gRjC0VaaYAE70BIFF06ZNsXfvXlSvXh3dunXD22+/jTNnzmD16tXqMSIiIqLioKy1OfrW81BN1sw4ERyhpkjJtCkZxZA1NKR9vfkiXGwtNCMfPs5oWdkR1hYsvEklT75/66XqU3R0tLoteRZye8WKFWpFblaEIiIiouJIcisalS+r2ntdfHArIg47LmiCjH2X7yI0KgHLjwSrZv5wfQ0JMmREo4Kjta67T6SfgYVUg8o8LWrBggWF3SciIiIivSbVol5s4q2aJIDLat8SZMiIxvV7sdh7OVy16ev8VWDRppomN0MCDgtTlrOl4umJx+kkz+LOnTtITU3Nst3Ly6sw+kVERERkMAngkswt7cOevrgaHpMeZBwOvIfA8BjVZAVwK3MTNVVKRjNk6pSrnaWuu0+ku8Di4sWLGDlyJPbv359lu6xjIUlLKSkphdc7IiIiIgMi10KVnEqr9lKringQn6TWylC5GRfCEPYgAZv9Q1UTkvTd1kczmlHXswxMJCucqKQEFsOHD1dlZtetW6eqQrECAhEREVHObCzN0KWmm2qyArj/7aj0dTJO3YhQ96XN33EFZazM1KiHjGbIT3srlrOlYh5YnDx5EseOHYOPj0/R9IiIiIiomK4AXrOcnWpvtK+Cu9EJ2HUxTAUZuy+G4X5sEtaevKWaDFzU9yqTPmWqupsNv8yl4hdY+Pr6cr0KIiIiogJyKG2BfvU9VJNytlK6VlvO9kLoAxwNuq/aV5suwM3OEm3UQn5OaMFytqSn8v1b+cUXX+Ddd9/Fp59+ilq1asHMzCzL47a2toXZPyIiIqISUc5WKkZJm9jVBzelnO3DIGPflXDcjozH74evqyblbJtULKtZnK+aM8qznC0ZamDRoUMH9bN9+/ZZtjN5m4iIiKhwlLMvhUFNvVWTcrYHr97VVJq6cAfB9+Kw51K4atP+8UdFR+v0NTNknQ1zU2Ndd59KqHwHFjt27CianhARERFRjuVsZRqUtKlpabgSllHO9si1e6q87dW9gVi0NxDWUs62iqMKMmR/F1uWsyU9Diz8/PyKpidERERE9FgyO6Syc2nVRrXWlLPdeymjnG14dAI2nQtVTdRwt9VMmfJxRh0Pe5azJd0HFqdPn0bNmjVhbGysbj9O7dq1C6tvRERERPQf5Wy71nJTTcrZnrv1sJzthTs4fSNC3Zc2d/tllLU2V2VsW1cui7gkXfecSmxgUbduXYSEhMDZ2VndlmhZciqyY44FERERke7K2dbysFPtzQ5V1OjFrgthKsiQcrb3YhKx5sRN1Yxggj9CD6FNNRf4VXNCrXJ2HM2gpxNYBAYGwsnJKf02EREREek3x9IWeKaBh2pSzvZY0H0VZGw/H4pLd2JwIjhStVlbL8LeygytqjihdRVHNarhzNwMKqrAwtvbO8fbRERERGQY5WybVHRQbUKHyli6ZgPMPGtj39V7qrpURGwS/jl1SzXh42qjRjIkyGjozUpTVETJ23fv3oWDg4O6HRwcjB9++AFxcXHo1asXWrVqld/DEREREdFTVsYC6NbQAy82q6BGM04GR6jpUrIS+OmbkQgIeaDa97uuwsrcBM0rOaB1VU2g4e3AdTOogIHFmTNn0LNnTxVMVKlSBcuXL0eXLl0QExOjkrpnzZqFVatWoU+fPnk9JBERERHpwWhGw/JlVRvfqZrKxdhzSRNk7L4YrnI1tp6/o5oo72CVHmQ0rejAVcApXZ5/E2S1bVlpe+nSpfj111/Ro0cPdO/eXY1YiLFjx+Lzzz9nYEFERERkwKR6VO+65VSTSlPnQ6JUgLHr4h0cvXYf1+7G4tqBIPxyIAhmJkZqUT5Vbaqqk5pCJcV8qGTKc2Bx5MgRbN++XZWTrVOnDhYuXIgxY8ao0QptYNG0adOi7CsRERERPeVKUzXc7VQb3aYSohOSceDKXRVkyIiGrAK+/8pd1T77NwAuthYqCVwCjZaVHVHG2lzXb4H0MbC4d+8eXF1d1e3SpUvD2toaZcqUSX9cbj948KBoeklEREREOlfawhQdfV1Uk6UHZPRil5SzvRSuAo7QqASsOnZDNRm4kEX5tKMZdT25QF9xl69JcdmHtjjURURERFQyyXVgBUdrVHCsgGEtKiAhOUVNlZKRDFk/40LoA5UULm3OtkuwK2WGllLOVsraVnWCqx1L2pbowGLYsGGwsLBQt+Pj4/Hqq6+qkQuRkJBQND0kIiIiIr1nYWqCFpUdVftft+q4HRmHPSo3I0wlg0fGJWH96duqiWoumpK2ras4oVGFMur5VEICi6FDh2a5P2jQoEf2GTJkSOH0ioiIiIgMmptdKfRv5KmalLQ9dSMyvaTtqRsRakRD2sLdV1HKzATNpKStjGhUc1aVpzgzphgHFosXLy7anhARERFRsS1p28C7jGpvdayK+zGJ2HtZM5ohLexBArYH3FEN//jDq6yUtJVVwJ1VwCG5HaT/eJaIiIiI6KmSalE967irJkngshifZt2MMBy5dg/X78Xit4PXVZOSthKQaNfO8HWz5WiGnmJgQUREREQ6I0FCdTdb1V71q4SYhGQcvHo3fTQj6G4sDl69p9qXGy/AyUZK2spohpMqbSvrbpB+YGBBRERERHpDVvJuX91FNXEtPAa7L2lGM2S9DJk2tfr4TdVk4KJ2ObssJW1l2hXpBgMLIiIiItJb5R2tVRvSrLwqaXtMStpe0pS0lSlUkhQu7Zvtl2FlbqKCi/pemnyOel72sLfiiMbTwsCCiIiIiAyClKRtXtlRtUldqyM0Kj690pQkg0fEJqWvBK5V2bk0GniVQX1vexVsVHQsrVYUp8LHwIKIiIiIDJKLrSWea+ipWmpqGi7dicaxoPs4fv0+jgfdx9XwGFy+E63aiqPB6jmyUF99r4xRjTqe9mr6FRUcP0UiIiIiMngyClHN1Ua1gU281La70Qk4cT0Cxx4GGrJ+hizUt+NCmGrqeUZQieMSZGiDDY8ypVh56gkwsCAiIiKiYsmhtAU6+LqoJpJSUnH+dpQa1ZAmQcfNiDicuxWl2i8HgtR+Unkq8/SpGu52sDTjyuD/hYEFEREREZUIZibGqO1hr9rwFhXUttuRcTgeFKEJNq7fh/+tSFV5auO5ENWEuYkxapbLOqrhbGup43ejfxhYEBEREVGJ5WZXCt1rS3NT9+OTUnDmZmT6qIZMobobk4jj1yNUAwLVfjJdKnOg4eNqU+JL3TKwICIiIiJ6SKY8NSpfVjUhK4PLSuDaQEPahdAHuHE/TrW/Tt5S+5Uy05S6VcGGtyY5vKSVumVgQURERESUC0ni9nawVq1ffQ+17UF8Ek4FPxzVuH4fJ4Lu40FCMg5cvauaViUn6yyjGpWcinepWwYWRERERET5YGNphpZVHFUTUur2clh0lulTUur2SpimrTx6Q+1na2mK+pkCDSl1W7oYlbotPu+EiIiIiEgHZBSiqouNagMaa0rd3otJxInrGdOnpNRtVHwydl4IU009zwjwcX2YFC4VqLzKwrOs4Za6ZWBBRERERFTIylqbo311F9Uyl7qV0YxjkggedF+VuvW/HaXarwc1pW4dS1ugwcMcDZUU7mwFQ8HAgoiIiIjoKZa6HdZCsy0kMl6tEq4d1Th3KxLh0QnYdC5UNc3zjFDZxhjdukHvMbAgIiIiItIBVztLdKvlplrmUrfHtbka1+8jPDoRhoKBBRERERGRnpa6vXInClu27YQhKNmreBARERER6XOp27JWcLeGQWBgQUREREREBcbAgoiIiIiICoyBBRERERERFRgDCyIiIiIiKh6Bxfz581G+fHlYWlqiSZMmOHz4cK77JiUl4aOPPkKlSpXU/nXq1MHGjRuz7DN16lSV7JK5+fj4PIV3QkRERERUMuk8sFixYgXGjx+PDz/8EMePH1eBQufOnXHnzp0c9588eTK+//57zJ07F/7+/nj11VfRt29fnDhxIst+NWrUwO3bt9Pb3r17n9I7IiIiIiIqeXQeWMycOROjRo3C8OHD4evriwULFsDKygo//fRTjvv/+uuv+N///odu3bqhYsWKGD16tLo9Y8aMLPuZmprC1dU1vTk6Oj6ld0REREREVPLoNLBITEzEsWPH0KFDh4wOGRur+wcOHMjxOQkJCWoKVGalSpV6ZETi0qVLcHd3V8HHiy++iOvXrxfRuyAiIiIiIp2uvB0eHo6UlBS4uLhk2S73AwICcnyOTJOSUY7WrVurPItt27Zh9erV6jhakqexZMkSVKtWTU2DmjZtGlq1aoWzZ8/CxsYmx2BFmlZUVFR6Poe0p037mrp4bco/ni/DwvNlOHiuDAvPl+HguTIsSTo+X/l5XaM0WStcR27duoVy5cph//79aNasWfr2d999F7t27cKhQ4ceeU5YWJiaOvXPP/+opGwJLmSEQ6ZOxcXF5fg6ERER8Pb2VgHJyJEjH3lckr0l+Mhu2bJlaloWEREREVFJFBsbi4EDByIyMhK2trb6O2IheQ8mJiYIDQ3Nsl3uS15ETpycnLB27VrEx8fj7t27arrTxIkT1ZSn3Njb26Nq1aq4fPlyjo9PmjRJJZBnHrHw9PREp06d/vMDLKrIcMuWLejYsSPMzMye+utT/vB8GRaeL8PBc2VYeL4MB8+VYUnS8fnSzuTJC50GFubm5mjQoIGaztSnTx+1LTU1Vd1//fXXH/tcybOQ0Q75sP/880/0798/132jo6Nx5coVDB48OMfHLSwsVMtOTp4u/+B0/fqUPzxfhoXny3DwXBkWni/DwXNlWMx0dL7y85o6rwolIwU//PADfv75Z5w/f15VeYqJiVFVosSQIUPUiIKWTI+SnIqrV69iz5496NKliwpGZPqU1oQJE9RUqmvXrqlpVlKOVkZGBgwYoJP3SERERERU3Ol0xEI8//zzKm9iypQpCAkJQd26ddWCd9qEbqnmJJWitGQKlKxlIYFF6dKlValZKUEr0520bty4oYIImSolU6datmyJgwcPqttERERERFQMAwsh055ym/q0c+fOLPf9/PzUwniPs3z58kLtHxERERER6flUKCIiIiIiMnwMLIiIiIiIqMAYWBARERERUYExsCAiIiIiogJjYEFERERERAXGwIKIiIiIiAqMgQURERERERUYAwsiIiIiIiowBhZERERERFRgDCyIiIiIiKjAGFgQEREREVGBMbAgIiIiIqICY2BBREREREQFxsCCiIiIiIgKjIEFEREREREVGAMLIiIiIiIqMAYWRERERERUYAwsiIiIiIiowBhYEBERERFRgTGwICIiIiKiAmNgQUREREREBcbAgoiIiIiICoyBBRERERERFRgDCyIiIiIiKjAGFkREREREVGAMLIiIiIiIqMAYWBARERERUYExsCAiIiIiogJjYEFERERERAXGwIKIiIiIiAqMgQURERERERUYAwsiIiIiIiowBhZERERERFRgpgU/BBERUSFJjAVCzwK3TsLk5jE0DTwHk98XA0ZGgN97gFdTzX5XdwF7ZgBI09xPe/hTq9V4oFI7ze2gA8C2j3LY9+HPFm8CPt01t28eAza8m/u+TV8Daj+nuR1yBvjrtYf7aPfPtG+jl4CGwzW3wy8BK4dkHM+qLFCmvKbZewPu9QCnqoX1KRIR6QQDCyIi0o2kOM1Ps1Kanyd+A/5+A0hLSR9Sd5EbDx7u33BExnOj7wCBu3I/dr3BGbfj7gHX9+e+rxxLKz4KuHk0931j7mQNgm6fesy+4Rm3k+OBO/5ZHw/al3G75VtAh6ma2w9CgH/ezAg8tMFHGW/A3Dr31yMi0jEGFkREVPSS4h+ORJxQoxG4fRK4cx7ouwCo3V+zj1xAS1Bh7ay+wU9xqYVT1yNRu249mJqYAm51M47n2Rh4ZlHW15BRDc0NoFyDjO3u9YHnfn50H+1911oZ+8rtF37PfV/HTKMKMsLw4p9Zdsmyb5kKGfvKexvyd8b9mDDgfiBw/xpwPwhwqZnx2N0rwMWNOX+O8tm0fgdo8rLmfsIDTXAjgYetO2BskvPziIieAgYWRERUdG6fBtaOAcLOA6nJjz4uwYWWRyNg/HnAxk1dmKcmJSF4wwbUqtUNMDPL+jz59l5aXti6ATX65G1fa0fAp1ve9i1VBqjSIW/7WtgAFf3ytm/ZCkCPWQ+DjoeBh/yMj9CMmEiQpSXTsZY8nMZlbAbYez0c5ZDPpzxQqT3gmiloISIqQgwsiIjoySUnpOdEqFEIGZHw7QO0npBxoR56RnPbyhFwr6vJJ3B7+FO+Zdcytch6v6SSzyDztC+tuPuaICPzZyRTrMpWBCKuA6lJwL0rmqZlXjojsLhxDFg/PusUK20AYucJmGQL3oiI8omBBRER5U98JLB5siaYkBEHuaDNzNYj47aMPsjUIpliZOeRaXoR5ZuMkEjLTBLU3zgBpKYAUTczRje0za1Oxr53L2mCP2nZGRkDvecDdQdq7kfeAK4f1EznksBDks157ojoPzCwICKiRyUnAnfOaYIHGYWQAKHtpIxvwc+sApJiNfdLlc06ElGufsZx5GI0r1OL6MlJboVMg5JWoVXO+1RsA7ywLOv0KmkRQZqRD8nf0AraD6welXFfznnmkQ4JQFxqFP37IiKDwsCCiIgyqjLdOKoJJKSCUUpixmOO1TICC7mI7fSxZpqTBBMyjYbfZus/G9eMsrqZpaZqcjcsbDO2SfUpr+aaoENGQhKjNVPepGmDFG1gIUHm5skwsfNC4weJMPnrb8DSVpNXYm4D1HpGM11LPAjVTNuyKK0JVmQfaUw6JyoWGFgQEZUkKUma6UsyHSb2rqbMqdb+eZokay1L+4yRCKmslFmjkU+vz1S0jI01QUdmEoBogxCp6BUZnHWKlXP1jH3vBQIPbsP4wW24yf3IE1mP5dEwI7C4sAFYN+7RPphZaQKNPt9lJMTLqMmRRQ+DDwlEbDJuy0+PxoBduYw+ygiabGeuCJHOMLAgIirOwi4AwYc1oxASTIScBVISNI+ZWgLNxmZUGao7AIi9pwkmZEqTTHnhSASZWQKOVTQtJ41HAZXbITn8Ks4e3YdaVcvDJDkWSIgGEh9opmdlTtCX0rgyAiKPa38XJSiQJkGOVvhF4Oyq3PslJYS1gYUELKuGZ/xeq9GQhwGIBCRSTKBye83jYReBc6sf3Ud7W0bgStkX8EMjegKygKZ8+ZMcpymMIWv9yDTFtEx/F3qOgQURUXGQkgyEBWimqtR+PiMg2DoNuLA+674WdoB7HU3wIBdzJrYZK1AT5ZdchJdrgDTn2gi6Zo4aTbvBJHt5YC3JzdAmiGtzeVSQEaUJNDKXEJbyw50/1azVIU3tJ7cf/sxcHUub76OOGa9psZkWKJTja0nu0M7Pcn8/veYC9Ydobl/ZAfwxTJPcnhOZEljvRc3ta/s0q6vnpu3/Mkb6bh4Hlj2f9fHMQbz8LTZ77WF/A4Bfeue+rwR2rd7W3JbcmcVdc+9D3ReBdu+rm2bJ0TD9rokmEDM1B0wsMv200Ex3k2Nrz9P2jzIeMzHX/FS3LTQjUt7NMl5HRpuyHC/TcWVBTO2imPp8gS/lseXCXtbWyVw0QdaNkQIW6Rf+CRmBgJlVxu+D2PmFZjph5v2SHv5+yt/N4DUZ+/7UFbh+QF78ke6YVGwL2D0MnPUcAwsiIkMTfAQI2gtEBGumqMhPWWxN/rES5VtqKjCp2y00F1WZk6ul0k/mb4aJdEUuOE3LaqpOZSc5HHlNEK83SBNQZw8+Eh/eliBFS0ZQGgzPGDVJ3+/hvpkvIuUCUtYPyY12xEVIdbTMwUxuK82rfZOzruKeXWJM1n2jQ3LfV/qtJRfBkhOTG3k/D5mkJsIoc2ni7DKfEwnc9s/Nfd+az2QEFvIlx+OCm6pdgYHLM+5/VVnzUwIcbcCi/amCy08y9l03XvM5a4MUbWAjv0cy0lTr2Yx9933zMAB4eCGvvaCXJqOxmY+7qLPm/6Xp+0lAkap5zKUWMHpvxr4SaN67mvN7K1M+a2AR8I9mrZmcWDvlsDFbUGFa6mEwZgVDwcCCiEgfyDeCckGgDRTSf17X/BzyV8a3ubIq856vHz2GTOeQ8qLxUYDdw23yraf2m0+i4kxyK3IqyZudrMqeeWX2x6ncAXjtSI7fIiulM1XSKtcQGHMw67feWfZ1ybgtAdPo/Y/ZN9NxHSoBr+zJvY+ZL1BtywEv73rMvo7pNxNNSyN58D8wRbLm/z8SJKX/TMg69U0+2+Zjsz4uTQo8yE/X2hn7yoW/Q+Ws+6r9ZEpPatYcGHnfsgp9bmRqWmanlgNJmYKuzLyaZQss5uQe6MkXLJk9uJ17QCZBRmZlK2kWo5QpgukX/g9/2qgsowyNX9bksmXfT+5LgYTMnlui+andT4KrhyNTKUlJwIYNMAQMLIiIngb5BjI9YLiu+dl0TMYFxK4vcg4WtOQ52sBCvsWTb2flGzp7T81PVQaUIxFEhUryLpyq5n3fzEntjyMXlXkdjZGLTLdMF+6PIxelMjqZB6nG5kiTi/Hcpq1l769M+8prf8cey/kxGc2QUZXMXj/6MPjIHNg8/Gnl8Oh0Mhn5yRKwPPypLRCgJSMHMvqgAoBMTe5nDvJE/180wWP2/UwfXuBnNugxeT/ZaafU5YVNtj4ZKAYWREQFJd+6yarIcvEv39TJBYY4vRI4ME8TUMTdy/nbUG1gIVOXZEhfGyhof2pvZ/5GsFoXTSMiMiSqUESmS0/5Rj63ogA5af563vft+FHe981jMEb/jYEFEVF+yHzZS1senbKkHZ4ftl6T46AdpZBEPy1ZJyBz0JD52ziZI95AkkRZhYmIiAwTAwsiIpXfcCNbbkOmKUt9FmQkJt44Amyblvtc58xJl1Le8oXfMwKJx5WwZO19IiIycAwsiKj4T1OStRkkMS/qFozvX0f1W7uA8MqA28M5zid/A9ZlWiguO1kQTBtYuNZ5NL9BqszIVKbsJRRle+Ya/kRERMUYAws9ZZoco6nsImX4ODWCKGepKUB0KBD1sKKHlFOVi31x4V9g40TNY5lKQppItUMZpLjdLSOwsPPSJOtJcJAeMHhlBA6ZEzI9GgAeC5/2OyUiItJ7DCz0VLWQv2A2Y7TmYsfaWZPgqW1yv8mrgPXD+dlSp1kW75FVRBmEUHEhlT6kBKClfcYUIlm/4cBcNfKg2oOQrBVGZMqSrB4tpBygjDRknqZk647U0q64dj8FXlJBSatSW+D9EP79EBERFQADCz1llvJwFVGp+yx17KVl1nBE1pUdD87XLKAiF08qAHHJuC1BiHahGwlCjE0frZ9M9LSnJ2kv4u9eAc6teRgoPBx5kNva2uaZgwX5/fX/K+uxjEw0tcNlFd7Mv9cysjB8I2DrpnlcyjA+rAd+ZsMGeGZeMMtYxjGIiIioIBhY6KmT3i/B/aXfYJZwH4gO00z3kFU6ox+2TIvcpK8KKitjytLx0nINQj4HDn4LmFkDpZ0yBSAumiBEFnNJD0KiHgYhhrPiI+kJyWm4eexhkJApWFDBwy2gyxcZwcK9QGD79JyPI+VXZXVcLdeaQNcvNUGENBt3ze9tToGBLJKlzYsgIiKikhFYzJ8/H1999RVCQkJQp04dzJ07F40bN85x36SkJHz22Wf4+eefcfPmTVSrVg1ffPEFunTp8sTH1FsyAmFlp1n46nH6fKu52FKBR9jDn6EZAYlVpiBEau0LKY15PybrVBHRYHjG7Z2faYIQmWKlnYKVHoxIEDIqaxAiVW2yJ69S8ZGaqhlFkMBAGyRkDhhkZKx6D82+t44DSzOtgJpd5hVOHSsDdV/MCBZk5Vht0CC/X5mnJ9m4Ak1eKcI3SURERAYbWKxYsQLjx4/HggUL0KRJE8yePRudO3fGhQsX4OycaUn7hyZPnozffvsNP/zwA3x8fLBp0yb07dsX+/fvR7169Z7omMWCLMglLfvKk9n1+Q7o9pVm1EMuElUA8nAURAKSzHX1ZRl6Id8Y35N2NeuxpOa+1o5PgUPfaer0pwchmXJCGr+k+QZZSDATc1ezQrDkhshUFvkp3zrLbVldWFt6My5Cs8pm+uPa5zy8L6tiFqeVhmWKUGqypkmOgFpMSALBOM35UI+laH6mJGXcl8pDEvSJmHDNaIH2ONp9tPvLFCAXX82+Ulb1zMqMY2bf37dXxpoMV3cAv/XLve8V/TICC0l8dqn1MFBwywgWtIGDJElrSeAswTEREREZNJ0HFjNnzsSoUaMwfLjmm3IJBtavX4+ffvoJEydOfGT/X3/9Fe+//z66deum7o8ePRpbt27FjBkzVMDxJMcsUeTbXwsbTXOo9Ph9+37/MAjJNgqinZKVUxCSEKVpdy9nPVaDoRm3984Cji3J/XXfOpdx4bnrS03+SG5eP5qxauf2j4HdX2cLQrRBi7Fm4TLXWpp9Dy0E9s3JeCzzvtL6LshYifPsas3ITfbjPbxt1DrT71TABmD/XCBVe9GfKRCQ1n2mJlFYe9x/xmXaLwlIS8041jOLgFoPv/WXBdlWDs79c+j5TcZnfPsksKx/7vt2+TwjsJA1GrY9ZnVSCVa0gYUEBDDSjBpknoqkDRakIpOWU1Vg9N7cj0tERETFjk4Di8TERBw7dgyTJk1K32ZsbIwOHTrgwIEDOT4nISEBlpaWWbaVKlUKe/fuLdAxpWlFRUWlT7uS9rRpX1MXr/0IEyvAzlvTskuVb9cf9rHnfKDTZyroMHo4GmL0cGqW/Ewxs5U3pHY1trCDsZTwlAtuuZBOb5r7ySmpGfumpcJYLuDTUmGEtEe6kJSSkrFvchJMZB85jmzPvq/sp9039j5MZEG0XCTHRyNNu2/EDZjIomi57Vv/pfTjG0WFwPT6/tz3jY1IP65RciJMEyJz3zcpIWPfNCOYSL6B5LxI0KR+am+bIcXYPGNfUxsYu9XLYV/N/dTS7un7wtIBJrUHIk1GRrIc01QOhDTX+hn72lcAJt56/EJu+vA7a0h/X/RYPFeGhefLcPBcGZYkHZ+v/LyuUVqazL3QjVu3bqFcuXJqGlOzZhlJlu+++y527dqFQ4cOPfKcgQMH4tSpU1i7di0qVaqEbdu2oXfv3khJSVHBwZMcc+rUqZg27dGVdJctWwYrKyYu6w31q5oGIxVkpMovL1JkupCMIEgMlBIP09QE9Zg2EDHK9DPW3AGpxuZqX4ukCFgm3c/yuObYaer5EaW8kWyqqTBklRAK27gbD4+b9shxw2xrIN5MM83LKiEMdnHXkAZjpBmZINXIRP1MMzJGKkwQbemKJFMbta9pShwskiIf7qfZX/s82V8FCxJUEREREelIbGysuv6OjIyEra2tfk+Fyq85c+aoaU6SX2FkZKSCC5nyJNOcnpSMbkhORuYRC09PT3Tq1Ok/P8Ciigy3bNmCjh07wszsMd8Ok17g+TIsPF+Gg+fKsPB8GQ6eK8OSpOPzpZ3Jkxc6DSwcHR1hYmKC0NDQLNvlvqura47PcXJyUqMV8fHxuHv3Ltzd3VXeRMWKFZ/4mBYWFqplJydPl39wun59yh+eL8PC82U4eK4MC8+X4eC5MixmOjpf+XlNnZbTMTc3R4MGDdR0Jq3U1FR1P/M0ppxInoVMeUpOTsaff/6ppkMV9JhERERERPRkdD4VSqYgDR06FA0bNlTrTEhp2JiYmPSKTkOGDFEBhKxdISRHQtavqFu3rvop+RESOEgORV6PSURERERExSyweP755xEWFoYpU6aoxewkYNi4cSNcXFzU49evX1dVnbRkCpSsZXH16lWULl1alZ2VErT29vZ5PiYRERERERWzwEK8/vrrquVk586dWe77+fnB39+/QMckIiIiIqLCVYyWLCYiIiIiIl1hYEFERERERAXGwIKIiIiIiAqMgQURERERERUYAwsiIiIiIiowBhZERERERFRgDCyIiIiIiKjAGFgQEREREVGBMbAgIiIiIqICY2BBREREREQFZlrwQxQ/aWlp6mdUVJROXj8pKQmxsbHq9c3MzHTSB8o7ni/DwvNlOHiuDAvPl+HguTIsSTo+X9rrYe318eMwsMjBgwcP1E9PT09dd4WIiIiISC+uj+3s7B67j1FaXsKPEiY1NRW3bt2CjY0NjIyMdBIZSlATHBwMW1vbp/76lD88X4aF58tw8FwZFp4vw8FzZViidHy+JFSQoMLd3R3Gxo/PouCIRQ7kQ/Pw8NB1N9QvD//gDQfPl2Hh+TIcPFeGhefLcPBcGRZbHZ6v/xqp0GLyNhERERERFRgDCyIiIiIiKjAGFnrIwsICH374ofpJ+o/ny7DwfBkOnivDwvNlOHiuDIuFAZ0vJm8TEREREVGBccSCiIiIiIgKjIEFEREREREVGAMLIiIiIiIqMAYWemj+/PkoX748LC0t0aRJExw+fFjXXaIcfPbZZ2jUqJFaSNHZ2Rl9+vTBhQsXdN0tyoPPP/9cLX45btw4XXeFcnHz5k0MGjQIDg4OKFWqFGrVqoWjR4/quluUTUpKCj744ANUqFBBnadKlSph+vTpakEt0r3du3ejZ8+eamEz+X/e2rVrszwu52nKlClwc3NT569Dhw64dOmSzvpbku1+zLlKSkrCe++9p/4/aG1trfYZMmSIWsxZ3zCw0DMrVqzA+PHjVfb/8ePHUadOHXTu3Bl37tzRddcom127duG1117DwYMHsWXLFvWH36lTJ8TExOi6a/QYR44cwffff4/atWvruiuUi/v376NFixYwMzPDv//+C39/f8yYMQNlypTRddcomy+++ALfffcd5s2bh/Pnz6v7X375JebOnavrrhGg/j2S6wj5wjIncq6++eYbLFiwAIcOHVIXrXLNER8f/9T7WtLFPOZcxcbGqmtCCeLl5+rVq9UXmb169YK+YVUoPSMjFPItuPxPWqSmpqpl3MeOHYuJEyfqunv0GGFhYWrkQgKO1q1b67o7lIPo6GjUr18f3377LT7++GPUrVsXs2fP1nW3KBv5f92+ffuwZ88eXXeF/kOPHj3g4uKCRYsWpW975pln1Lffv/32m077RlnJt+Br1qxRo+tCLv/km++3334bEyZMUNsiIyPV+VyyZAleeOEFHfe45DLKdq5y+5KscePGCAoKgpeXF/QFRyz0SGJiIo4dO6aGIrWMjY3V/QMHDui0b/Tf5H/IomzZsrruCuVCRpi6d++e5W+M9M/ff/+Nhg0b4rnnnlPBer169fDDDz/ouluUg+bNm2Pbtm24ePGiun/q1Cns3bsXXbt21XXX6D8EBgYiJCQky/8P7ezs1BecvOYwjGsOIyMj2NvbQ5+Y6roDlCE8PFzNV5VvCzKT+wEBATrrF/03GVmS+foyfaNmzZq67g7lYPny5WoIWb7lIf129epVNb1GpoX+73//U+fsjTfegLm5OYYOHarr7lG20aWoqCj4+PjAxMRE/Rv2ySef4MUXX9R11+g/SFAhcrrm0D5G+ik+Pl7lXAwYMAC2trbQJwwsiArpm/CzZ8+qb+pI/wQHB+PNN99UuTBSFIH0P1CXEYtPP/1U3ZcRC/n7knngDCz0y8qVK7F06VIsW7YMNWrUwMmTJ9WXLDLFhueKqPBJPmf//v3VVDb5AkbfcCqUHnF0dFTf+ISGhmbZLvddXV111i96vNdffx3r1q3Djh074OHhoevuUA5kiqEUQJD8ClNTU9UkF0aSFuW2fMtK+kMq1Pj6+mbZVr16dVy/fl1nfaKcvfPOO2rUQubjS8WawYMH46233lJV80i/aa8reM1heEFFUFCQ+qJM30YrBAMLPSLD/A0aNFDzVTN/cyf3mzVrptO+0aPk2wIJKiTBavv27arcIumn9u3b48yZM+rbVG2Tb8RluobcloCe9IdMKcxeulnm8Ht7e+usT5QzqVYjuYCZyd+T/NtF+k3+zZIAIvM1h0xrk+pQvObQ36Di0qVL2Lp1qyrFrY84FUrPyJxiGT6Wix7J9peKNVKCbPjw4bruGuUw/UmG///66y+1loV2Tqokv0lFFNIfcn6y575IWUX5HzNzYvSPfOMtScEyFUr+IZW1fBYuXKga6Repuy85FVKVRqZCnThxAjNnzsSIESN03TV6WAnv8uXLWRK25csUKTIi50ymrUmFvCpVqqhAQ8qZyjS2x1Ujoqd/rtzc3PDss8+qPEGZISGj7NprDnlcvpjWG1JulvTL3Llz07y8vNLMzc3TGjdunHbw4EFdd4lyIH8+ObXFixfrumuUB35+fmlvvvmmrrtBufjnn3/SatasmWZhYZHm4+OTtnDhQl13iXIQFRWl/o7k3yxLS8u0ihUrpr3//vtpCQkJuu4apaWl7dixI8d/p4YOHaoeT01NTfvggw/SXFxc1N9a+/bt0y5cuKDrbpdIOx5zrgIDA3O95pDn6ROuY0FERERERAXGHAsiIiIiIiowBhZERERERFRgDCyIiIiIiKjAGFgQEREREVGBMbAgIiIiIqICY2BBREREREQFxsCCiIiIiIgKjIEFEREREREVGAMLIiIyeEZGRli7dq2uu0FEVKIxsCAiogIZNmyYurDP3rp06aLrrhER0VNk+jRfjIiIiicJIhYvXpxlm4WFhc76Q0RETx9HLIiIqMAkiHB1dc3SypQpox6T0YvvvvsOXbt2RalSpVCxYkWsWrUqy/PPnDmDdu3aqccdHBzw8ssvIzo6Oss+P/30E2rUqKFey83NDa+//nqWx8PDw9G3b19YWVmhSpUq+Pvvv9Mfu3//Pl588UU4OTmp15DHswdCRERUMAwsiIioyH3wwQd45plncOrUKXWB/8ILL+D8+fPqsZiYGHTu3FkFIkeOHMEff/yBrVu3ZgkcJDB57bXXVMAhQYgEDZUrV87yGtOmTUP//v1x+vRpdOvWTb3OvXv30l/f398f//77r3pdOZ6jo+NT/hSIiIo3o7S0tDRdd4KIiAw7x+K3336DpaVllu3/+9//VJMRi1dffVVdzGs1bdoU9evXx7fffosffvgB7733HoKDg2Ftba0e37BhA3r27Ilbt27BxcUF5cqVw/Dhw/Hxxx/n2Ad5jcmTJ2P69OnpwUrp0qVVICHTtHr16qUCCRn1ICKiosEcCyIiKrC2bdtmCRxE2bJl0283a9Ysy2Ny/+TJk+q2jCDUqVMnPagQLVq0QGpqKi5cuKCCBgkw2rdv/9g+1K5dO/22HMvW1hZ37txR90ePHq1GTI4fP45OnTqhT58+aN68eQHfNRERZcbAgoiICkwu5LNPTSoskhORF2ZmZlnuS0AiwYmQ/I6goCA1ErJlyxYVpMjUqq+//rpI+kxEVBIxx4KIiIrcwYMHH7lfvXp1dVt+Su6FTF/S2rdvH4yNjVGtWjXY2NigfPny2LZtW4H6IInbQ4cOVdO2Zs+ejYULFxboeERElBVHLIiIqMASEhIQEhKSZZupqWl6grQkZDds2BAtW7bE0qVLcfjwYSxatEg9JknWH374obronzp1KsLCwjB27FgMHjxY5VcI2S55Gs7Ozmr04cGDByr4kP3yYsqUKWjQoIGqKiV9XbduXXpgQ0REhYOBBRERFdjGjRtVCdjMZLQhICAgvWLT8uXLMWbMGLXf77//Dl9fX/WYlIfdtGkT3nzzTTRq1Ejdl3yImTNnph9Lgo74+HjMmjULEyZMUAHLs88+m+f+mZubY9KkSbh27ZqaWtWqVSvVHyIiKjysCkVEREVKch3WrFmjEqaJiKj4Yo4FEREREREVGAMLIiIiIiIqMOZYEBFRkeKMWyKikoEjFkREREREVGAMLIiIiIiIqMAYWBARERERUYExsCAiIiIiogJjYEFERERERAXGwIKIiIiIiAqMgQURERERERUYAwsiIiIiIiowBhZERERERISC+j8CvdfZ/TsbRQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -515,7 +516,7 @@ ], "metadata": { "kernelspec": { - "display_name": ".venv", + "display_name": "studies", "language": "python", "name": "python3" }, @@ -529,7 +530,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.9" + "version": "3.13.3" } }, "nbformat": 4, diff --git a/pyproject.toml b/pyproject.toml index 8c3c3fc..1a5b098 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -12,6 +12,7 @@ dependencies = [ "pandas>=2.2.3", "scikit-learn>=1.6.1", "scipy>=1.15.2", + "tensorflow>=2.20.0", ] [dependency-groups] @@ -20,6 +21,9 @@ dev = [ "uv>=0.6.16", ] +[tool.ty.rules] +index-out-of-bounds = "ignore" + [tool.ruff] extend-include = ["*.ipynb"] line-length = 88 diff --git a/uv.lock b/uv.lock index 2bab7b7..ec5b5f5 100644 --- a/uv.lock +++ b/uv.lock @@ -2,14 +2,23 @@ version = 1 revision = 3 requires-python = ">=3.12" resolution-markers = [ - "sys_platform == 'darwin'", - "platform_machine == 'aarch64' and sys_platform == 'linux'", - "(platform_machine != 'aarch64' and sys_platform == 'linux') or (sys_platform != 'darwin' and sys_platform != 'linux')", + "python_full_version >= '3.13' and sys_platform == 'darwin'", "python_full_version < '3.13' and sys_platform == 'darwin'", + "python_full_version >= '3.13' and platform_machine == 'aarch64' and sys_platform == 'linux'", "python_full_version < '3.13' and platform_machine == 'aarch64' and sys_platform == 'linux'", + "(python_full_version >= '3.13' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version >= '3.13' and sys_platform != 'darwin' and sys_platform != 'linux')", "(python_full_version < '3.13' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version < '3.13' and sys_platform != 'darwin' and sys_platform != 'linux')", ] +[[package]] +name = "absl-py" +version = "2.3.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/10/2a/c93173ffa1b39c1d0395b7e842bbdc62e556ca9d8d3b5572926f3e4ca752/absl_py-2.3.1.tar.gz", hash = "sha256:a97820526f7fbfd2ec1bce83f3f25e3a14840dac0d8e02a0b71cd75db3f77fc9", size = 116588, upload-time = "2025-07-03T09:31:44.05Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/8f/aa/ba0014cc4659328dc818a28827be78e6d97312ab0cb98105a770924dc11e/absl_py-2.3.1-py3-none-any.whl", hash = "sha256:eeecf07f0c2a93ace0772c92e596ace6d3d3996c042b2128459aaae2a76de11d", size = 135811, upload-time = "2025-07-03T09:31:42.253Z" }, +] + [[package]] name = "appnope" version = "0.1.4" @@ -28,6 +37,28 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/25/8a/c46dcc25341b5bce5472c718902eb3d38600a903b14fa6aeecef3f21a46f/asttokens-3.0.0-py3-none-any.whl", hash = "sha256:e3078351a059199dd5138cb1c706e6430c05eff2ff136af5eb4790f9d28932e2", size = 26918, upload-time = "2024-11-30T04:30:10.946Z" }, ] +[[package]] +name = "astunparse" +version = "1.6.3" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "six" }, + { name = "wheel" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/f3/af/4182184d3c338792894f34a62672919db7ca008c89abee9b564dd34d8029/astunparse-1.6.3.tar.gz", hash = "sha256:5ad93a8456f0d084c3456d059fd9a92cce667963232cbf763eac3bc5b7940872", size = 18290, upload-time = "2019-12-22T18:12:13.129Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/2b/03/13dde6512ad7b4557eb792fbcf0c653af6076b81e5941d36ec61f7ce6028/astunparse-1.6.3-py2.py3-none-any.whl", hash = "sha256:c2652417f2c8b5bb325c885ae329bdf3f86424075c4fd1a128674bc6fba4b8e8", size = 12732, upload-time = "2019-12-22T18:12:11.297Z" }, +] + +[[package]] +name = "certifi" +version = "2025.8.3" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/dc/67/960ebe6bf230a96cda2e0abcf73af550ec4f090005363542f0765df162e0/certifi-2025.8.3.tar.gz", hash = "sha256:e564105f78ded564e3ae7c923924435e1daa7463faeab5bb932bc53ffae63407", size = 162386, upload-time = "2025-08-03T03:07:47.08Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e5/48/1549795ba7742c948d2ad169c1c8cdbae65bc450d6cd753d124b17c8cd32/certifi-2025.8.3-py3-none-any.whl", hash = "sha256:f6c12493cfb1b06ba2ff328595af9350c65d6644968e5d3a2ffd78699af217a5", size = 161216, upload-time = "2025-08-03T03:07:45.777Z" }, +] + [[package]] name = "cffi" version = "1.17.1" @@ -61,6 +92,48 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/7c/fc/6a8cb64e5f0324877d503c854da15d76c1e50eb722e320b15345c4d0c6de/cffi-1.17.1-cp313-cp313-win_amd64.whl", hash = "sha256:f6a16c31041f09ead72d69f583767292f750d24913dadacf5756b966aacb3f1a", size = 182009, upload-time = "2024-09-04T20:44:45.309Z" }, ] +[[package]] +name = "charset-normalizer" +version = "3.4.3" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/83/2d/5fd176ceb9b2fc619e63405525573493ca23441330fcdaee6bef9460e924/charset_normalizer-3.4.3.tar.gz", hash = "sha256:6fce4b8500244f6fcb71465d4a4930d132ba9ab8e71a7859e6a5d59851068d14", size = 122371, upload-time = "2025-08-09T07:57:28.46Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e9/5e/14c94999e418d9b87682734589404a25854d5f5d0408df68bc15b6ff54bb/charset_normalizer-3.4.3-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:e28e334d3ff134e88989d90ba04b47d84382a828c061d0d1027b1b12a62b39b1", size = 205655, upload-time = "2025-08-09T07:56:08.475Z" }, + { url = "https://files.pythonhosted.org/packages/7d/a8/c6ec5d389672521f644505a257f50544c074cf5fc292d5390331cd6fc9c3/charset_normalizer-3.4.3-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:0cacf8f7297b0c4fcb74227692ca46b4a5852f8f4f24b3c766dd94a1075c4884", size = 146223, upload-time = "2025-08-09T07:56:09.708Z" }, + { url = "https://files.pythonhosted.org/packages/fc/eb/a2ffb08547f4e1e5415fb69eb7db25932c52a52bed371429648db4d84fb1/charset_normalizer-3.4.3-cp312-cp312-manylinux2014_ppc64le.manylinux_2_17_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:c6fd51128a41297f5409deab284fecbe5305ebd7e5a1f959bee1c054622b7018", size = 159366, upload-time = "2025-08-09T07:56:11.326Z" }, + { url = "https://files.pythonhosted.org/packages/82/10/0fd19f20c624b278dddaf83b8464dcddc2456cb4b02bb902a6da126b87a1/charset_normalizer-3.4.3-cp312-cp312-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:3cfb2aad70f2c6debfbcb717f23b7eb55febc0bb23dcffc0f076009da10c6392", size = 157104, upload-time = "2025-08-09T07:56:13.014Z" }, + { url = "https://files.pythonhosted.org/packages/16/ab/0233c3231af734f5dfcf0844aa9582d5a1466c985bbed6cedab85af9bfe3/charset_normalizer-3.4.3-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:1606f4a55c0fd363d754049cdf400175ee96c992b1f8018b993941f221221c5f", size = 151830, upload-time = "2025-08-09T07:56:14.428Z" }, + { url = "https://files.pythonhosted.org/packages/ae/02/e29e22b4e02839a0e4a06557b1999d0a47db3567e82989b5bb21f3fbbd9f/charset_normalizer-3.4.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:027b776c26d38b7f15b26a5da1044f376455fb3766df8fc38563b4efbc515154", size = 148854, upload-time = "2025-08-09T07:56:16.051Z" }, + { url = "https://files.pythonhosted.org/packages/05/6b/e2539a0a4be302b481e8cafb5af8792da8093b486885a1ae4d15d452bcec/charset_normalizer-3.4.3-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:42e5088973e56e31e4fa58eb6bd709e42fc03799c11c42929592889a2e54c491", size = 160670, upload-time = "2025-08-09T07:56:17.314Z" }, + { url = "https://files.pythonhosted.org/packages/31/e7/883ee5676a2ef217a40ce0bffcc3d0dfbf9e64cbcfbdf822c52981c3304b/charset_normalizer-3.4.3-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:cc34f233c9e71701040d772aa7490318673aa7164a0efe3172b2981218c26d93", size = 158501, upload-time = "2025-08-09T07:56:18.641Z" }, + { url = "https://files.pythonhosted.org/packages/c1/35/6525b21aa0db614cf8b5792d232021dca3df7f90a1944db934efa5d20bb1/charset_normalizer-3.4.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:320e8e66157cc4e247d9ddca8e21f427efc7a04bbd0ac8a9faf56583fa543f9f", size = 153173, upload-time = "2025-08-09T07:56:20.289Z" }, + { url = "https://files.pythonhosted.org/packages/50/ee/f4704bad8201de513fdc8aac1cabc87e38c5818c93857140e06e772b5892/charset_normalizer-3.4.3-cp312-cp312-win32.whl", hash = "sha256:fb6fecfd65564f208cbf0fba07f107fb661bcd1a7c389edbced3f7a493f70e37", size = 99822, upload-time = "2025-08-09T07:56:21.551Z" }, + { url = "https://files.pythonhosted.org/packages/39/f5/3b3836ca6064d0992c58c7561c6b6eee1b3892e9665d650c803bd5614522/charset_normalizer-3.4.3-cp312-cp312-win_amd64.whl", hash = "sha256:86df271bf921c2ee3818f0522e9a5b8092ca2ad8b065ece5d7d9d0e9f4849bcc", size = 107543, upload-time = "2025-08-09T07:56:23.115Z" }, + { url = "https://files.pythonhosted.org/packages/65/ca/2135ac97709b400c7654b4b764daf5c5567c2da45a30cdd20f9eefe2d658/charset_normalizer-3.4.3-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:14c2a87c65b351109f6abfc424cab3927b3bdece6f706e4d12faaf3d52ee5efe", size = 205326, upload-time = "2025-08-09T07:56:24.721Z" }, + { url = "https://files.pythonhosted.org/packages/71/11/98a04c3c97dd34e49c7d247083af03645ca3730809a5509443f3c37f7c99/charset_normalizer-3.4.3-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:41d1fc408ff5fdfb910200ec0e74abc40387bccb3252f3f27c0676731df2b2c8", size = 146008, upload-time = "2025-08-09T07:56:26.004Z" }, + { url = "https://files.pythonhosted.org/packages/60/f5/4659a4cb3c4ec146bec80c32d8bb16033752574c20b1252ee842a95d1a1e/charset_normalizer-3.4.3-cp313-cp313-manylinux2014_ppc64le.manylinux_2_17_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:1bb60174149316da1c35fa5233681f7c0f9f514509b8e399ab70fea5f17e45c9", size = 159196, upload-time = "2025-08-09T07:56:27.25Z" }, + { url = "https://files.pythonhosted.org/packages/86/9e/f552f7a00611f168b9a5865a1414179b2c6de8235a4fa40189f6f79a1753/charset_normalizer-3.4.3-cp313-cp313-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:30d006f98569de3459c2fc1f2acde170b7b2bd265dc1943e87e1a4efe1b67c31", size = 156819, upload-time = "2025-08-09T07:56:28.515Z" }, + { url = "https://files.pythonhosted.org/packages/7e/95/42aa2156235cbc8fa61208aded06ef46111c4d3f0de233107b3f38631803/charset_normalizer-3.4.3-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:416175faf02e4b0810f1f38bcb54682878a4af94059a1cd63b8747244420801f", size = 151350, upload-time = "2025-08-09T07:56:29.716Z" }, + { url = "https://files.pythonhosted.org/packages/c2/a9/3865b02c56f300a6f94fc631ef54f0a8a29da74fb45a773dfd3dcd380af7/charset_normalizer-3.4.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:6aab0f181c486f973bc7262a97f5aca3ee7e1437011ef0c2ec04b5a11d16c927", size = 148644, upload-time = "2025-08-09T07:56:30.984Z" }, + { url = "https://files.pythonhosted.org/packages/77/d9/cbcf1a2a5c7d7856f11e7ac2d782aec12bdfea60d104e60e0aa1c97849dc/charset_normalizer-3.4.3-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:fdabf8315679312cfa71302f9bd509ded4f2f263fb5b765cf1433b39106c3cc9", size = 160468, upload-time = "2025-08-09T07:56:32.252Z" }, + { url = "https://files.pythonhosted.org/packages/f6/42/6f45efee8697b89fda4d50580f292b8f7f9306cb2971d4b53f8914e4d890/charset_normalizer-3.4.3-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:bd28b817ea8c70215401f657edef3a8aa83c29d447fb0b622c35403780ba11d5", size = 158187, upload-time = "2025-08-09T07:56:33.481Z" }, + { url = "https://files.pythonhosted.org/packages/70/99/f1c3bdcfaa9c45b3ce96f70b14f070411366fa19549c1d4832c935d8e2c3/charset_normalizer-3.4.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:18343b2d246dc6761a249ba1fb13f9ee9a2bcd95decc767319506056ea4ad4dc", size = 152699, upload-time = "2025-08-09T07:56:34.739Z" }, + { url = "https://files.pythonhosted.org/packages/a3/ad/b0081f2f99a4b194bcbb1934ef3b12aa4d9702ced80a37026b7607c72e58/charset_normalizer-3.4.3-cp313-cp313-win32.whl", hash = "sha256:6fb70de56f1859a3f71261cbe41005f56a7842cc348d3aeb26237560bfa5e0ce", size = 99580, upload-time = "2025-08-09T07:56:35.981Z" }, + { url = "https://files.pythonhosted.org/packages/9a/8f/ae790790c7b64f925e5c953b924aaa42a243fb778fed9e41f147b2a5715a/charset_normalizer-3.4.3-cp313-cp313-win_amd64.whl", hash = "sha256:cf1ebb7d78e1ad8ec2a8c4732c7be2e736f6e5123a4146c5b89c9d1f585f8cef", size = 107366, upload-time = "2025-08-09T07:56:37.339Z" }, + { url = "https://files.pythonhosted.org/packages/8e/91/b5a06ad970ddc7a0e513112d40113e834638f4ca1120eb727a249fb2715e/charset_normalizer-3.4.3-cp314-cp314-macosx_10_13_universal2.whl", hash = "sha256:3cd35b7e8aedeb9e34c41385fda4f73ba609e561faedfae0a9e75e44ac558a15", size = 204342, upload-time = "2025-08-09T07:56:38.687Z" }, + { url = "https://files.pythonhosted.org/packages/ce/ec/1edc30a377f0a02689342f214455c3f6c2fbedd896a1d2f856c002fc3062/charset_normalizer-3.4.3-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:b89bc04de1d83006373429975f8ef9e7932534b8cc9ca582e4db7d20d91816db", size = 145995, upload-time = "2025-08-09T07:56:40.048Z" }, + { url = "https://files.pythonhosted.org/packages/17/e5/5e67ab85e6d22b04641acb5399c8684f4d37caf7558a53859f0283a650e9/charset_normalizer-3.4.3-cp314-cp314-manylinux2014_ppc64le.manylinux_2_17_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:2001a39612b241dae17b4687898843f254f8748b796a2e16f1051a17078d991d", size = 158640, upload-time = "2025-08-09T07:56:41.311Z" }, + { url = "https://files.pythonhosted.org/packages/f1/e5/38421987f6c697ee3722981289d554957c4be652f963d71c5e46a262e135/charset_normalizer-3.4.3-cp314-cp314-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:8dcfc373f888e4fb39a7bc57e93e3b845e7f462dacc008d9749568b1c4ece096", size = 156636, upload-time = "2025-08-09T07:56:43.195Z" }, + { url = "https://files.pythonhosted.org/packages/a0/e4/5a075de8daa3ec0745a9a3b54467e0c2967daaaf2cec04c845f73493e9a1/charset_normalizer-3.4.3-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:18b97b8404387b96cdbd30ad660f6407799126d26a39ca65729162fd810a99aa", size = 150939, upload-time = "2025-08-09T07:56:44.819Z" }, + { url = "https://files.pythonhosted.org/packages/02/f7/3611b32318b30974131db62b4043f335861d4d9b49adc6d57c1149cc49d4/charset_normalizer-3.4.3-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:ccf600859c183d70eb47e05a44cd80a4ce77394d1ac0f79dbd2dd90a69a3a049", size = 148580, upload-time = "2025-08-09T07:56:46.684Z" }, + { url = "https://files.pythonhosted.org/packages/7e/61/19b36f4bd67f2793ab6a99b979b4e4f3d8fc754cbdffb805335df4337126/charset_normalizer-3.4.3-cp314-cp314-musllinux_1_2_ppc64le.whl", hash = "sha256:53cd68b185d98dde4ad8990e56a58dea83a4162161b1ea9272e5c9182ce415e0", size = 159870, upload-time = "2025-08-09T07:56:47.941Z" }, + { url = "https://files.pythonhosted.org/packages/06/57/84722eefdd338c04cf3030ada66889298eaedf3e7a30a624201e0cbe424a/charset_normalizer-3.4.3-cp314-cp314-musllinux_1_2_s390x.whl", hash = "sha256:30a96e1e1f865f78b030d65241c1ee850cdf422d869e9028e2fc1d5e4db73b92", size = 157797, upload-time = "2025-08-09T07:56:49.756Z" }, + { url = "https://files.pythonhosted.org/packages/72/2a/aff5dd112b2f14bcc3462c312dce5445806bfc8ab3a7328555da95330e4b/charset_normalizer-3.4.3-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:d716a916938e03231e86e43782ca7878fb602a125a91e7acb8b5112e2e96ac16", size = 152224, upload-time = "2025-08-09T07:56:51.369Z" }, + { url = "https://files.pythonhosted.org/packages/b7/8c/9839225320046ed279c6e839d51f028342eb77c91c89b8ef2549f951f3ec/charset_normalizer-3.4.3-cp314-cp314-win32.whl", hash = "sha256:c6dbd0ccdda3a2ba7c2ecd9d77b37f3b5831687d8dc1b6ca5f56a4880cc7b7ce", size = 100086, upload-time = "2025-08-09T07:56:52.722Z" }, + { url = "https://files.pythonhosted.org/packages/ee/7a/36fbcf646e41f710ce0a563c1c9a343c6edf9be80786edeb15b6f62e17db/charset_normalizer-3.4.3-cp314-cp314-win_amd64.whl", hash = "sha256:73dc19b562516fc9bcf6e5d6e596df0b4eb98d87e4f79f3ae71840e6ed21361c", size = 107400, upload-time = "2025-08-09T07:56:55.172Z" }, + { url = "https://files.pythonhosted.org/packages/8a/1f/f041989e93b001bc4e44bb1669ccdcf54d3f00e628229a85b08d330615c5/charset_normalizer-3.4.3-py3-none-any.whl", hash = "sha256:ce571ab16d890d23b5c278547ba694193a45011ff86a9162a71307ed9f86759a", size = 53175, upload-time = "2025-08-09T07:57:26.864Z" }, +] + [[package]] name = "colorama" version = "0.4.6" @@ -167,6 +240,15 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/7b/8f/c4d9bafc34ad7ad5d8dc16dd1347ee0e507a52c3adb6bfa8887e1c6a26ba/executing-2.2.0-py2.py3-none-any.whl", hash = "sha256:11387150cad388d62750327a53d3339fad4888b39a6fe233c3afbb54ecffd3aa", size = 26702, upload-time = "2025-01-22T15:41:25.929Z" }, ] +[[package]] +name = "flatbuffers" +version = "25.2.10" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/e4/30/eb5dce7994fc71a2f685d98ec33cc660c0a5887db5610137e60d8cbc4489/flatbuffers-25.2.10.tar.gz", hash = "sha256:97e451377a41262f8d9bd4295cc836133415cc03d8cb966410a4af92eb00d26e", size = 22170, upload-time = "2025-02-11T04:26:46.257Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/b8/25/155f9f080d5e4bc0082edfda032ea2bc2b8fab3f4d25d46c1e9dd22a1a89/flatbuffers-25.2.10-py2.py3-none-any.whl", hash = "sha256:ebba5f4d5ea615af3f7fd70fc310636fbb2bbd1f566ac0a23d98dd412de50051", size = 30953, upload-time = "2025-02-11T04:26:44.484Z" }, +] + [[package]] name = "fonttools" version = "4.57.0" @@ -192,6 +274,85 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/90/27/45f8957c3132917f91aaa56b700bcfc2396be1253f685bd5c68529b6f610/fonttools-4.57.0-py3-none-any.whl", hash = "sha256:3122c604a675513c68bd24c6a8f9091f1c2376d18e8f5fe5a101746c81b3e98f", size = 1093605, upload-time = "2025-04-03T11:07:11.341Z" }, ] +[[package]] +name = "gast" +version = "0.6.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/3c/14/c566f5ca00c115db7725263408ff952b8ae6d6a4e792ef9c84e77d9af7a1/gast-0.6.0.tar.gz", hash = "sha256:88fc5300d32c7ac6ca7b515310862f71e6fdf2c029bbec7c66c0f5dd47b6b1fb", size = 27708, upload-time = "2024-06-27T20:31:49.527Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a3/61/8001b38461d751cd1a0c3a6ae84346796a5758123f3ed97a1b121dfbf4f3/gast-0.6.0-py3-none-any.whl", hash = "sha256:52b182313f7330389f72b069ba00f174cfe2a06411099547288839c6cbafbd54", size = 21173, upload-time = "2024-07-09T13:15:15.615Z" }, +] + +[[package]] +name = "google-pasta" +version = "0.2.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "six" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/35/4a/0bd53b36ff0323d10d5f24ebd67af2de10a1117f5cf4d7add90df92756f1/google-pasta-0.2.0.tar.gz", hash = "sha256:c9f2c8dfc8f96d0d5808299920721be30c9eec37f2389f28904f454565c8a16e", size = 40430, upload-time = "2020-03-13T18:57:50.34Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a3/de/c648ef6835192e6e2cc03f40b19eeda4382c49b5bafb43d88b931c4c74ac/google_pasta-0.2.0-py3-none-any.whl", hash = "sha256:b32482794a366b5366a32c92a9a9201b107821889935a02b3e51f6b432ea84ed", size = 57471, upload-time = "2020-03-13T18:57:48.872Z" }, +] + +[[package]] +name = "grpcio" +version = "1.74.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/38/b4/35feb8f7cab7239c5b94bd2db71abb3d6adb5f335ad8f131abb6060840b6/grpcio-1.74.0.tar.gz", hash = "sha256:80d1f4fbb35b0742d3e3d3bb654b7381cd5f015f8497279a1e9c21ba623e01b1", size = 12756048, upload-time = "2025-07-24T18:54:23.039Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/4c/5d/e504d5d5c4469823504f65687d6c8fb97b7f7bf0b34873b7598f1df24630/grpcio-1.74.0-cp312-cp312-linux_armv7l.whl", hash = "sha256:8533e6e9c5bd630ca98062e3a1326249e6ada07d05acf191a77bc33f8948f3d8", size = 5445551, upload-time = "2025-07-24T18:53:23.641Z" }, + { url = "https://files.pythonhosted.org/packages/43/01/730e37056f96f2f6ce9f17999af1556df62ee8dab7fa48bceeaab5fd3008/grpcio-1.74.0-cp312-cp312-macosx_11_0_universal2.whl", hash = "sha256:2918948864fec2a11721d91568effffbe0a02b23ecd57f281391d986847982f6", size = 10979810, upload-time = "2025-07-24T18:53:25.349Z" }, + { url = "https://files.pythonhosted.org/packages/79/3d/09fd100473ea5c47083889ca47ffd356576173ec134312f6aa0e13111dee/grpcio-1.74.0-cp312-cp312-manylinux_2_17_aarch64.whl", hash = "sha256:60d2d48b0580e70d2e1954d0d19fa3c2e60dd7cbed826aca104fff518310d1c5", size = 5941946, upload-time = "2025-07-24T18:53:27.387Z" }, + { url = "https://files.pythonhosted.org/packages/8a/99/12d2cca0a63c874c6d3d195629dcd85cdf5d6f98a30d8db44271f8a97b93/grpcio-1.74.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3601274bc0523f6dc07666c0e01682c94472402ac2fd1226fd96e079863bfa49", size = 6621763, upload-time = "2025-07-24T18:53:29.193Z" }, + { url = "https://files.pythonhosted.org/packages/9d/2c/930b0e7a2f1029bbc193443c7bc4dc2a46fedb0203c8793dcd97081f1520/grpcio-1.74.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:176d60a5168d7948539def20b2a3adcce67d72454d9ae05969a2e73f3a0feee7", size = 6180664, upload-time = "2025-07-24T18:53:30.823Z" }, + { url = "https://files.pythonhosted.org/packages/db/d5/ff8a2442180ad0867717e670f5ec42bfd8d38b92158ad6bcd864e6d4b1ed/grpcio-1.74.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:e759f9e8bc908aaae0412642afe5416c9f983a80499448fcc7fab8692ae044c3", size = 6301083, upload-time = "2025-07-24T18:53:32.454Z" }, + { url = "https://files.pythonhosted.org/packages/b0/ba/b361d390451a37ca118e4ec7dccec690422e05bc85fba2ec72b06cefec9f/grpcio-1.74.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:9e7c4389771855a92934b2846bd807fc25a3dfa820fd912fe6bd8136026b2707", size = 6994132, upload-time = "2025-07-24T18:53:34.506Z" }, + { url = "https://files.pythonhosted.org/packages/3b/0c/3a5fa47d2437a44ced74141795ac0251bbddeae74bf81df3447edd767d27/grpcio-1.74.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:cce634b10aeab37010449124814b05a62fb5f18928ca878f1bf4750d1f0c815b", size = 6489616, upload-time = "2025-07-24T18:53:36.217Z" }, + { url = "https://files.pythonhosted.org/packages/ae/95/ab64703b436d99dc5217228babc76047d60e9ad14df129e307b5fec81fd0/grpcio-1.74.0-cp312-cp312-win32.whl", hash = "sha256:885912559974df35d92219e2dc98f51a16a48395f37b92865ad45186f294096c", size = 3807083, upload-time = "2025-07-24T18:53:37.911Z" }, + { url = "https://files.pythonhosted.org/packages/84/59/900aa2445891fc47a33f7d2f76e00ca5d6ae6584b20d19af9c06fa09bf9a/grpcio-1.74.0-cp312-cp312-win_amd64.whl", hash = "sha256:42f8fee287427b94be63d916c90399ed310ed10aadbf9e2e5538b3e497d269bc", size = 4490123, upload-time = "2025-07-24T18:53:39.528Z" }, + { url = "https://files.pythonhosted.org/packages/d4/d8/1004a5f468715221450e66b051c839c2ce9a985aa3ee427422061fcbb6aa/grpcio-1.74.0-cp313-cp313-linux_armv7l.whl", hash = "sha256:2bc2d7d8d184e2362b53905cb1708c84cb16354771c04b490485fa07ce3a1d89", size = 5449488, upload-time = "2025-07-24T18:53:41.174Z" }, + { url = "https://files.pythonhosted.org/packages/94/0e/33731a03f63740d7743dced423846c831d8e6da808fcd02821a4416df7fa/grpcio-1.74.0-cp313-cp313-macosx_11_0_universal2.whl", hash = "sha256:c14e803037e572c177ba54a3e090d6eb12efd795d49327c5ee2b3bddb836bf01", size = 10974059, upload-time = "2025-07-24T18:53:43.066Z" }, + { url = "https://files.pythonhosted.org/packages/0d/c6/3d2c14d87771a421205bdca991467cfe473ee4c6a1231c1ede5248c62ab8/grpcio-1.74.0-cp313-cp313-manylinux_2_17_aarch64.whl", hash = "sha256:f6ec94f0e50eb8fa1744a731088b966427575e40c2944a980049798b127a687e", size = 5945647, upload-time = "2025-07-24T18:53:45.269Z" }, + { url = "https://files.pythonhosted.org/packages/c5/83/5a354c8aaff58594eef7fffebae41a0f8995a6258bbc6809b800c33d4c13/grpcio-1.74.0-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:566b9395b90cc3d0d0c6404bc8572c7c18786ede549cdb540ae27b58afe0fb91", size = 6626101, upload-time = "2025-07-24T18:53:47.015Z" }, + { url = "https://files.pythonhosted.org/packages/3f/ca/4fdc7bf59bf6994aa45cbd4ef1055cd65e2884de6113dbd49f75498ddb08/grpcio-1.74.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e1ea6176d7dfd5b941ea01c2ec34de9531ba494d541fe2057c904e601879f249", size = 6182562, upload-time = "2025-07-24T18:53:48.967Z" }, + { url = "https://files.pythonhosted.org/packages/fd/48/2869e5b2c1922583686f7ae674937986807c2f676d08be70d0a541316270/grpcio-1.74.0-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:64229c1e9cea079420527fa8ac45d80fc1e8d3f94deaa35643c381fa8d98f362", size = 6303425, upload-time = "2025-07-24T18:53:50.847Z" }, + { url = "https://files.pythonhosted.org/packages/a6/0e/bac93147b9a164f759497bc6913e74af1cb632c733c7af62c0336782bd38/grpcio-1.74.0-cp313-cp313-musllinux_1_1_i686.whl", hash = "sha256:0f87bddd6e27fc776aacf7ebfec367b6d49cad0455123951e4488ea99d9b9b8f", size = 6996533, upload-time = "2025-07-24T18:53:52.747Z" }, + { url = "https://files.pythonhosted.org/packages/84/35/9f6b2503c1fd86d068b46818bbd7329db26a87cdd8c01e0d1a9abea1104c/grpcio-1.74.0-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:3b03d8f2a07f0fea8c8f74deb59f8352b770e3900d143b3d1475effcb08eec20", size = 6491489, upload-time = "2025-07-24T18:53:55.06Z" }, + { url = "https://files.pythonhosted.org/packages/75/33/a04e99be2a82c4cbc4039eb3a76f6c3632932b9d5d295221389d10ac9ca7/grpcio-1.74.0-cp313-cp313-win32.whl", hash = "sha256:b6a73b2ba83e663b2480a90b82fdae6a7aa6427f62bf43b29912c0cfd1aa2bfa", size = 3805811, upload-time = "2025-07-24T18:53:56.798Z" }, + { url = "https://files.pythonhosted.org/packages/34/80/de3eb55eb581815342d097214bed4c59e806b05f1b3110df03b2280d6dfd/grpcio-1.74.0-cp313-cp313-win_amd64.whl", hash = "sha256:fd3c71aeee838299c5887230b8a1822795325ddfea635edd82954c1eaa831e24", size = 4489214, upload-time = "2025-07-24T18:53:59.771Z" }, +] + +[[package]] +name = "h5py" +version = "3.14.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "numpy" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/5d/57/dfb3c5c3f1bf5f5ef2e59a22dec4ff1f3d7408b55bfcefcfb0ea69ef21c6/h5py-3.14.0.tar.gz", hash = "sha256:2372116b2e0d5d3e5e705b7f663f7c8d96fa79a4052d250484ef91d24d6a08f4", size = 424323, upload-time = "2025-06-06T14:06:15.01Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/3e/77/8f651053c1843391e38a189ccf50df7e261ef8cd8bfd8baba0cbe694f7c3/h5py-3.14.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:e0045115d83272090b0717c555a31398c2c089b87d212ceba800d3dc5d952e23", size = 3312740, upload-time = "2025-06-06T14:05:01.193Z" }, + { url = "https://files.pythonhosted.org/packages/ff/10/20436a6cf419b31124e59fefc78d74cb061ccb22213226a583928a65d715/h5py-3.14.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:6da62509b7e1d71a7d110478aa25d245dd32c8d9a1daee9d2a42dba8717b047a", size = 2829207, upload-time = "2025-06-06T14:05:05.061Z" }, + { url = "https://files.pythonhosted.org/packages/3f/19/c8bfe8543bfdd7ccfafd46d8cfd96fce53d6c33e9c7921f375530ee1d39a/h5py-3.14.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:554ef0ced3571366d4d383427c00c966c360e178b5fb5ee5bb31a435c424db0c", size = 4708455, upload-time = "2025-06-06T14:05:11.528Z" }, + { url = "https://files.pythonhosted.org/packages/86/f9/f00de11c82c88bfc1ef22633557bfba9e271e0cb3189ad704183fc4a2644/h5py-3.14.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0cbd41f4e3761f150aa5b662df991868ca533872c95467216f2bec5fcad84882", size = 4929422, upload-time = "2025-06-06T14:05:18.399Z" }, + { url = "https://files.pythonhosted.org/packages/7a/6d/6426d5d456f593c94b96fa942a9b3988ce4d65ebaf57d7273e452a7222e8/h5py-3.14.0-cp312-cp312-win_amd64.whl", hash = "sha256:bf4897d67e613ecf5bdfbdab39a1158a64df105827da70ea1d90243d796d367f", size = 2862845, upload-time = "2025-06-06T14:05:23.699Z" }, + { url = "https://files.pythonhosted.org/packages/6c/c2/7efe82d09ca10afd77cd7c286e42342d520c049a8c43650194928bcc635c/h5py-3.14.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:aa4b7bbce683379b7bf80aaba68e17e23396100336a8d500206520052be2f812", size = 3289245, upload-time = "2025-06-06T14:05:28.24Z" }, + { url = "https://files.pythonhosted.org/packages/4f/31/f570fab1239b0d9441024b92b6ad03bb414ffa69101a985e4c83d37608bd/h5py-3.14.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:ef9603a501a04fcd0ba28dd8f0995303d26a77a980a1f9474b3417543d4c6174", size = 2807335, upload-time = "2025-06-06T14:05:31.997Z" }, + { url = "https://files.pythonhosted.org/packages/0d/ce/3a21d87896bc7e3e9255e0ad5583ae31ae9e6b4b00e0bcb2a67e2b6acdbc/h5py-3.14.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e8cbaf6910fa3983c46172666b0b8da7b7bd90d764399ca983236f2400436eeb", size = 4700675, upload-time = "2025-06-06T14:05:37.38Z" }, + { url = "https://files.pythonhosted.org/packages/e7/ec/86f59025306dcc6deee5fda54d980d077075b8d9889aac80f158bd585f1b/h5py-3.14.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d90e6445ab7c146d7f7981b11895d70bc1dd91278a4f9f9028bc0c95e4a53f13", size = 4921632, upload-time = "2025-06-06T14:05:43.464Z" }, + { url = "https://files.pythonhosted.org/packages/3f/6d/0084ed0b78d4fd3e7530c32491f2884140d9b06365dac8a08de726421d4a/h5py-3.14.0-cp313-cp313-win_amd64.whl", hash = "sha256:ae18e3de237a7a830adb76aaa68ad438d85fe6e19e0d99944a3ce46b772c69b3", size = 2852929, upload-time = "2025-06-06T14:05:47.659Z" }, +] + +[[package]] +name = "idna" +version = "3.10" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/f1/70/7703c29685631f5a7590aa73f1f1d3fa9a380e654b86af429e0934a32f7d/idna-3.10.tar.gz", hash = "sha256:12f65c9b470abda6dc35cf8e63cc574b1c52b11df2c86030af0ac09b01b13ea9", size = 190490, upload-time = "2024-09-15T18:07:39.745Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/76/c6/c88e154df9c4e1a2a66ccf0005a88dfb2650c1dffb6f5ce603dfbd452ce3/idna-3.10-py3-none-any.whl", hash = "sha256:946d195a0d259cbba61165e88e65941f16e9b36ea6ddb97f00452bae8b1287d3", size = 70442, upload-time = "2024-09-15T18:07:37.964Z" }, +] + [[package]] name = "ipykernel" version = "6.29.5" @@ -300,6 +461,25 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/c9/fb/108ecd1fe961941959ad0ee4e12ee7b8b1477247f30b1fdfd83ceaf017f0/jupyter_core-5.7.2-py3-none-any.whl", hash = "sha256:4f7315d2f6b4bcf2e3e7cb6e46772eba760ae459cd1f59d29eb57b0a01bd7409", size = 28965, upload-time = "2024-03-12T12:37:32.36Z" }, ] +[[package]] +name = "keras" +version = "3.11.3" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "absl-py" }, + { name = "h5py" }, + { name = "ml-dtypes" }, + { name = "namex" }, + { name = "numpy" }, + { name = "optree" }, + { name = "packaging" }, + { name = "rich" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/6a/89/646425fe9a46f9053430e1271f817c36041c6f33469950a3caafc3d2591e/keras-3.11.3.tar.gz", hash = "sha256:efda616835c31b7d916d72303ef9adec1257320bc9fd4b2b0138840fc65fb5b7", size = 1065906, upload-time = "2025-08-21T22:08:57.643Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/94/5b/4c778cc921ce4b864b238f63f8e3ff6e954ab19b80c9fa680593ad8093d4/keras-3.11.3-py3-none-any.whl", hash = "sha256:f484f050e05ee400455b05ec8c36ed35edc34de94256b6073f56cfe68f65491f", size = 1408438, upload-time = "2025-08-21T22:08:55.858Z" }, +] + [[package]] name = "kiwisolver" version = "1.4.8" @@ -351,6 +531,82 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/4c/fa/be89a49c640930180657482a74970cdcf6f7072c8d2471e1babe17a222dc/kiwisolver-1.4.8-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:be4816dc51c8a471749d664161b434912eee82f2ea66bd7628bd14583a833e85", size = 2349213, upload-time = "2024-12-24T18:30:40.019Z" }, ] +[[package]] +name = "libclang" +version = "18.1.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/6e/5c/ca35e19a4f142adffa27e3d652196b7362fa612243e2b916845d801454fc/libclang-18.1.1.tar.gz", hash = "sha256:a1214966d08d73d971287fc3ead8dfaf82eb07fb197680d8b3859dbbbbf78250", size = 39612, upload-time = "2024-03-17T16:04:37.434Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/4b/49/f5e3e7e1419872b69f6f5e82ba56e33955a74bd537d8a1f5f1eff2f3668a/libclang-18.1.1-1-py2.py3-none-macosx_11_0_arm64.whl", hash = "sha256:0b2e143f0fac830156feb56f9231ff8338c20aecfe72b4ffe96f19e5a1dbb69a", size = 25836045, upload-time = "2024-06-30T17:40:31.646Z" }, + { url = "https://files.pythonhosted.org/packages/e2/e5/fc61bbded91a8830ccce94c5294ecd6e88e496cc85f6704bf350c0634b70/libclang-18.1.1-py2.py3-none-macosx_10_9_x86_64.whl", hash = "sha256:6f14c3f194704e5d09769108f03185fce7acaf1d1ae4bbb2f30a72c2400cb7c5", size = 26502641, upload-time = "2024-03-18T15:52:26.722Z" }, + { url = "https://files.pythonhosted.org/packages/db/ed/1df62b44db2583375f6a8a5e2ca5432bbdc3edb477942b9b7c848c720055/libclang-18.1.1-py2.py3-none-macosx_11_0_arm64.whl", hash = "sha256:83ce5045d101b669ac38e6da8e58765f12da2d3aafb3b9b98d88b286a60964d8", size = 26420207, upload-time = "2024-03-17T15:00:26.63Z" }, + { url = "https://files.pythonhosted.org/packages/1d/fc/716c1e62e512ef1c160e7984a73a5fc7df45166f2ff3f254e71c58076f7c/libclang-18.1.1-py2.py3-none-manylinux2010_x86_64.whl", hash = "sha256:c533091d8a3bbf7460a00cb6c1a71da93bffe148f172c7d03b1c31fbf8aa2a0b", size = 24515943, upload-time = "2024-03-17T16:03:45.942Z" }, + { url = "https://files.pythonhosted.org/packages/3c/3d/f0ac1150280d8d20d059608cf2d5ff61b7c3b7f7bcf9c0f425ab92df769a/libclang-18.1.1-py2.py3-none-manylinux2014_aarch64.whl", hash = "sha256:54dda940a4a0491a9d1532bf071ea3ef26e6dbaf03b5000ed94dd7174e8f9592", size = 23784972, upload-time = "2024-03-17T16:12:47.677Z" }, + { url = "https://files.pythonhosted.org/packages/fe/2f/d920822c2b1ce9326a4c78c0c2b4aa3fde610c7ee9f631b600acb5376c26/libclang-18.1.1-py2.py3-none-manylinux2014_armv7l.whl", hash = "sha256:cf4a99b05376513717ab5d82a0db832c56ccea4fd61a69dbb7bccf2dfb207dbe", size = 20259606, upload-time = "2024-03-17T16:17:42.437Z" }, + { url = "https://files.pythonhosted.org/packages/2d/c2/de1db8c6d413597076a4259cea409b83459b2db997c003578affdd32bf66/libclang-18.1.1-py2.py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:69f8eb8f65c279e765ffd28aaa7e9e364c776c17618af8bff22a8df58677ff4f", size = 24921494, upload-time = "2024-03-17T16:14:20.132Z" }, + { url = "https://files.pythonhosted.org/packages/0b/2d/3f480b1e1d31eb3d6de5e3ef641954e5c67430d5ac93b7fa7e07589576c7/libclang-18.1.1-py2.py3-none-win_amd64.whl", hash = "sha256:4dd2d3b82fab35e2bf9ca717d7b63ac990a3519c7e312f19fa8e86dcc712f7fb", size = 26415083, upload-time = "2024-03-17T16:42:21.703Z" }, + { url = "https://files.pythonhosted.org/packages/71/cf/e01dc4cc79779cd82d77888a88ae2fa424d93b445ad4f6c02bfc18335b70/libclang-18.1.1-py2.py3-none-win_arm64.whl", hash = "sha256:3f0e1f49f04d3cd198985fea0511576b0aee16f9ff0e0f0cad7f9c57ec3c20e8", size = 22361112, upload-time = "2024-03-17T16:42:59.565Z" }, +] + +[[package]] +name = "markdown" +version = "3.8.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/d7/c2/4ab49206c17f75cb08d6311171f2d65798988db4360c4d1485bd0eedd67c/markdown-3.8.2.tar.gz", hash = "sha256:247b9a70dd12e27f67431ce62523e675b866d254f900c4fe75ce3dda62237c45", size = 362071, upload-time = "2025-06-19T17:12:44.483Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/96/2b/34cc11786bc00d0f04d0f5fdc3a2b1ae0b6239eef72d3d345805f9ad92a1/markdown-3.8.2-py3-none-any.whl", hash = "sha256:5c83764dbd4e00bdd94d85a19b8d55ccca20fe35b2e678a1422b380324dd5f24", size = 106827, upload-time = "2025-06-19T17:12:42.994Z" }, +] + +[[package]] +name = "markdown-it-py" +version = "4.0.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "mdurl" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/5b/f5/4ec618ed16cc4f8fb3b701563655a69816155e79e24a17b651541804721d/markdown_it_py-4.0.0.tar.gz", hash = "sha256:cb0a2b4aa34f932c007117b194e945bd74e0ec24133ceb5bac59009cda1cb9f3", size = 73070, upload-time = "2025-08-11T12:57:52.854Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/94/54/e7d793b573f298e1c9013b8c4dade17d481164aa517d1d7148619c2cedbf/markdown_it_py-4.0.0-py3-none-any.whl", hash = "sha256:87327c59b172c5011896038353a81343b6754500a08cd7a4973bb48c6d578147", size = 87321, upload-time = "2025-08-11T12:57:51.923Z" }, +] + +[[package]] +name = "markupsafe" +version = "3.0.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/b2/97/5d42485e71dfc078108a86d6de8fa46db44a1a9295e89c5d6d4a06e23a62/markupsafe-3.0.2.tar.gz", hash = "sha256:ee55d3edf80167e48ea11a923c7386f4669df67d7994554387f84e7d8b0a2bf0", size = 20537, upload-time = "2024-10-18T15:21:54.129Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/22/09/d1f21434c97fc42f09d290cbb6350d44eb12f09cc62c9476effdb33a18aa/MarkupSafe-3.0.2-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:9778bd8ab0a994ebf6f84c2b949e65736d5575320a17ae8984a77fab08db94cf", size = 14274, upload-time = "2024-10-18T15:21:13.777Z" }, + { url = "https://files.pythonhosted.org/packages/6b/b0/18f76bba336fa5aecf79d45dcd6c806c280ec44538b3c13671d49099fdd0/MarkupSafe-3.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:846ade7b71e3536c4e56b386c2a47adf5741d2d8b94ec9dc3e92e5e1ee1e2225", size = 12348, upload-time = "2024-10-18T15:21:14.822Z" }, + { url = "https://files.pythonhosted.org/packages/e0/25/dd5c0f6ac1311e9b40f4af06c78efde0f3b5cbf02502f8ef9501294c425b/MarkupSafe-3.0.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1c99d261bd2d5f6b59325c92c73df481e05e57f19837bdca8413b9eac4bd8028", size = 24149, upload-time = "2024-10-18T15:21:15.642Z" }, + { url = "https://files.pythonhosted.org/packages/f3/f0/89e7aadfb3749d0f52234a0c8c7867877876e0a20b60e2188e9850794c17/MarkupSafe-3.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e17c96c14e19278594aa4841ec148115f9c7615a47382ecb6b82bd8fea3ab0c8", size = 23118, upload-time = "2024-10-18T15:21:17.133Z" }, + { url = "https://files.pythonhosted.org/packages/d5/da/f2eeb64c723f5e3777bc081da884b414671982008c47dcc1873d81f625b6/MarkupSafe-3.0.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:88416bd1e65dcea10bc7569faacb2c20ce071dd1f87539ca2ab364bf6231393c", size = 22993, upload-time = "2024-10-18T15:21:18.064Z" }, + { url = "https://files.pythonhosted.org/packages/da/0e/1f32af846df486dce7c227fe0f2398dc7e2e51d4a370508281f3c1c5cddc/MarkupSafe-3.0.2-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:2181e67807fc2fa785d0592dc2d6206c019b9502410671cc905d132a92866557", size = 24178, upload-time = "2024-10-18T15:21:18.859Z" }, + { url = "https://files.pythonhosted.org/packages/c4/f6/bb3ca0532de8086cbff5f06d137064c8410d10779c4c127e0e47d17c0b71/MarkupSafe-3.0.2-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:52305740fe773d09cffb16f8ed0427942901f00adedac82ec8b67752f58a1b22", size = 23319, upload-time = "2024-10-18T15:21:19.671Z" }, + { url = "https://files.pythonhosted.org/packages/a2/82/8be4c96ffee03c5b4a034e60a31294daf481e12c7c43ab8e34a1453ee48b/MarkupSafe-3.0.2-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:ad10d3ded218f1039f11a75f8091880239651b52e9bb592ca27de44eed242a48", size = 23352, upload-time = "2024-10-18T15:21:20.971Z" }, + { url = "https://files.pythonhosted.org/packages/51/ae/97827349d3fcffee7e184bdf7f41cd6b88d9919c80f0263ba7acd1bbcb18/MarkupSafe-3.0.2-cp312-cp312-win32.whl", hash = "sha256:0f4ca02bea9a23221c0182836703cbf8930c5e9454bacce27e767509fa286a30", size = 15097, upload-time = "2024-10-18T15:21:22.646Z" }, + { url = "https://files.pythonhosted.org/packages/c1/80/a61f99dc3a936413c3ee4e1eecac96c0da5ed07ad56fd975f1a9da5bc630/MarkupSafe-3.0.2-cp312-cp312-win_amd64.whl", hash = "sha256:8e06879fc22a25ca47312fbe7c8264eb0b662f6db27cb2d3bbbc74b1df4b9b87", size = 15601, upload-time = "2024-10-18T15:21:23.499Z" }, + { url = "https://files.pythonhosted.org/packages/83/0e/67eb10a7ecc77a0c2bbe2b0235765b98d164d81600746914bebada795e97/MarkupSafe-3.0.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:ba9527cdd4c926ed0760bc301f6728ef34d841f405abf9d4f959c478421e4efd", size = 14274, upload-time = "2024-10-18T15:21:24.577Z" }, + { url = "https://files.pythonhosted.org/packages/2b/6d/9409f3684d3335375d04e5f05744dfe7e9f120062c9857df4ab490a1031a/MarkupSafe-3.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:f8b3d067f2e40fe93e1ccdd6b2e1d16c43140e76f02fb1319a05cf2b79d99430", size = 12352, upload-time = "2024-10-18T15:21:25.382Z" }, + { url = "https://files.pythonhosted.org/packages/d2/f5/6eadfcd3885ea85fe2a7c128315cc1bb7241e1987443d78c8fe712d03091/MarkupSafe-3.0.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:569511d3b58c8791ab4c2e1285575265991e6d8f8700c7be0e88f86cb0672094", size = 24122, upload-time = "2024-10-18T15:21:26.199Z" }, + { url = "https://files.pythonhosted.org/packages/0c/91/96cf928db8236f1bfab6ce15ad070dfdd02ed88261c2afafd4b43575e9e9/MarkupSafe-3.0.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:15ab75ef81add55874e7ab7055e9c397312385bd9ced94920f2802310c930396", size = 23085, upload-time = "2024-10-18T15:21:27.029Z" }, + { url = "https://files.pythonhosted.org/packages/c2/cf/c9d56af24d56ea04daae7ac0940232d31d5a8354f2b457c6d856b2057d69/MarkupSafe-3.0.2-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f3818cb119498c0678015754eba762e0d61e5b52d34c8b13d770f0719f7b1d79", size = 22978, upload-time = "2024-10-18T15:21:27.846Z" }, + { url = "https://files.pythonhosted.org/packages/2a/9f/8619835cd6a711d6272d62abb78c033bda638fdc54c4e7f4272cf1c0962b/MarkupSafe-3.0.2-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:cdb82a876c47801bb54a690c5ae105a46b392ac6099881cdfb9f6e95e4014c6a", size = 24208, upload-time = "2024-10-18T15:21:28.744Z" }, + { url = "https://files.pythonhosted.org/packages/f9/bf/176950a1792b2cd2102b8ffeb5133e1ed984547b75db47c25a67d3359f77/MarkupSafe-3.0.2-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:cabc348d87e913db6ab4aa100f01b08f481097838bdddf7c7a84b7575b7309ca", size = 23357, upload-time = "2024-10-18T15:21:29.545Z" }, + { url = "https://files.pythonhosted.org/packages/ce/4f/9a02c1d335caabe5c4efb90e1b6e8ee944aa245c1aaaab8e8a618987d816/MarkupSafe-3.0.2-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:444dcda765c8a838eaae23112db52f1efaf750daddb2d9ca300bcae1039adc5c", size = 23344, upload-time = "2024-10-18T15:21:30.366Z" }, + { url = "https://files.pythonhosted.org/packages/ee/55/c271b57db36f748f0e04a759ace9f8f759ccf22b4960c270c78a394f58be/MarkupSafe-3.0.2-cp313-cp313-win32.whl", hash = "sha256:bcf3e58998965654fdaff38e58584d8937aa3096ab5354d493c77d1fdd66d7a1", size = 15101, upload-time = "2024-10-18T15:21:31.207Z" }, + { url = "https://files.pythonhosted.org/packages/29/88/07df22d2dd4df40aba9f3e402e6dc1b8ee86297dddbad4872bd5e7b0094f/MarkupSafe-3.0.2-cp313-cp313-win_amd64.whl", hash = "sha256:e6a2a455bd412959b57a172ce6328d2dd1f01cb2135efda2e4576e8a23fa3b0f", size = 15603, upload-time = "2024-10-18T15:21:32.032Z" }, + { url = "https://files.pythonhosted.org/packages/62/6a/8b89d24db2d32d433dffcd6a8779159da109842434f1dd2f6e71f32f738c/MarkupSafe-3.0.2-cp313-cp313t-macosx_10_13_universal2.whl", hash = "sha256:b5a6b3ada725cea8a5e634536b1b01c30bcdcd7f9c6fff4151548d5bf6b3a36c", size = 14510, upload-time = "2024-10-18T15:21:33.625Z" }, + { url = "https://files.pythonhosted.org/packages/7a/06/a10f955f70a2e5a9bf78d11a161029d278eeacbd35ef806c3fd17b13060d/MarkupSafe-3.0.2-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:a904af0a6162c73e3edcb969eeeb53a63ceeb5d8cf642fade7d39e7963a22ddb", size = 12486, upload-time = "2024-10-18T15:21:34.611Z" }, + { url = "https://files.pythonhosted.org/packages/34/cf/65d4a571869a1a9078198ca28f39fba5fbb910f952f9dbc5220afff9f5e6/MarkupSafe-3.0.2-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4aa4e5faecf353ed117801a068ebab7b7e09ffb6e1d5e412dc852e0da018126c", size = 25480, upload-time = "2024-10-18T15:21:35.398Z" }, + { url = "https://files.pythonhosted.org/packages/0c/e3/90e9651924c430b885468b56b3d597cabf6d72be4b24a0acd1fa0e12af67/MarkupSafe-3.0.2-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c0ef13eaeee5b615fb07c9a7dadb38eac06a0608b41570d8ade51c56539e509d", size = 23914, upload-time = "2024-10-18T15:21:36.231Z" }, + { url = "https://files.pythonhosted.org/packages/66/8c/6c7cf61f95d63bb866db39085150df1f2a5bd3335298f14a66b48e92659c/MarkupSafe-3.0.2-cp313-cp313t-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d16a81a06776313e817c951135cf7340a3e91e8c1ff2fac444cfd75fffa04afe", size = 23796, upload-time = "2024-10-18T15:21:37.073Z" }, + { url = "https://files.pythonhosted.org/packages/bb/35/cbe9238ec3f47ac9a7c8b3df7a808e7cb50fe149dc7039f5f454b3fba218/MarkupSafe-3.0.2-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:6381026f158fdb7c72a168278597a5e3a5222e83ea18f543112b2662a9b699c5", size = 25473, upload-time = "2024-10-18T15:21:37.932Z" }, + { url = "https://files.pythonhosted.org/packages/e6/32/7621a4382488aa283cc05e8984a9c219abad3bca087be9ec77e89939ded9/MarkupSafe-3.0.2-cp313-cp313t-musllinux_1_2_i686.whl", hash = "sha256:3d79d162e7be8f996986c064d1c7c817f6df3a77fe3d6859f6f9e7be4b8c213a", size = 24114, upload-time = "2024-10-18T15:21:39.799Z" }, + { url = "https://files.pythonhosted.org/packages/0d/80/0985960e4b89922cb5a0bac0ed39c5b96cbc1a536a99f30e8c220a996ed9/MarkupSafe-3.0.2-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:131a3c7689c85f5ad20f9f6fb1b866f402c445b220c19fe4308c0b147ccd2ad9", size = 24098, upload-time = "2024-10-18T15:21:40.813Z" }, + { url = "https://files.pythonhosted.org/packages/82/78/fedb03c7d5380df2427038ec8d973587e90561b2d90cd472ce9254cf348b/MarkupSafe-3.0.2-cp313-cp313t-win32.whl", hash = "sha256:ba8062ed2cf21c07a9e295d5b8a2a5ce678b913b45fdf68c32d95d6c1291e0b6", size = 15208, upload-time = "2024-10-18T15:21:41.814Z" }, + { url = "https://files.pythonhosted.org/packages/4f/65/6079a46068dfceaeabb5dcad6d674f5f5c61a6fa5673746f42a9f4c233b3/MarkupSafe-3.0.2-cp313-cp313t-win_amd64.whl", hash = "sha256:e444a31f8db13eb18ada366ab3cf45fd4b31e4db1236a4448f68778c1d1a5a2f", size = 15739, upload-time = "2024-10-18T15:21:42.784Z" }, +] + [[package]] name = "matplotlib" version = "3.10.1" @@ -400,6 +656,56 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/8f/8e/9ad090d3553c280a8060fbf6e24dc1c0c29704ee7d1c372f0c174aa59285/matplotlib_inline-0.1.7-py3-none-any.whl", hash = "sha256:df192d39a4ff8f21b1895d72e6a13f5fcc5099f00fa84384e0ea28c2cc0653ca", size = 9899, upload-time = "2024-04-15T13:44:43.265Z" }, ] +[[package]] +name = "mdurl" +version = "0.1.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/d6/54/cfe61301667036ec958cb99bd3efefba235e65cdeb9c84d24a8293ba1d90/mdurl-0.1.2.tar.gz", hash = "sha256:bb413d29f5eea38f31dd4754dd7377d4465116fb207585f97bf925588687c1ba", size = 8729, upload-time = "2022-08-14T12:40:10.846Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/b3/38/89ba8ad64ae25be8de66a6d463314cf1eb366222074cfda9ee839c56a4b4/mdurl-0.1.2-py3-none-any.whl", hash = "sha256:84008a41e51615a49fc9966191ff91509e3c40b939176e643fd50a5c2196b8f8", size = 9979, upload-time = "2022-08-14T12:40:09.779Z" }, +] + +[[package]] +name = "ml-dtypes" +version = "0.5.3" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "numpy" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/78/a7/aad060393123cfb383956dca68402aff3db1e1caffd5764887ed5153f41b/ml_dtypes-0.5.3.tar.gz", hash = "sha256:95ce33057ba4d05df50b1f3cfefab22e351868a843b3b15a46c65836283670c9", size = 692316, upload-time = "2025-07-29T18:39:19.454Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/0d/eb/bc07c88a6ab002b4635e44585d80fa0b350603f11a2097c9d1bfacc03357/ml_dtypes-0.5.3-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:156418abeeda48ea4797db6776db3c5bdab9ac7be197c1233771e0880c304057", size = 663864, upload-time = "2025-07-29T18:38:33.777Z" }, + { url = "https://files.pythonhosted.org/packages/cf/89/11af9b0f21b99e6386b6581ab40fb38d03225f9de5f55cf52097047e2826/ml_dtypes-0.5.3-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:1db60c154989af253f6c4a34e8a540c2c9dce4d770784d426945e09908fbb177", size = 4951313, upload-time = "2025-07-29T18:38:36.45Z" }, + { url = "https://files.pythonhosted.org/packages/d8/a9/b98b86426c24900b0c754aad006dce2863df7ce0bb2bcc2c02f9cc7e8489/ml_dtypes-0.5.3-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:1b255acada256d1fa8c35ed07b5f6d18bc21d1556f842fbc2d5718aea2cd9e55", size = 4928805, upload-time = "2025-07-29T18:38:38.29Z" }, + { url = "https://files.pythonhosted.org/packages/50/c1/85e6be4fc09c6175f36fb05a45917837f30af9a5146a5151cb3a3f0f9e09/ml_dtypes-0.5.3-cp312-cp312-win_amd64.whl", hash = "sha256:da65e5fd3eea434ccb8984c3624bc234ddcc0d9f4c81864af611aaebcc08a50e", size = 208182, upload-time = "2025-07-29T18:38:39.72Z" }, + { url = "https://files.pythonhosted.org/packages/9e/17/cf5326d6867be057f232d0610de1458f70a8ce7b6290e4b4a277ea62b4cd/ml_dtypes-0.5.3-cp312-cp312-win_arm64.whl", hash = "sha256:8bb9cd1ce63096567f5f42851f5843b5a0ea11511e50039a7649619abfb4ba6d", size = 161560, upload-time = "2025-07-29T18:38:41.072Z" }, + { url = "https://files.pythonhosted.org/packages/2d/87/1bcc98a66de7b2455dfb292f271452cac9edc4e870796e0d87033524d790/ml_dtypes-0.5.3-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:5103856a225465371fe119f2fef737402b705b810bd95ad5f348e6e1a6ae21af", size = 663781, upload-time = "2025-07-29T18:38:42.984Z" }, + { url = "https://files.pythonhosted.org/packages/fd/2c/bd2a79ba7c759ee192b5601b675b180a3fd6ccf48ffa27fe1782d280f1a7/ml_dtypes-0.5.3-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:4cae435a68861660af81fa3c5af16b70ca11a17275c5b662d9c6f58294e0f113", size = 4956217, upload-time = "2025-07-29T18:38:44.65Z" }, + { url = "https://files.pythonhosted.org/packages/14/f3/091ba84e5395d7fe5b30c081a44dec881cd84b408db1763ee50768b2ab63/ml_dtypes-0.5.3-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:6936283b56d74fbec431ca57ce58a90a908fdbd14d4e2d22eea6d72bb208a7b7", size = 4933109, upload-time = "2025-07-29T18:38:46.405Z" }, + { url = "https://files.pythonhosted.org/packages/bc/24/054036dbe32c43295382c90a1363241684c4d6aaa1ecc3df26bd0c8d5053/ml_dtypes-0.5.3-cp313-cp313-win_amd64.whl", hash = "sha256:d0f730a17cf4f343b2c7ad50cee3bd19e969e793d2be6ed911f43086460096e4", size = 208187, upload-time = "2025-07-29T18:38:48.24Z" }, + { url = "https://files.pythonhosted.org/packages/a6/3d/7dc3ec6794a4a9004c765e0c341e32355840b698f73fd2daff46f128afc1/ml_dtypes-0.5.3-cp313-cp313-win_arm64.whl", hash = "sha256:2db74788fc01914a3c7f7da0763427280adfc9cd377e9604b6b64eb8097284bd", size = 161559, upload-time = "2025-07-29T18:38:50.493Z" }, + { url = "https://files.pythonhosted.org/packages/12/91/e6c7a0d67a152b9330445f9f0cf8ae6eee9b83f990b8c57fe74631e42a90/ml_dtypes-0.5.3-cp313-cp313t-macosx_10_13_universal2.whl", hash = "sha256:93c36a08a6d158db44f2eb9ce3258e53f24a9a4a695325a689494f0fdbc71770", size = 689321, upload-time = "2025-07-29T18:38:52.03Z" }, + { url = "https://files.pythonhosted.org/packages/9e/6c/b7b94b84a104a5be1883305b87d4c6bd6ae781504474b4cca067cb2340ec/ml_dtypes-0.5.3-cp313-cp313t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:0e44a3761f64bc009d71ddb6d6c71008ba21b53ab6ee588dadab65e2fa79eafc", size = 5274495, upload-time = "2025-07-29T18:38:53.797Z" }, + { url = "https://files.pythonhosted.org/packages/5b/38/6266604dffb43378055394ea110570cf261a49876fc48f548dfe876f34cc/ml_dtypes-0.5.3-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:bdf40d2aaabd3913dec11840f0d0ebb1b93134f99af6a0a4fd88ffe924928ab4", size = 5285422, upload-time = "2025-07-29T18:38:56.603Z" }, + { url = "https://files.pythonhosted.org/packages/7c/88/8612ff177d043a474b9408f0382605d881eeb4125ba89d4d4b3286573a83/ml_dtypes-0.5.3-cp314-cp314-macosx_10_13_universal2.whl", hash = "sha256:aec640bd94c4c85c0d11e2733bd13cbb10438fb004852996ec0efbc6cacdaf70", size = 661182, upload-time = "2025-07-29T18:38:58.414Z" }, + { url = "https://files.pythonhosted.org/packages/6f/2b/0569a5e88b29240d373e835107c94ae9256fb2191d3156b43b2601859eff/ml_dtypes-0.5.3-cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:bda32ce212baa724e03c68771e5c69f39e584ea426bfe1a701cb01508ffc7035", size = 4956187, upload-time = "2025-07-29T18:39:00.611Z" }, + { url = "https://files.pythonhosted.org/packages/51/66/273c2a06ae44562b104b61e6b14444da00061fd87652506579d7eb2c40b1/ml_dtypes-0.5.3-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:c205cac07d24a29840c163d6469f61069ce4b065518519216297fc2f261f8db9", size = 4930911, upload-time = "2025-07-29T18:39:02.405Z" }, + { url = "https://files.pythonhosted.org/packages/93/ab/606be3e87dc0821bd360c8c1ee46108025c31a4f96942b63907bb441b87d/ml_dtypes-0.5.3-cp314-cp314-win_amd64.whl", hash = "sha256:cd7c0bb22d4ff86d65ad61b5dd246812e8993fbc95b558553624c33e8b6903ea", size = 216664, upload-time = "2025-07-29T18:39:03.927Z" }, + { url = "https://files.pythonhosted.org/packages/30/a2/e900690ca47d01dffffd66375c5de8c4f8ced0f1ef809ccd3b25b3e6b8fa/ml_dtypes-0.5.3-cp314-cp314-win_arm64.whl", hash = "sha256:9d55ea7f7baf2aed61bf1872116cefc9d0c3693b45cae3916897ee27ef4b835e", size = 160203, upload-time = "2025-07-29T18:39:05.671Z" }, + { url = "https://files.pythonhosted.org/packages/53/21/783dfb51f40d2660afeb9bccf3612b99f6a803d980d2a09132b0f9d216ab/ml_dtypes-0.5.3-cp314-cp314t-macosx_10_13_universal2.whl", hash = "sha256:e12e29764a0e66a7a31e9b8bf1de5cc0423ea72979f45909acd4292de834ccd3", size = 689324, upload-time = "2025-07-29T18:39:07.567Z" }, + { url = "https://files.pythonhosted.org/packages/09/f7/a82d249c711abf411ac027b7163f285487f5e615c3e0716c61033ce996ab/ml_dtypes-0.5.3-cp314-cp314t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:19f6c3a4f635c2fc9e2aa7d91416bd7a3d649b48350c51f7f715a09370a90d93", size = 5275917, upload-time = "2025-07-29T18:39:09.339Z" }, + { url = "https://files.pythonhosted.org/packages/7f/3c/541c4b30815ab90ebfbb51df15d0b4254f2f9f1e2b4907ab229300d5e6f2/ml_dtypes-0.5.3-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:5ab039ffb40f3dc0aeeeba84fd6c3452781b5e15bef72e2d10bcb33e4bbffc39", size = 5285284, upload-time = "2025-07-29T18:39:11.532Z" }, +] + +[[package]] +name = "namex" +version = "0.1.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/0c/c0/ee95b28f029c73f8d49d8f52edaed02a1d4a9acb8b69355737fdb1faa191/namex-0.1.0.tar.gz", hash = "sha256:117f03ccd302cc48e3f5c58a296838f6b89c83455ab8683a1e85f2a430aa4306", size = 6649, upload-time = "2025-05-26T23:17:38.918Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/b2/bc/465daf1de06409cdd4532082806770ee0d8d7df434da79c76564d0f69741/namex-0.1.0-py3-none-any.whl", hash = "sha256:e2012a474502f1e2251267062aae3114611f07df4224b6e06334c57b0f2ce87c", size = 5905, upload-time = "2025-05-26T23:17:37.695Z" }, +] + [[package]] name = "nest-asyncio" version = "1.6.0" @@ -464,6 +770,78 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/a4/7d/f1c30a92854540bf789e9cd5dde7ef49bbe63f855b85a2e6b3db8135c591/opencv_python-4.11.0.86-cp37-abi3-win_amd64.whl", hash = "sha256:085ad9b77c18853ea66283e98affefe2de8cc4c1f43eda4c100cf9b2721142ec", size = 39488044, upload-time = "2025-01-16T13:52:21.928Z" }, ] +[[package]] +name = "opt-einsum" +version = "3.4.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/8c/b9/2ac072041e899a52f20cf9510850ff58295003aa75525e58343591b0cbfb/opt_einsum-3.4.0.tar.gz", hash = "sha256:96ca72f1b886d148241348783498194c577fa30a8faac108586b14f1ba4473ac", size = 63004, upload-time = "2024-09-26T14:33:24.483Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/23/cd/066e86230ae37ed0be70aae89aabf03ca8d9f39c8aea0dec8029455b5540/opt_einsum-3.4.0-py3-none-any.whl", hash = "sha256:69bb92469f86a1565195ece4ac0323943e83477171b91d24c35afe028a90d7cd", size = 71932, upload-time = "2024-09-26T14:33:23.039Z" }, +] + +[[package]] +name = "optree" +version = "0.17.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "typing-extensions" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/56/c7/0853e0c59b135dff770615d2713b547b6b3b5cde7c10995b4a5825244612/optree-0.17.0.tar.gz", hash = "sha256:5335a5ec44479920620d72324c66563bd705ab2a698605dd4b6ee67dbcad7ecd", size = 163111, upload-time = "2025-07-25T11:26:11.586Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/79/ce/471ff57336630f2434238a8cb8401e0d714ee7d54a6117823fd85de5f656/optree-0.17.0-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:09156e2ea62cde66dcbd9a450a5517ad6bad07d4ffc98fab0982c1e4f538341a", size = 654627, upload-time = "2025-07-25T11:24:49.754Z" }, + { url = "https://files.pythonhosted.org/packages/aa/ef/3143b7840dd2daedf1257643119c0f3addd23cf90cc9d2efc88f8166931e/optree-0.17.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:750f24304d1d437c8b235d4bc9e4afda17d85950706c34a875c16049f707eeb4", size = 351124, upload-time = "2025-07-25T11:24:50.813Z" }, + { url = "https://files.pythonhosted.org/packages/41/90/e12dea2cb5d8a5e17bbe3011ed4e972b89c027272a816db4897589751cad/optree-0.17.0-cp312-cp312-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:e13ae51a63d69db445f269a3a4fd1d6edb064a705188d007ea47c9f034788fc5", size = 365869, upload-time = "2025-07-25T11:24:51.807Z" }, + { url = "https://files.pythonhosted.org/packages/76/ee/21af214663960a479863cd6c03d7a0abc8123ea22a6ea34689c2eed88ccd/optree-0.17.0-cp312-cp312-manylinux_2_26_i686.manylinux_2_28_i686.whl", hash = "sha256:5958f58423cc7870cb011c8c8f92687397380886e8c9d33adac752147e7bbc3f", size = 424465, upload-time = "2025-07-25T11:24:53.124Z" }, + { url = "https://files.pythonhosted.org/packages/54/a3/64b184a79373753f4f46a5cd301ea581f71d6dc1a5c103bd2394f0925d40/optree-0.17.0-cp312-cp312-manylinux_2_26_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:970ae4e47727b4c5526fc583b87d29190e576f6a2b6c19e8671589b73d256250", size = 420686, upload-time = "2025-07-25T11:24:54.212Z" }, + { url = "https://files.pythonhosted.org/packages/6c/6d/b6051b0b1ef9a49df96a66e9e62fc02620d2115d1ba659888c94e67fcfc9/optree-0.17.0-cp312-cp312-manylinux_2_26_s390x.manylinux_2_28_s390x.whl", hash = "sha256:54177fd3e6e05c08b66329e26d7d44b85f24125f25c6b74c921499a1b31b8f70", size = 421225, upload-time = "2025-07-25T11:24:55.213Z" }, + { url = "https://files.pythonhosted.org/packages/f6/f1/940bc959aaef9eede8bb1b1127833b0929c6ffa9268ec0f6cb19877e2027/optree-0.17.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:e1959cfbc38c228c8195354967cda64887b96219924b7b3759e5ee355582c1ec", size = 408819, upload-time = "2025-07-25T11:24:56.315Z" }, + { url = "https://files.pythonhosted.org/packages/56/52/ce527556e27dbf77266c1b1bb313ca446c94bc6edd6d7a882dbded028197/optree-0.17.0-cp312-cp312-win32.whl", hash = "sha256:039ea98c0cd94a64040d6f6d21dbe5cd9731bb380d7893f78d6898672080a232", size = 289107, upload-time = "2025-07-25T11:24:57.357Z" }, + { url = "https://files.pythonhosted.org/packages/eb/f1/aecb0199d269ad8ea41a86182474f98378a72681facbd6a06e94c23a2d02/optree-0.17.0-cp312-cp312-win_amd64.whl", hash = "sha256:c3a21109f635ce353d116ed1d77a7dfd77b898bcdaccef3bf74881ce7d6d54d8", size = 314074, upload-time = "2025-07-25T11:24:58.499Z" }, + { url = "https://files.pythonhosted.org/packages/3a/20/615ad64d24318709a236163dd8620fa7879a7720bfd0c755604d3dceeb76/optree-0.17.0-cp312-cp312-win_arm64.whl", hash = "sha256:1a39f957299426d2d4aa36cbc1acd71edb198ff0f28ddb43029bf58efe34a9a1", size = 316409, upload-time = "2025-07-25T11:24:59.855Z" }, + { url = "https://files.pythonhosted.org/packages/21/04/9706d11b880186e9e9d66d7c21ce249b2ce0212645137cc13fdd18247c26/optree-0.17.0-cp313-cp313-ios_13_0_arm64_iphoneos.whl", hash = "sha256:b5995a3efce4b00a14049268a81ab0379656a41ddf3c3761e3b88937fca44d48", size = 348177, upload-time = "2025-07-25T11:25:00.999Z" }, + { url = "https://files.pythonhosted.org/packages/ae/4b/0415c18816818ac871c9f3d5c7c5f4ceb83baff03ed511c9c94591ace4bc/optree-0.17.0-cp313-cp313-ios_13_0_arm64_iphonesimulator.whl", hash = "sha256:d06e8143d16fe6c0708f3cc2807b5b65f815d60ee2b52f3d79e4022c95563482", size = 354389, upload-time = "2025-07-25T11:25:02.337Z" }, + { url = "https://files.pythonhosted.org/packages/88/4d/5ce687b3945a34f0f0e17765745f146473b47177badd93b5979374d6e29c/optree-0.17.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:9537c4f82fe454a689e124462f252c4911cd7c78c6277334e7132f8157fb85e8", size = 661629, upload-time = "2025-07-25T11:25:03.429Z" }, + { url = "https://files.pythonhosted.org/packages/45/17/52ec65b80b6a17a9b7242e4cbf569c3d8035e72c49b6a3baba73aed6aa16/optree-0.17.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:79e8a594002509163d218827476f522d4f9ee6436438d90251d28d413af6740c", size = 354967, upload-time = "2025-07-25T11:25:04.523Z" }, + { url = "https://files.pythonhosted.org/packages/dd/12/24d4a417fd325ec06cfbce52716ac4f816ef696653b868960ac2ccb28436/optree-0.17.0-cp313-cp313-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:dfeea4aa0fd354d27922aba63ff9d86e4e126c6bf89cfb02849e68515519f1a5", size = 368513, upload-time = "2025-07-25T11:25:05.548Z" }, + { url = "https://files.pythonhosted.org/packages/30/e2/34e392209933e2c582c67594a7a6b4851bca4015c83b51c7508384b616b4/optree-0.17.0-cp313-cp313-manylinux_2_26_i686.manylinux_2_28_i686.whl", hash = "sha256:6b2ff8999a9b84d00f23a032b6b3f13678894432a335d024e0670b9880f238ca", size = 430378, upload-time = "2025-07-25T11:25:06.918Z" }, + { url = "https://files.pythonhosted.org/packages/5f/16/0a0d6139022e9a53ecb1212fb6fbc5b60eff824371071ef5f5fa481d8167/optree-0.17.0-cp313-cp313-manylinux_2_26_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:ea8bef525432b38a84e7448348da1a2dc308375bce79c77675cc50a501305851", size = 423294, upload-time = "2025-07-25T11:25:08.043Z" }, + { url = "https://files.pythonhosted.org/packages/ef/60/2e083dabb6aff6d939d8aab16ba3dbe6eee9429597a13f3fca57b33cdcde/optree-0.17.0-cp313-cp313-manylinux_2_26_s390x.manylinux_2_28_s390x.whl", hash = "sha256:f95b81aa67538d38316b184a6ff39a3725ee5c8555fba21dcb692f8d7c39302e", size = 424633, upload-time = "2025-07-25T11:25:09.141Z" }, + { url = "https://files.pythonhosted.org/packages/af/fd/0e4229b5fa3fd9d3c779a606c0f358ffbdfee717f49b3477facd04de2cec/optree-0.17.0-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:e808a1125169ae90de623456ef2423eb84a8578a74f03fe48b06b8561c2cc31d", size = 414866, upload-time = "2025-07-25T11:25:10.214Z" }, + { url = "https://files.pythonhosted.org/packages/e7/81/976082e979d42d36f9f81ee300d8fe7e86ca87588b70e372a40cb9203c9b/optree-0.17.0-cp313-cp313-win32.whl", hash = "sha256:4f3e0c5b20a4ef5b5a2688b5a07221cf1d2a8b2a57f82cf0c601f9d16f71450b", size = 289505, upload-time = "2025-07-25T11:25:11.616Z" }, + { url = "https://files.pythonhosted.org/packages/fb/ab/5b2c75c262c106747b5fbf1603a94ca8047896e719c3219ca85cb2d9c300/optree-0.17.0-cp313-cp313-win_amd64.whl", hash = "sha256:057f95213e403ff3a975f287aef6b687299d0c4512d211de24b1b98050cd4fbf", size = 316703, upload-time = "2025-07-25T11:25:12.638Z" }, + { url = "https://files.pythonhosted.org/packages/68/d6/78c0c927867b60d9b010bac84eae4046c761084bf2ed8a8d25521965ab4f/optree-0.17.0-cp313-cp313-win_arm64.whl", hash = "sha256:749dbecfd04edd50493b35bfb1f5be350f31b384533301e2257d4b0d0132544c", size = 318098, upload-time = "2025-07-25T11:25:13.755Z" }, + { url = "https://files.pythonhosted.org/packages/98/fd/6b5fdf3430157eced42d193bb49805668a380c672cc40317efe1dea3d739/optree-0.17.0-cp313-cp313t-macosx_10_13_universal2.whl", hash = "sha256:98c11fae09c5861f42c400f0fa3851f3d58ceba347267d458332710f094d5f75", size = 750506, upload-time = "2025-07-25T11:25:15.267Z" }, + { url = "https://files.pythonhosted.org/packages/19/0a/d8acb03fbf2edfd240a55363d903fad577e880a30a3117b60545a2a31aa5/optree-0.17.0-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:0b9f25c47de72044d7e1f42e9ed4c765f0867d321a2e6d194bc5facf69316417", size = 399106, upload-time = "2025-07-25T11:25:16.671Z" }, + { url = "https://files.pythonhosted.org/packages/39/df/b8882f5519c85af146de3a79a08066a56fe634b23052c593fcedc70bfcd7/optree-0.17.0-cp313-cp313t-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:8e45a13b35873712e095fe0f7fd6e9c4f98f3bd5af6f5dc33c17b80357bc97fc", size = 386945, upload-time = "2025-07-25T11:25:17.728Z" }, + { url = "https://files.pythonhosted.org/packages/ca/d7/91f4efb509bda601a1591465c4a5bd55320e4bafe06b294bf80754127b0e/optree-0.17.0-cp313-cp313t-manylinux_2_26_i686.manylinux_2_28_i686.whl", hash = "sha256:bfaf04d833dc53e5cfccff3b564e934a49086158472e31d84df31fce6d4f7b1c", size = 444177, upload-time = "2025-07-25T11:25:18.749Z" }, + { url = "https://files.pythonhosted.org/packages/84/17/a4833006e925c6ed5c45ceb02e65c9e9a260e70da6523858fcf628481847/optree-0.17.0-cp313-cp313t-manylinux_2_26_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:b4c1d030ac1c881803f5c8e23d241159ae403fd00cdf57625328f282fc671ebd", size = 439198, upload-time = "2025-07-25T11:25:19.865Z" }, + { url = "https://files.pythonhosted.org/packages/ef/d1/c08fc60f6dfcb1b86ca1fdc0add08a98412a1596cd45830acbdc309f2cdb/optree-0.17.0-cp313-cp313t-manylinux_2_26_s390x.manylinux_2_28_s390x.whl", hash = "sha256:bd7738709970acab5d963896192b63b2718be93bb6c0bcea91895ea157fa2b13", size = 439391, upload-time = "2025-07-25T11:25:20.942Z" }, + { url = "https://files.pythonhosted.org/packages/05/8f/461e10201003e6ad6bff3c594a29a7e044454aba68c5f795f4c8386ce47c/optree-0.17.0-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:1644bc24b6e93cafccfdeee44157c3d4ae9bb0af3e861300602d716699865b1a", size = 426555, upload-time = "2025-07-25T11:25:21.968Z" }, + { url = "https://files.pythonhosted.org/packages/b5/4a/334d579dcb1ecea722ad37b7a8b7b29bb05ab7fe4464479862932ffd1869/optree-0.17.0-cp313-cp313t-win32.whl", hash = "sha256:f6be1f6f045f326bd419285ee92ebb13f1317149cbea84ca73c5bf06109a61bb", size = 319949, upload-time = "2025-07-25T11:25:23.127Z" }, + { url = "https://files.pythonhosted.org/packages/c8/96/5879944aee653471ad2a1ca5194ece0ca5d59de7c1d1fc5682ea3fb42057/optree-0.17.0-cp313-cp313t-win_amd64.whl", hash = "sha256:9d06b89803b1c72044fa5f07c708e33af7fe38ca2f5001cc9b6463894105b052", size = 352862, upload-time = "2025-07-25T11:25:24.214Z" }, + { url = "https://files.pythonhosted.org/packages/0d/de/cc600c216db4caa5b9ec5372e0c7fa05cd38eacde7e519c969ceab8712b6/optree-0.17.0-cp313-cp313t-win_arm64.whl", hash = "sha256:43f243d04fdba644647b1cabbfe4d7ca5fdb16c02e6d7d56e638d3e0b73566e8", size = 352101, upload-time = "2025-07-25T11:25:25.318Z" }, + { url = "https://files.pythonhosted.org/packages/d5/f7/cc6e920faaf96f78e373bf4ca83f806a40892104c0d437ab03402afeb94d/optree-0.17.0-cp314-cp314-macosx_10_13_universal2.whl", hash = "sha256:8808e0b6bd9d0288b76cac6ed5d589532c9c4f3f2b88157c70591e8a0cc9aa3b", size = 662838, upload-time = "2025-07-25T11:25:26.439Z" }, + { url = "https://files.pythonhosted.org/packages/22/fd/a8859f401de8305bd09f6f0f7491e6153cf8e50a8390eaa2b9d0e1f1fc95/optree-0.17.0-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:80c9dd735e7990a48f3da981125df6c10c9990d1876be7a034357aece600e07f", size = 355857, upload-time = "2025-07-25T11:25:27.55Z" }, + { url = "https://files.pythonhosted.org/packages/3c/21/6480d23b52b2e23b976fe254b9fbdc4b514e90a349b1ee73565b185c69f1/optree-0.17.0-cp314-cp314-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:dd21e0a89806cc3b86aaa578a73897d56085038fe432043534a23b2e559d7691", size = 369929, upload-time = "2025-07-25T11:25:28.897Z" }, + { url = "https://files.pythonhosted.org/packages/b3/29/69bb26473ff862a1792f5568c977e7a2580e08afe0fdcd7a7b3e1e4d6933/optree-0.17.0-cp314-cp314-manylinux_2_26_i686.manylinux_2_28_i686.whl", hash = "sha256:9211c61285b8b3e42fd0e803cebd6e2b0987d8b2edffe45b42923debca09a9df", size = 430381, upload-time = "2025-07-25T11:25:29.984Z" }, + { url = "https://files.pythonhosted.org/packages/c8/8b/2c0a38c0d0c2396d698b97216cd6814d6754d11997b6ac66c57d87d71bae/optree-0.17.0-cp314-cp314-manylinux_2_26_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:87938255749a45979c4e331627cb33d81aa08b0a09d024368b3e25ff67f0e9f2", size = 424461, upload-time = "2025-07-25T11:25:31.116Z" }, + { url = "https://files.pythonhosted.org/packages/a7/77/08fda3f97621190d50762225ee8bad87463a8b3a55fba451a999971ff130/optree-0.17.0-cp314-cp314-manylinux_2_26_s390x.manylinux_2_28_s390x.whl", hash = "sha256:3432858145fd1955a3be12207507466ac40a6911f428bf5d2d6c7f67486530a2", size = 427234, upload-time = "2025-07-25T11:25:32.289Z" }, + { url = "https://files.pythonhosted.org/packages/ea/b5/b4f19952c36d6448c85a6ef6be5f916dd13548de2b684ab123f04b450850/optree-0.17.0-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:5afe3e9e2f6da0a0a5c0892f32f675eb88965036b061aa555b74e6c412a05e17", size = 413863, upload-time = "2025-07-25T11:25:33.379Z" }, + { url = "https://files.pythonhosted.org/packages/b7/8c/1da744bb0cc550aed105f8a252fa8d8270067c5e21db7b95e457f76701da/optree-0.17.0-cp314-cp314-win32.whl", hash = "sha256:db6ce8e0d8585621230446736fa99c2883b34f9e56784957f69c47e2de34bdb4", size = 294314, upload-time = "2025-07-25T11:25:34.49Z" }, + { url = "https://files.pythonhosted.org/packages/84/05/5865e2a33c535c6b47378a43605de17cc286de59b93dc7814eb122861963/optree-0.17.0-cp314-cp314-win_amd64.whl", hash = "sha256:aa963de4146fa1b5cdffb479d324262f245c957df0bb9a9b37f6fd559d027acc", size = 323848, upload-time = "2025-07-25T11:25:35.511Z" }, + { url = "https://files.pythonhosted.org/packages/f1/01/55321c0d7b6bb60d88e5f5927216bcdc03e99f1f42567a0bcc23e786554e/optree-0.17.0-cp314-cp314-win_arm64.whl", hash = "sha256:855bfc78eba74748f931be6d6b739a9b03ac82a5c96511d66f310659903f6812", size = 325642, upload-time = "2025-07-25T11:25:36.649Z" }, + { url = "https://files.pythonhosted.org/packages/ee/be/24ef1e0d4212aedb087ff7b7a324426a093172327ecf9c33d2cf4cb6a69c/optree-0.17.0-cp314-cp314t-macosx_10_13_universal2.whl", hash = "sha256:0ac9626a51148c8497e82e9a9c21746795e179fbdec0b01c1644031e25f0d97e", size = 750484, upload-time = "2025-07-25T11:25:37.897Z" }, + { url = "https://files.pythonhosted.org/packages/4e/80/fc26e7c120849297992b0ecf8e435f213a379cc7923ea6ab1bad7b7d9c3f/optree-0.17.0-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:769c74ac289cdf108986fad2a36f24f4dd5ac6cf62919f99facdce943cd37359", size = 399067, upload-time = "2025-07-25T11:25:38.953Z" }, + { url = "https://files.pythonhosted.org/packages/88/42/6003f13e66cfbe7f0011bf8509da2479aba93068cdb9d79bf46010255089/optree-0.17.0-cp314-cp314t-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:5739c03a3362be42cb7649e82457c90aa818aa3e82af9681d3100c3346f4a90f", size = 386975, upload-time = "2025-07-25T11:25:40.376Z" }, + { url = "https://files.pythonhosted.org/packages/d0/53/621642abd76eda5a941b47adc98be81f0052683160be776499d11b4af83d/optree-0.17.0-cp314-cp314t-manylinux_2_26_i686.manylinux_2_28_i686.whl", hash = "sha256:ee07b59a08bd45aedd5252241a98841f1a5082a7b9b73df2dae6a433aa2a91d8", size = 444173, upload-time = "2025-07-25T11:25:41.474Z" }, + { url = "https://files.pythonhosted.org/packages/5b/d3/8819a2d5105a240d6793d11a61d597db91756ce84da5cee08808c6b8f61f/optree-0.17.0-cp314-cp314t-manylinux_2_26_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:875c017890a4b5d566af5593cab67fe3c4845544942af57e6bb9dea17e060297", size = 439080, upload-time = "2025-07-25T11:25:42.605Z" }, + { url = "https://files.pythonhosted.org/packages/c6/ef/9dbd34dfd1ad89feb239ca9925897a14ac94f190379a3bd991afdfd94186/optree-0.17.0-cp314-cp314t-manylinux_2_26_s390x.manylinux_2_28_s390x.whl", hash = "sha256:ffa5686191139f763e13445a169765c83517164bc28e60dbedb19bed2b2655f1", size = 439422, upload-time = "2025-07-25T11:25:43.672Z" }, + { url = "https://files.pythonhosted.org/packages/86/ca/a7a7549af2951925a692df508902ed2a6a94a51bc846806d2281b1029ef9/optree-0.17.0-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:575cf48cc2190acb565bd2b26b6f9b15c4e3b60183e86031215badc9d5441345", size = 426579, upload-time = "2025-07-25T11:25:44.765Z" }, + { url = "https://files.pythonhosted.org/packages/e6/0c/eb4d8ef38f1b51116095985b350ac9eede7a71d40c2ffaa283e9646b04e0/optree-0.17.0-cp314-cp314t-win32.whl", hash = "sha256:f1897de02364b7ef4a5bb56ae352b674ebf2cdd33da2b0f3543340282dc1f3e1", size = 329053, upload-time = "2025-07-25T11:25:45.845Z" }, + { url = "https://files.pythonhosted.org/packages/18/c6/f8e8c339e384578e3300215c732c20033f97d5ceb4c3d23a38bdb3527d98/optree-0.17.0-cp314-cp314t-win_amd64.whl", hash = "sha256:08df33cf74518f74b1c1f4ac0b760f544796a0b1cede91191c4daea0df3f314c", size = 367555, upload-time = "2025-07-25T11:25:46.95Z" }, + { url = "https://files.pythonhosted.org/packages/97/6f/1358550954dbbbb93b23fc953800e1ff2283024505255b0f9ba901f25e0e/optree-0.17.0-cp314-cp314t-win_arm64.whl", hash = "sha256:93d08d17b7b1d82b51ee7dd3a5a21ae2391fb30fc65a1369d4855c484923b967", size = 359135, upload-time = "2025-07-25T11:25:48.062Z" }, +] + [[package]] name = "packaging" version = "25.0" @@ -590,6 +968,20 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/ce/4f/5249960887b1fbe561d9ff265496d170b55a735b76724f10ef19f9e40716/prompt_toolkit-3.0.51-py3-none-any.whl", hash = "sha256:52742911fde84e2d423e2f9a4cf1de7d7ac4e51958f648d9540e0fb8db077b07", size = 387810, upload-time = "2025-04-15T09:18:44.753Z" }, ] +[[package]] +name = "protobuf" +version = "6.32.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/c0/df/fb4a8eeea482eca989b51cffd274aac2ee24e825f0bf3cbce5281fa1567b/protobuf-6.32.0.tar.gz", hash = "sha256:a81439049127067fc49ec1d36e25c6ee1d1a2b7be930675f919258d03c04e7d2", size = 440614, upload-time = "2025-08-14T21:21:25.015Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/33/18/df8c87da2e47f4f1dcc5153a81cd6bca4e429803f4069a299e236e4dd510/protobuf-6.32.0-cp310-abi3-win32.whl", hash = "sha256:84f9e3c1ff6fb0308dbacb0950d8aa90694b0d0ee68e75719cb044b7078fe741", size = 424409, upload-time = "2025-08-14T21:21:12.366Z" }, + { url = "https://files.pythonhosted.org/packages/e1/59/0a820b7310f8139bd8d5a9388e6a38e1786d179d6f33998448609296c229/protobuf-6.32.0-cp310-abi3-win_amd64.whl", hash = "sha256:a8bdbb2f009cfc22a36d031f22a625a38b615b5e19e558a7b756b3279723e68e", size = 435735, upload-time = "2025-08-14T21:21:15.046Z" }, + { url = "https://files.pythonhosted.org/packages/cc/5b/0d421533c59c789e9c9894683efac582c06246bf24bb26b753b149bd88e4/protobuf-6.32.0-cp39-abi3-macosx_10_9_universal2.whl", hash = "sha256:d52691e5bee6c860fff9a1c86ad26a13afbeb4b168cd4445c922b7e2cf85aaf0", size = 426449, upload-time = "2025-08-14T21:21:16.687Z" }, + { url = "https://files.pythonhosted.org/packages/ec/7b/607764ebe6c7a23dcee06e054fd1de3d5841b7648a90fd6def9a3bb58c5e/protobuf-6.32.0-cp39-abi3-manylinux2014_aarch64.whl", hash = "sha256:501fe6372fd1c8ea2a30b4d9be8f87955a64d6be9c88a973996cef5ef6f0abf1", size = 322869, upload-time = "2025-08-14T21:21:18.282Z" }, + { url = "https://files.pythonhosted.org/packages/40/01/2e730bd1c25392fc32e3268e02446f0d77cb51a2c3a8486b1798e34d5805/protobuf-6.32.0-cp39-abi3-manylinux2014_x86_64.whl", hash = "sha256:75a2aab2bd1aeb1f5dc7c5f33bcb11d82ea8c055c9becbb41c26a8c43fd7092c", size = 322009, upload-time = "2025-08-14T21:21:19.893Z" }, + { url = "https://files.pythonhosted.org/packages/9c/f2/80ffc4677aac1bc3519b26bc7f7f5de7fce0ee2f7e36e59e27d8beb32dd1/protobuf-6.32.0-py3-none-any.whl", hash = "sha256:ba377e5b67b908c8f3072a57b63e2c6a4cbd18aea4ed98d2584350dbf46f2783", size = 169287, upload-time = "2025-08-14T21:21:23.515Z" }, +] + [[package]] name = "psutil" version = "7.0.0" @@ -725,6 +1117,34 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/05/4c/bf3cad0d64c3214ac881299c4562b815f05d503bccc513e3fd4fdc6f67e4/pyzmq-26.4.0-cp313-cp313t-musllinux_1_1_x86_64.whl", hash = "sha256:26a2a7451606b87f67cdeca2c2789d86f605da08b4bd616b1a9981605ca3a364", size = 1395540, upload-time = "2025-04-04T12:04:30.562Z" }, ] +[[package]] +name = "requests" +version = "2.32.5" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "certifi" }, + { name = "charset-normalizer" }, + { name = "idna" }, + { name = "urllib3" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/c9/74/b3ff8e6c8446842c3f5c837e9c3dfcfe2018ea6ecef224c710c85ef728f4/requests-2.32.5.tar.gz", hash = "sha256:dbba0bac56e100853db0ea71b82b4dfd5fe2bf6d3754a8893c3af500cec7d7cf", size = 134517, upload-time = "2025-08-18T20:46:02.573Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/1e/db/4254e3eabe8020b458f1a747140d32277ec7a271daf1d235b70dc0b4e6e3/requests-2.32.5-py3-none-any.whl", hash = "sha256:2462f94637a34fd532264295e186976db0f5d453d1cdd31473c85a6a161affb6", size = 64738, upload-time = "2025-08-18T20:46:00.542Z" }, +] + +[[package]] +name = "rich" +version = "14.1.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "markdown-it-py" }, + { name = "pygments" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/fe/75/af448d8e52bf1d8fa6a9d089ca6c07ff4453d86c65c145d0a300bb073b9b/rich-14.1.0.tar.gz", hash = "sha256:e497a48b844b0320d45007cdebfeaeed8db2a4f4bcf49f15e455cfc4af11eaa8", size = 224441, upload-time = "2025-07-25T07:32:58.125Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e3/30/3c4d035596d3cf444529e0b2953ad0466f6049528a879d27534700580395/rich-14.1.0-py3-none-any.whl", hash = "sha256:536f5f1785986d6dbdea3c75205c473f970777b4a0d6c6dd1b696aa05a3fa04f", size = 243368, upload-time = "2025-07-25T07:32:56.73Z" }, +] + [[package]] name = "scikit-learn" version = "1.6.1" @@ -791,6 +1211,15 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/0a/c8/b3f566db71461cabd4b2d5b39bcc24a7e1c119535c8361f81426be39bb47/scipy-1.15.2-cp313-cp313t-win_amd64.whl", hash = "sha256:fe8a9eb875d430d81755472c5ba75e84acc980e4a8f6204d402849234d3017db", size = 40477705, upload-time = "2025-02-17T00:34:43.619Z" }, ] +[[package]] +name = "setuptools" +version = "80.9.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/18/5d/3bf57dcd21979b887f014ea83c24ae194cfcd12b9e0fda66b957c69d1fca/setuptools-80.9.0.tar.gz", hash = "sha256:f36b47402ecde768dbfafc46e8e4207b4360c654f1f3bb84475f0a28628fb19c", size = 1319958, upload-time = "2025-05-27T00:56:51.443Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a3/dc/17031897dae0efacfea57dfd3a82fdd2a2aeb58e0ff71b77b87e44edc772/setuptools-80.9.0-py3-none-any.whl", hash = "sha256:062d34222ad13e0cc312a4c02d73f059e86a4acbfbdea8f8f76b28c99f306922", size = 1201486, upload-time = "2025-05-27T00:56:49.664Z" }, +] + [[package]] name = "six" version = "1.17.0" @@ -826,6 +1255,7 @@ dependencies = [ { name = "pandas" }, { name = "scikit-learn" }, { name = "scipy" }, + { name = "tensorflow" }, ] [package.dev-dependencies] @@ -843,6 +1273,7 @@ requires-dist = [ { name = "pandas", specifier = ">=2.2.3" }, { name = "scikit-learn", specifier = ">=1.6.1" }, { name = "scipy", specifier = ">=1.15.2" }, + { name = "tensorflow", specifier = ">=2.20.0" }, ] [package.metadata.requires-dev] @@ -851,6 +1282,83 @@ dev = [ { name = "uv", specifier = ">=0.6.16" }, ] +[[package]] +name = "tensorboard" +version = "2.20.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "absl-py" }, + { name = "grpcio" }, + { name = "markdown" }, + { name = "numpy" }, + { name = "packaging" }, + { name = "pillow" }, + { name = "protobuf" }, + { name = "setuptools" }, + { name = "tensorboard-data-server" }, + { name = "werkzeug" }, +] +wheels = [ + { url = "https://files.pythonhosted.org/packages/9c/d9/a5db55f88f258ac669a92858b70a714bbbd5acd993820b41ec4a96a4d77f/tensorboard-2.20.0-py3-none-any.whl", hash = "sha256:9dc9f978cb84c0723acf9a345d96c184f0293d18f166bb8d59ee098e6cfaaba6", size = 5525680, upload-time = "2025-07-17T19:20:49.638Z" }, +] + +[[package]] +name = "tensorboard-data-server" +version = "0.7.2" +source = { registry = "https://pypi.org/simple" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/7a/13/e503968fefabd4c6b2650af21e110aa8466fe21432cd7c43a84577a89438/tensorboard_data_server-0.7.2-py3-none-any.whl", hash = "sha256:7e0610d205889588983836ec05dc098e80f97b7e7bbff7e994ebb78f578d0ddb", size = 2356, upload-time = "2023-10-23T21:23:32.16Z" }, + { url = "https://files.pythonhosted.org/packages/b7/85/dabeaf902892922777492e1d253bb7e1264cadce3cea932f7ff599e53fea/tensorboard_data_server-0.7.2-py3-none-macosx_10_9_x86_64.whl", hash = "sha256:9fe5d24221b29625dbc7328b0436ca7fc1c23de4acf4d272f1180856e32f9f60", size = 4823598, upload-time = "2023-10-23T21:23:33.714Z" }, + { url = "https://files.pythonhosted.org/packages/73/c6/825dab04195756cf8ff2e12698f22513b3db2f64925bdd41671bfb33aaa5/tensorboard_data_server-0.7.2-py3-none-manylinux_2_31_x86_64.whl", hash = "sha256:ef687163c24185ae9754ed5650eb5bc4d84ff257aabdc33f0cc6f74d8ba54530", size = 6590363, upload-time = "2023-10-23T21:23:35.583Z" }, +] + +[[package]] +name = "tensorflow" +version = "2.20.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "absl-py" }, + { name = "astunparse" }, + { name = "flatbuffers" }, + { name = "gast" }, + { name = "google-pasta" }, + { name = "grpcio" }, + { name = "h5py" }, + { name = "keras" }, + { name = "libclang" }, + { name = "ml-dtypes" }, + { name = "numpy" }, + { name = "opt-einsum" }, + { name = "packaging" }, + { name = "protobuf" }, + { name = "requests" }, + { name = "setuptools" }, + { name = "six" }, + { name = "tensorboard" }, + { name = "termcolor" }, + { name = "typing-extensions" }, + { name = "wrapt" }, +] +wheels = [ + { url = "https://files.pythonhosted.org/packages/35/31/47712f425c09cc8b8dba39c6c45aee939c4636a6feb8c81376a4eae653e0/tensorflow-2.20.0-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:52b122f0232fd7ab10f28d537ce08470d0b6dcac7fff9685432daac7f8a06c8f", size = 200540302, upload-time = "2025-08-13T16:52:22.146Z" }, + { url = "https://files.pythonhosted.org/packages/ec/b4/f028a5de27d0fda10ba6145bc76e40c37ff6d2d1e95b601adb5ae17d635e/tensorflow-2.20.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2bfbfb3dd0e22bffc45fe1e922390d27753e99261fab8a882e802cf98a0e078f", size = 259533109, upload-time = "2025-08-13T16:52:31.513Z" }, + { url = "https://files.pythonhosted.org/packages/9c/d1/6aa15085d672056d5f08b5f28b1c7ce01c4e12149a23b0c98e3c79d04441/tensorflow-2.20.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:25265b0bc527e0d54b1e9cc60c44a24f44a809fe27666b905f0466471f9c52ec", size = 620682547, upload-time = "2025-08-13T16:52:46.396Z" }, + { url = "https://files.pythonhosted.org/packages/f9/37/b97abb360b551fbf5870a0ee07e39ff9c655e6e3e2f839bc88be81361842/tensorflow-2.20.0-cp312-cp312-win_amd64.whl", hash = "sha256:1590cbf87b6bcbd34d8e9ad70d0c696135e0aa71be31803b27358cf7ed63f8fc", size = 331887041, upload-time = "2025-08-13T16:53:05.532Z" }, + { url = "https://files.pythonhosted.org/packages/04/82/af283f402f8d1e9315644a331a5f0f326264c5d1de08262f3de5a5ade422/tensorflow-2.20.0-cp313-cp313-macosx_12_0_arm64.whl", hash = "sha256:197f0b613b38c0da5c6a12a8295ad4a05c78b853835dae8e0f9dfae3ce9ce8a5", size = 200671458, upload-time = "2025-08-13T16:53:16.568Z" }, + { url = "https://files.pythonhosted.org/packages/ea/4c/c1aa90c5cc92e9f7f9c78421e121ef25bae7d378f8d1d4cbad46c6308836/tensorflow-2.20.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:47c88e05a07f1ead4977b4894b3ecd4d8075c40191065afc4fd9355c9db3d926", size = 259663776, upload-time = "2025-08-13T16:53:24.507Z" }, + { url = "https://files.pythonhosted.org/packages/43/fb/8be8547c128613d82a2b006004026d86ed0bd672e913029a98153af4ffab/tensorflow-2.20.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5fa3729b0126f75a99882b89fb7d536515721eda8014a63e259e780ba0a37372", size = 620815537, upload-time = "2025-08-13T16:53:42.577Z" }, + { url = "https://files.pythonhosted.org/packages/9b/9e/02e201033f8d6bd5f79240b7262337de44c51a6cfd85c23a86c103c7684d/tensorflow-2.20.0-cp313-cp313-win_amd64.whl", hash = "sha256:c25edad45e8cb9e76366f7a8c835279f9169028d610f3b52ce92d332a1b05438", size = 332012220, upload-time = "2025-08-13T16:53:57.303Z" }, +] + +[[package]] +name = "termcolor" +version = "3.1.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/ca/6c/3d75c196ac07ac8749600b60b03f4f6094d54e132c4d94ebac6ee0e0add0/termcolor-3.1.0.tar.gz", hash = "sha256:6a6dd7fbee581909eeec6a756cff1d7f7c376063b14e4a298dc4980309e55970", size = 14324, upload-time = "2025-04-30T11:37:53.791Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/4f/bd/de8d508070629b6d84a30d01d57e4a65c69aa7f5abe7560b8fad3b50ea59/termcolor-3.1.0-py3-none-any.whl", hash = "sha256:591dd26b5c2ce03b9e43f391264626557873ce1d379019786f99b0c2bee140aa", size = 7684, upload-time = "2025-04-30T11:37:52.382Z" }, +] + [[package]] name = "threadpoolctl" version = "3.6.0" @@ -887,6 +1395,15 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/00/c0/8f5d070730d7836adc9c9b6408dec68c6ced86b304a9b26a14df072a6e8c/traitlets-5.14.3-py3-none-any.whl", hash = "sha256:b74e89e397b1ed28cc831db7aea759ba6640cb3de13090ca145426688ff1ac4f", size = 85359, upload-time = "2024-04-19T11:11:46.763Z" }, ] +[[package]] +name = "typing-extensions" +version = "4.15.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/72/94/1a15dd82efb362ac84269196e94cf00f187f7ed21c242792a923cdb1c61f/typing_extensions-4.15.0.tar.gz", hash = "sha256:0cea48d173cc12fa28ecabc3b837ea3cf6f38c6d1136f85cbaaf598984861466", size = 109391, upload-time = "2025-08-25T13:49:26.313Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/18/67/36e9267722cc04a6b9f15c7f3441c2363321a3ea07da7ae0c0707beb2a9c/typing_extensions-4.15.0-py3-none-any.whl", hash = "sha256:f0fa19c6845758ab08074a0cfa8b7aecb71c999ca73d62883bc25cc018c4e548", size = 44614, upload-time = "2025-08-25T13:49:24.86Z" }, +] + [[package]] name = "tzdata" version = "2025.2" @@ -896,6 +1413,15 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/5c/23/c7abc0ca0a1526a0774eca151daeb8de62ec457e77262b66b359c3c7679e/tzdata-2025.2-py2.py3-none-any.whl", hash = "sha256:1a403fada01ff9221ca8044d701868fa132215d84beb92242d9acd2147f667a8", size = 347839, upload-time = "2025-03-23T13:54:41.845Z" }, ] +[[package]] +name = "urllib3" +version = "2.5.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/15/22/9ee70a2574a4f4599c47dd506532914ce044817c7752a79b6a51286319bc/urllib3-2.5.0.tar.gz", hash = "sha256:3fc47733c7e419d4bc3f6b3dc2b4f890bb743906a30d56ba4a5bfa4bbff92760", size = 393185, upload-time = "2025-06-18T14:07:41.644Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a7/c2/fe1e52489ae3122415c51f387e221dd0773709bad6c6cdaa599e8a2c5185/urllib3-2.5.0-py3-none-any.whl", hash = "sha256:e6b01673c0fa6a13e374b50871808eb3bf7046c4b125b216f6bf1cc604cff0dc", size = 129795, upload-time = "2025-06-18T14:07:40.39Z" }, +] + [[package]] name = "uv" version = "0.6.16" @@ -929,3 +1455,73 @@ sdist = { url = "https://files.pythonhosted.org/packages/6c/63/53559446a878410fc wheels = [ { url = "https://files.pythonhosted.org/packages/fd/84/fd2ba7aafacbad3c4201d395674fc6348826569da3c0937e75505ead3528/wcwidth-0.2.13-py2.py3-none-any.whl", hash = "sha256:3da69048e4540d84af32131829ff948f1e022c1c6bdb8d6102117aac784f6859", size = 34166, upload-time = "2024-01-06T02:10:55.763Z" }, ] + +[[package]] +name = "werkzeug" +version = "3.1.3" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "markupsafe" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/9f/69/83029f1f6300c5fb2471d621ab06f6ec6b3324685a2ce0f9777fd4a8b71e/werkzeug-3.1.3.tar.gz", hash = "sha256:60723ce945c19328679790e3282cc758aa4a6040e4bb330f53d30fa546d44746", size = 806925, upload-time = "2024-11-08T15:52:18.093Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/52/24/ab44c871b0f07f491e5d2ad12c9bd7358e527510618cb1b803a88e986db1/werkzeug-3.1.3-py3-none-any.whl", hash = "sha256:54b78bf3716d19a65be4fceccc0d1d7b89e608834989dfae50ea87564639213e", size = 224498, upload-time = "2024-11-08T15:52:16.132Z" }, +] + +[[package]] +name = "wheel" +version = "0.45.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/8a/98/2d9906746cdc6a6ef809ae6338005b3f21bb568bea3165cfc6a243fdc25c/wheel-0.45.1.tar.gz", hash = "sha256:661e1abd9198507b1409a20c02106d9670b2576e916d58f520316666abca6729", size = 107545, upload-time = "2024-11-23T00:18:23.513Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/0b/2c/87f3254fd8ffd29e4c02732eee68a83a1d3c346ae39bc6822dcbcb697f2b/wheel-0.45.1-py3-none-any.whl", hash = "sha256:708e7481cc80179af0e556bbf0cc00b8444c7321e2700b8d8580231d13017248", size = 72494, upload-time = "2024-11-23T00:18:21.207Z" }, +] + +[[package]] +name = "wrapt" +version = "1.17.3" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/95/8f/aeb76c5b46e273670962298c23e7ddde79916cb74db802131d49a85e4b7d/wrapt-1.17.3.tar.gz", hash = "sha256:f66eb08feaa410fe4eebd17f2a2c8e2e46d3476e9f8c783daa8e09e0faa666d0", size = 55547, upload-time = "2025-08-12T05:53:21.714Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/9f/41/cad1aba93e752f1f9268c77270da3c469883d56e2798e7df6240dcb2287b/wrapt-1.17.3-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:ab232e7fdb44cdfbf55fc3afa31bcdb0d8980b9b95c38b6405df2acb672af0e0", size = 53998, upload-time = "2025-08-12T05:51:47.138Z" }, + { url = "https://files.pythonhosted.org/packages/60/f8/096a7cc13097a1869fe44efe68dace40d2a16ecb853141394047f0780b96/wrapt-1.17.3-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:9baa544e6acc91130e926e8c802a17f3b16fbea0fd441b5a60f5cf2cc5c3deba", size = 39020, upload-time = "2025-08-12T05:51:35.906Z" }, + { url = "https://files.pythonhosted.org/packages/33/df/bdf864b8997aab4febb96a9ae5c124f700a5abd9b5e13d2a3214ec4be705/wrapt-1.17.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:6b538e31eca1a7ea4605e44f81a48aa24c4632a277431a6ed3f328835901f4fd", size = 39098, upload-time = "2025-08-12T05:51:57.474Z" }, + { url = "https://files.pythonhosted.org/packages/9f/81/5d931d78d0eb732b95dc3ddaeeb71c8bb572fb01356e9133916cd729ecdd/wrapt-1.17.3-cp312-cp312-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:042ec3bb8f319c147b1301f2393bc19dba6e176b7da446853406d041c36c7828", size = 88036, upload-time = "2025-08-12T05:52:34.784Z" }, + { url = "https://files.pythonhosted.org/packages/ca/38/2e1785df03b3d72d34fc6252d91d9d12dc27a5c89caef3335a1bbb8908ca/wrapt-1.17.3-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:3af60380ba0b7b5aeb329bc4e402acd25bd877e98b3727b0135cb5c2efdaefe9", size = 88156, upload-time = "2025-08-12T05:52:13.599Z" }, + { url = "https://files.pythonhosted.org/packages/b3/8b/48cdb60fe0603e34e05cffda0b2a4adab81fd43718e11111a4b0100fd7c1/wrapt-1.17.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:0b02e424deef65c9f7326d8c19220a2c9040c51dc165cddb732f16198c168396", size = 87102, upload-time = "2025-08-12T05:52:14.56Z" }, + { url = "https://files.pythonhosted.org/packages/3c/51/d81abca783b58f40a154f1b2c56db1d2d9e0d04fa2d4224e357529f57a57/wrapt-1.17.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:74afa28374a3c3a11b3b5e5fca0ae03bef8450d6aa3ab3a1e2c30e3a75d023dc", size = 87732, upload-time = "2025-08-12T05:52:36.165Z" }, + { url = "https://files.pythonhosted.org/packages/9e/b1/43b286ca1392a006d5336412d41663eeef1ad57485f3e52c767376ba7e5a/wrapt-1.17.3-cp312-cp312-win32.whl", hash = "sha256:4da9f45279fff3543c371d5ababc57a0384f70be244de7759c85a7f989cb4ebe", size = 36705, upload-time = "2025-08-12T05:53:07.123Z" }, + { url = "https://files.pythonhosted.org/packages/28/de/49493f962bd3c586ab4b88066e967aa2e0703d6ef2c43aa28cb83bf7b507/wrapt-1.17.3-cp312-cp312-win_amd64.whl", hash = "sha256:e71d5c6ebac14875668a1e90baf2ea0ef5b7ac7918355850c0908ae82bcb297c", size = 38877, upload-time = "2025-08-12T05:53:05.436Z" }, + { url = "https://files.pythonhosted.org/packages/f1/48/0f7102fe9cb1e8a5a77f80d4f0956d62d97034bbe88d33e94699f99d181d/wrapt-1.17.3-cp312-cp312-win_arm64.whl", hash = "sha256:604d076c55e2fdd4c1c03d06dc1a31b95130010517b5019db15365ec4a405fc6", size = 36885, upload-time = "2025-08-12T05:52:54.367Z" }, + { url = "https://files.pythonhosted.org/packages/fc/f6/759ece88472157acb55fc195e5b116e06730f1b651b5b314c66291729193/wrapt-1.17.3-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:a47681378a0439215912ef542c45a783484d4dd82bac412b71e59cf9c0e1cea0", size = 54003, upload-time = "2025-08-12T05:51:48.627Z" }, + { url = "https://files.pythonhosted.org/packages/4f/a9/49940b9dc6d47027dc850c116d79b4155f15c08547d04db0f07121499347/wrapt-1.17.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:54a30837587c6ee3cd1a4d1c2ec5d24e77984d44e2f34547e2323ddb4e22eb77", size = 39025, upload-time = "2025-08-12T05:51:37.156Z" }, + { url = "https://files.pythonhosted.org/packages/45/35/6a08de0f2c96dcdd7fe464d7420ddb9a7655a6561150e5fc4da9356aeaab/wrapt-1.17.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:16ecf15d6af39246fe33e507105d67e4b81d8f8d2c6598ff7e3ca1b8a37213f7", size = 39108, upload-time = "2025-08-12T05:51:58.425Z" }, + { url = "https://files.pythonhosted.org/packages/0c/37/6faf15cfa41bf1f3dba80cd3f5ccc6622dfccb660ab26ed79f0178c7497f/wrapt-1.17.3-cp313-cp313-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:6fd1ad24dc235e4ab88cda009e19bf347aabb975e44fd5c2fb22a3f6e4141277", size = 88072, upload-time = "2025-08-12T05:52:37.53Z" }, + { url = "https://files.pythonhosted.org/packages/78/f2/efe19ada4a38e4e15b6dff39c3e3f3f73f5decf901f66e6f72fe79623a06/wrapt-1.17.3-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:0ed61b7c2d49cee3c027372df5809a59d60cf1b6c2f81ee980a091f3afed6a2d", size = 88214, upload-time = "2025-08-12T05:52:15.886Z" }, + { url = "https://files.pythonhosted.org/packages/40/90/ca86701e9de1622b16e09689fc24b76f69b06bb0150990f6f4e8b0eeb576/wrapt-1.17.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:423ed5420ad5f5529db9ce89eac09c8a2f97da18eb1c870237e84c5a5c2d60aa", size = 87105, upload-time = "2025-08-12T05:52:17.914Z" }, + { url = "https://files.pythonhosted.org/packages/fd/e0/d10bd257c9a3e15cbf5523025252cc14d77468e8ed644aafb2d6f54cb95d/wrapt-1.17.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:e01375f275f010fcbf7f643b4279896d04e571889b8a5b3f848423d91bf07050", size = 87766, upload-time = "2025-08-12T05:52:39.243Z" }, + { url = "https://files.pythonhosted.org/packages/e8/cf/7d848740203c7b4b27eb55dbfede11aca974a51c3d894f6cc4b865f42f58/wrapt-1.17.3-cp313-cp313-win32.whl", hash = "sha256:53e5e39ff71b3fc484df8a522c933ea2b7cdd0d5d15ae82e5b23fde87d44cbd8", size = 36711, upload-time = "2025-08-12T05:53:10.074Z" }, + { url = "https://files.pythonhosted.org/packages/57/54/35a84d0a4d23ea675994104e667ceff49227ce473ba6a59ba2c84f250b74/wrapt-1.17.3-cp313-cp313-win_amd64.whl", hash = "sha256:1f0b2f40cf341ee8cc1a97d51ff50dddb9fcc73241b9143ec74b30fc4f44f6cb", size = 38885, upload-time = "2025-08-12T05:53:08.695Z" }, + { url = "https://files.pythonhosted.org/packages/01/77/66e54407c59d7b02a3c4e0af3783168fff8e5d61def52cda8728439d86bc/wrapt-1.17.3-cp313-cp313-win_arm64.whl", hash = "sha256:7425ac3c54430f5fc5e7b6f41d41e704db073309acfc09305816bc6a0b26bb16", size = 36896, upload-time = "2025-08-12T05:52:55.34Z" }, + { url = "https://files.pythonhosted.org/packages/02/a2/cd864b2a14f20d14f4c496fab97802001560f9f41554eef6df201cd7f76c/wrapt-1.17.3-cp314-cp314-macosx_10_13_universal2.whl", hash = "sha256:cf30f6e3c077c8e6a9a7809c94551203c8843e74ba0c960f4a98cd80d4665d39", size = 54132, upload-time = "2025-08-12T05:51:49.864Z" }, + { url = "https://files.pythonhosted.org/packages/d5/46/d011725b0c89e853dc44cceb738a307cde5d240d023d6d40a82d1b4e1182/wrapt-1.17.3-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:e228514a06843cae89621384cfe3a80418f3c04aadf8a3b14e46a7be704e4235", size = 39091, upload-time = "2025-08-12T05:51:38.935Z" }, + { url = "https://files.pythonhosted.org/packages/2e/9e/3ad852d77c35aae7ddebdbc3b6d35ec8013af7d7dddad0ad911f3d891dae/wrapt-1.17.3-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:5ea5eb3c0c071862997d6f3e02af1d055f381b1d25b286b9d6644b79db77657c", size = 39172, upload-time = "2025-08-12T05:51:59.365Z" }, + { url = "https://files.pythonhosted.org/packages/c3/f7/c983d2762bcce2326c317c26a6a1e7016f7eb039c27cdf5c4e30f4160f31/wrapt-1.17.3-cp314-cp314-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:281262213373b6d5e4bb4353bc36d1ba4084e6d6b5d242863721ef2bf2c2930b", size = 87163, upload-time = "2025-08-12T05:52:40.965Z" }, + { url = "https://files.pythonhosted.org/packages/e4/0f/f673f75d489c7f22d17fe0193e84b41540d962f75fce579cf6873167c29b/wrapt-1.17.3-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:dc4a8d2b25efb6681ecacad42fca8859f88092d8732b170de6a5dddd80a1c8fa", size = 87963, upload-time = "2025-08-12T05:52:20.326Z" }, + { url = "https://files.pythonhosted.org/packages/df/61/515ad6caca68995da2fac7a6af97faab8f78ebe3bf4f761e1b77efbc47b5/wrapt-1.17.3-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:373342dd05b1d07d752cecbec0c41817231f29f3a89aa8b8843f7b95992ed0c7", size = 86945, upload-time = "2025-08-12T05:52:21.581Z" }, + { url = "https://files.pythonhosted.org/packages/d3/bd/4e70162ce398462a467bc09e768bee112f1412e563620adc353de9055d33/wrapt-1.17.3-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:d40770d7c0fd5cbed9d84b2c3f2e156431a12c9a37dc6284060fb4bec0b7ffd4", size = 86857, upload-time = "2025-08-12T05:52:43.043Z" }, + { url = "https://files.pythonhosted.org/packages/2b/b8/da8560695e9284810b8d3df8a19396a6e40e7518059584a1a394a2b35e0a/wrapt-1.17.3-cp314-cp314-win32.whl", hash = "sha256:fbd3c8319de8e1dc79d346929cd71d523622da527cca14e0c1d257e31c2b8b10", size = 37178, upload-time = "2025-08-12T05:53:12.605Z" }, + { url = "https://files.pythonhosted.org/packages/db/c8/b71eeb192c440d67a5a0449aaee2310a1a1e8eca41676046f99ed2487e9f/wrapt-1.17.3-cp314-cp314-win_amd64.whl", hash = "sha256:e1a4120ae5705f673727d3253de3ed0e016f7cd78dc463db1b31e2463e1f3cf6", size = 39310, upload-time = "2025-08-12T05:53:11.106Z" }, + { url = "https://files.pythonhosted.org/packages/45/20/2cda20fd4865fa40f86f6c46ed37a2a8356a7a2fde0773269311f2af56c7/wrapt-1.17.3-cp314-cp314-win_arm64.whl", hash = "sha256:507553480670cab08a800b9463bdb881b2edeed77dc677b0a5915e6106e91a58", size = 37266, upload-time = "2025-08-12T05:52:56.531Z" }, + { url = "https://files.pythonhosted.org/packages/77/ed/dd5cf21aec36c80443c6f900449260b80e2a65cf963668eaef3b9accce36/wrapt-1.17.3-cp314-cp314t-macosx_10_13_universal2.whl", hash = "sha256:ed7c635ae45cfbc1a7371f708727bf74690daedc49b4dba310590ca0bd28aa8a", size = 56544, upload-time = "2025-08-12T05:51:51.109Z" }, + { url = "https://files.pythonhosted.org/packages/8d/96/450c651cc753877ad100c7949ab4d2e2ecc4d97157e00fa8f45df682456a/wrapt-1.17.3-cp314-cp314t-macosx_10_13_x86_64.whl", hash = "sha256:249f88ed15503f6492a71f01442abddd73856a0032ae860de6d75ca62eed8067", size = 40283, upload-time = "2025-08-12T05:51:39.912Z" }, + { url = "https://files.pythonhosted.org/packages/d1/86/2fcad95994d9b572db57632acb6f900695a648c3e063f2cd344b3f5c5a37/wrapt-1.17.3-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:5a03a38adec8066d5a37bea22f2ba6bbf39fcdefbe2d91419ab864c3fb515454", size = 40366, upload-time = "2025-08-12T05:52:00.693Z" }, + { url = "https://files.pythonhosted.org/packages/64/0e/f4472f2fdde2d4617975144311f8800ef73677a159be7fe61fa50997d6c0/wrapt-1.17.3-cp314-cp314t-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:5d4478d72eb61c36e5b446e375bbc49ed002430d17cdec3cecb36993398e1a9e", size = 108571, upload-time = "2025-08-12T05:52:44.521Z" }, + { url = "https://files.pythonhosted.org/packages/cc/01/9b85a99996b0a97c8a17484684f206cbb6ba73c1ce6890ac668bcf3838fb/wrapt-1.17.3-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:223db574bb38637e8230eb14b185565023ab624474df94d2af18f1cdb625216f", size = 113094, upload-time = "2025-08-12T05:52:22.618Z" }, + { url = "https://files.pythonhosted.org/packages/25/02/78926c1efddcc7b3aa0bc3d6b33a822f7d898059f7cd9ace8c8318e559ef/wrapt-1.17.3-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:e405adefb53a435f01efa7ccdec012c016b5a1d3f35459990afc39b6be4d5056", size = 110659, upload-time = "2025-08-12T05:52:24.057Z" }, + { url = "https://files.pythonhosted.org/packages/dc/ee/c414501ad518ac3e6fe184753632fe5e5ecacdcf0effc23f31c1e4f7bfcf/wrapt-1.17.3-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:88547535b787a6c9ce4086917b6e1d291aa8ed914fdd3a838b3539dc95c12804", size = 106946, upload-time = "2025-08-12T05:52:45.976Z" }, + { url = "https://files.pythonhosted.org/packages/be/44/a1bd64b723d13bb151d6cc91b986146a1952385e0392a78567e12149c7b4/wrapt-1.17.3-cp314-cp314t-win32.whl", hash = "sha256:41b1d2bc74c2cac6f9074df52b2efbef2b30bdfe5f40cb78f8ca22963bc62977", size = 38717, upload-time = "2025-08-12T05:53:15.214Z" }, + { url = "https://files.pythonhosted.org/packages/79/d9/7cfd5a312760ac4dd8bf0184a6ee9e43c33e47f3dadc303032ce012b8fa3/wrapt-1.17.3-cp314-cp314t-win_amd64.whl", hash = "sha256:73d496de46cd2cdbdbcce4ae4bcdb4afb6a11234a1df9c085249d55166b95116", size = 41334, upload-time = "2025-08-12T05:53:14.178Z" }, + { url = "https://files.pythonhosted.org/packages/46/78/10ad9781128ed2f99dbc474f43283b13fea8ba58723e98844367531c18e9/wrapt-1.17.3-cp314-cp314t-win_arm64.whl", hash = "sha256:f38e60678850c42461d4202739f9bf1e3a737c7ad283638251e79cc49effb6b6", size = 38471, upload-time = "2025-08-12T05:52:57.784Z" }, + { url = "https://files.pythonhosted.org/packages/1f/f6/a933bd70f98e9cf3e08167fc5cd7aaaca49147e48411c0bd5ae701bb2194/wrapt-1.17.3-py3-none-any.whl", hash = "sha256:7171ae35d2c33d326ac19dd8facb1e82e5fd04ef8c6c0e394d7af55a55051c22", size = 23591, upload-time = "2025-08-12T05:53:20.674Z" }, +]