Refactor code in Jupyter notebooks for clarity and consistency

- Set execution_count to null for specific code cells in 2025_TP_1_M2_ISF.ipynb to reset execution state.
- Replace output display of DataFrames with print statements in 2025_TP_1_M2_ISF.ipynb for better visibility during execution.
- Clean up import statements in 2025_TP_2_M2_ISF.ipynb by adding noqa comments for better linting and readability.
This commit is contained in:
2025-10-08 10:24:51 +02:00
parent 616ad4ca51
commit df85989a23
2 changed files with 18 additions and 19 deletions

View File

@@ -43,7 +43,7 @@
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": null,
"id": "f6e62631",
"metadata": {},
"outputs": [],
@@ -56,15 +56,14 @@
"import seaborn as sns\n",
"\n",
"sns.set()\n",
"import matplotlib.pyplot as plt\n",
"import plotly.graph_objects as gp\n",
"from scipy.cluster.hierarchy import dendrogram, linkage\n",
"import matplotlib.pyplot as plt # noqa: E402\n",
"from scipy.cluster.hierarchy import dendrogram, linkage # noqa: E402\n",
"\n",
"# Statistiques\n",
"from scipy.stats import chi2_contingency\n",
"from scipy.stats import chi2_contingency # noqa: E402, F401\n",
"\n",
"# Machine Learning\n",
"from sklearn.cluster import AgglomerativeClustering, KMeans\n"
"from sklearn.cluster import AgglomerativeClustering, KMeans # noqa: E402\n"
]
},
{