diff --git a/M1/Statistical Learning/TP3_Logistic_Regression_and _SGD.ipynb b/M1/Statistical Learning/TP3_Logistic_Regression_and _SGD.ipynb index a039778..ab0cdb7 100644 --- a/M1/Statistical Learning/TP3_Logistic_Regression_and _SGD.ipynb +++ b/M1/Statistical Learning/TP3_Logistic_Regression_and _SGD.ipynb @@ -487,13 +487,13 @@ "cell_type": "code", "metadata": { "ExecuteTime": { - "end_time": "2025-03-05T10:42:09.048335Z", - "start_time": "2025-03-05T10:42:09.043811Z" + "end_time": "2025-03-05T10:44:03.685253Z", + "start_time": "2025-03-05T10:44:03.682070Z" } }, "source": [ "def GD_training(X, y, num_steps, learning_rate):\n", - " w, b = np.zeros(2, dtype=float), 0\n", + " w, b = np.zeros(2), 0\n", "\n", " for step in range(num_steps):\n", " h = sigmoid(np.dot(X, w) + b)\n", @@ -511,7 +511,7 @@ " return w, b" ], "outputs": [], - "execution_count": 138 + "execution_count": 144 }, { "cell_type": "markdown", @@ -524,8 +524,8 @@ "cell_type": "code", "metadata": { "ExecuteTime": { - "end_time": "2025-03-05T10:42:11.424750Z", - "start_time": "2025-03-05T10:42:10.914149Z" + "end_time": "2025-03-05T10:44:05.205683Z", + "start_time": "2025-03-05T10:44:04.457359Z" } }, "source": [ @@ -562,14 +562,14 @@ ] } ], - "execution_count": 139 + "execution_count": 145 }, { "cell_type": "code", "metadata": { "ExecuteTime": { - "end_time": "2025-03-05T10:41:03.179258Z", - "start_time": "2025-03-05T10:41:02.929587Z" + "end_time": "2025-03-05T10:44:06.503264Z", + "start_time": "2025-03-05T10:44:06.157991Z" } }, "source": [ @@ -599,7 +599,7 @@ "output_type": "display_data" } ], - "execution_count": 137 + "execution_count": 146 }, { "cell_type": "markdown",