Refactor code for improved readability and consistency across multiple Jupyter notebooks

- Added missing commas in various print statements and function calls for better syntax.
- Reformatted code to enhance clarity, including breaking long lines and aligning parameters.
- Updated function signatures to use float type for sigma parameters instead of int for better precision.
- Cleaned up comments and documentation strings for clarity and consistency.
- Ensured consistent formatting in plotting functions and data handling.
This commit is contained in:
2025-12-13 23:38:17 +01:00
parent f89ff4a016
commit d5a6bfd339
50 changed files with 779 additions and 449 deletions

View File

@@ -17,10 +17,11 @@
"metadata": {},
"outputs": [],
"source": [
"import keras\n",
"import numpy as np\n",
"import seaborn as sns\n",
"\n",
"import keras\n",
"\n",
"sns.set(style=\"whitegrid\")\n",
"\n",
"\n",
@@ -149,7 +150,7 @@
" keras.layers.Embedding(\n",
" input_dim=vocabulary_size,\n",
" output_dim=dimension,\n",
" )\n",
" ),\n",
" )\n",
" model.add(keras.layers.SimpleRNN(128, return_sequences=False))\n",
" model.add(keras.layers.Dense(vocabulary_size, activation=\"softmax\"))\n",

View File

@@ -120,9 +120,7 @@
},
"outputs": [],
"source": [
"character_to_index = {\n",
" character: index for index, character in enumerate(characters)\n",
"}\n",
"character_to_index = {character: index for index, character in enumerate(characters)}\n",
"index_to_character = dict(enumerate(characters))"
]
},
@@ -317,7 +315,7 @@
" keras.layers.SimpleRNN(128, return_sequences=False),\n",
" # Ajouter une couche Dense\n",
" keras.layers.Dense(n_characters, activation=\"softmax\"),\n",
" ]\n",
" ],\n",
")\n",
"\n",
"model.summary()"
@@ -429,11 +427,14 @@
"print(len(epochs), len(historic[\"loss\"]))\n",
"\n",
"for index, (metric_name, axis) in enumerate(\n",
" zip([\"loss\", \"accuracy\"], [axis_1, axis_2], strict=False)\n",
" zip([\"loss\", \"accuracy\"], [axis_1, axis_2], strict=False),\n",
"):\n",
" color = sns.color_palette()[index]\n",
" axis.plot(\n",
" epochs[: len(historic[metric_name])], historic[metric_name], lw=2, color=color\n",
" epochs[: len(historic[metric_name])],\n",
" historic[metric_name],\n",
" lw=2,\n",
" color=color,\n",
" )\n",
" axis.plot(\n",
" epochs[: len(historic[\"val_\" + metric_name])],\n",
@@ -604,7 +605,8 @@
"outputs": [],
"source": [
"random_index = np.random.multinomial(\n",
" 1, y_test[np.random.randint(0, len(X_test) - 1)].ravel()\n",
" 1,\n",
" y_test[np.random.randint(0, len(X_test) - 1)].ravel(),\n",
").argmax()"
]
},