Refactor code for improved readability and consistency across multiple Jupyter notebooks

- Added missing commas in various print statements and function calls for better syntax.
- Reformatted code to enhance clarity, including breaking long lines and aligning parameters.
- Updated function signatures to use float type for sigma parameters instead of int for better precision.
- Cleaned up comments and documentation strings for clarity and consistency.
- Ensured consistent formatting in plotting functions and data handling.
This commit is contained in:
2025-12-13 23:38:17 +01:00
parent f89ff4a016
commit d5a6bfd339
50 changed files with 779 additions and 449 deletions

View File

@@ -20,7 +20,6 @@
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"\n",
"%matplotlib inline\n",
"import matplotlib.pyplot as plt\n",
@@ -300,23 +299,35 @@
" [\n",
" keras.layers.InputLayer(shape=(32, 32, 3)),\n",
" keras.layers.Conv2D(\n",
" filters=32, kernel_size=3, activation=\"relu\", padding=\"same\"\n",
" filters=32,\n",
" kernel_size=3,\n",
" activation=\"relu\",\n",
" padding=\"same\",\n",
" ),\n",
" keras.layers.Dropout(0.2),\n",
" keras.layers.Conv2D(\n",
" filters=32, kernel_size=3, activation=\"relu\", padding=\"same\"\n",
" filters=32,\n",
" kernel_size=3,\n",
" activation=\"relu\",\n",
" padding=\"same\",\n",
" ),\n",
" keras.layers.MaxPooling2D(pool_size=2),\n",
" keras.layers.Conv2D(\n",
" filters=16, kernel_size=3, activation=\"relu\", padding=\"same\"\n",
" filters=16,\n",
" kernel_size=3,\n",
" activation=\"relu\",\n",
" padding=\"same\",\n",
" ),\n",
" keras.layers.Dropout(0.2),\n",
" keras.layers.Conv2D(\n",
" filters=16, kernel_size=3, activation=\"relu\", padding=\"same\"\n",
" filters=16,\n",
" kernel_size=3,\n",
" activation=\"relu\",\n",
" padding=\"same\",\n",
" ),\n",
" keras.layers.Flatten(),\n",
" keras.layers.Dense(10, activation=\"softmax\"),\n",
" ]\n",
" ],\n",
" )\n",
"\n",
" return model\n",
@@ -348,7 +359,9 @@
"outputs": [],
"source": [
"def compile_train(\n",
" optimizer_function: str, learning_rate: float, **kwargs\n",
" optimizer_function: str,\n",
" learning_rate: float,\n",
" **kwargs,\n",
") -> keras.callbacks.History:\n",
" model = get_model()\n",
" optimizer = optimizer_function(learning_rate=learning_rate)\n",
@@ -401,7 +414,10 @@
"epochs = 5\n",
"batch_size = 64\n",
"history_adam = compile_train(\n",
" keras.optimizers.Adam, learning_rate=0.001, epochs=epochs, batch_size=batch_size\n",
" keras.optimizers.Adam,\n",
" learning_rate=0.001,\n",
" epochs=epochs,\n",
" batch_size=batch_size,\n",
")"
]
},
@@ -557,7 +573,10 @@
"histories = []\n",
"for optimizer in optimizers:\n",
" history = compile_train(\n",
" optimizer, learning_rate=learning_rate, epochs=epochs, batch_size=batch_size\n",
" optimizer,\n",
" learning_rate=learning_rate,\n",
" epochs=epochs,\n",
" batch_size=batch_size,\n",
" )\n",
" name = optimizer.__name__\n",
" label = f\"{name} (lr={learning_rate:.06})\"\n",