mirror of
https://github.com/ArthurDanjou/ArtStudies.git
synced 2026-01-28 00:55:23 +01:00
Refactor code for improved readability and consistency across multiple Jupyter notebooks
- Added missing commas in various print statements and function calls for better syntax. - Reformatted code to enhance clarity, including breaking long lines and aligning parameters. - Updated function signatures to use float type for sigma parameters instead of int for better precision. - Cleaned up comments and documentation strings for clarity and consistency. - Ensured consistent formatting in plotting functions and data handling.
This commit is contained in:
@@ -27,25 +27,32 @@
|
||||
"\n",
|
||||
"sns.set(style=\"whitegrid\")\n",
|
||||
"\n",
|
||||
"import tensorflow as tf\n",
|
||||
"from sklearn.model_selection import train_test_split\n",
|
||||
"from sklearn.preprocessing import StandardScaler\n",
|
||||
"from tensorflow import keras\n",
|
||||
"\n",
|
||||
"(X_train_full, y_train_full), (X_test, y_test) = keras.datasets.mnist.load_data()\n",
|
||||
"X_train, X_valid, y_train, y_valid = train_test_split(\n",
|
||||
" X_train_full, y_train_full, train_size=0.8\n",
|
||||
" X_train_full,\n",
|
||||
" y_train_full,\n",
|
||||
" train_size=0.8,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"scaler = StandardScaler()\n",
|
||||
"X_train = scaler.fit_transform(X_train.astype(np.float32).reshape(-1, 28 * 28)).reshape(\n",
|
||||
" -1, 28, 28\n",
|
||||
" -1,\n",
|
||||
" 28,\n",
|
||||
" 28,\n",
|
||||
")\n",
|
||||
"X_valid = scaler.transform(X_valid.astype(np.float32).reshape(-1, 28 * 28)).reshape(\n",
|
||||
" -1, 28, 28\n",
|
||||
" -1,\n",
|
||||
" 28,\n",
|
||||
" 28,\n",
|
||||
")\n",
|
||||
"X_test = scaler.transform(X_test.astype(np.float32).reshape(-1, 28 * 28)).reshape(\n",
|
||||
" -1, 28, 28\n",
|
||||
" -1,\n",
|
||||
" 28,\n",
|
||||
" 28,\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
@@ -79,13 +86,17 @@
|
||||
" keras.layers.Input(shape=[28, 28]),\n",
|
||||
" keras.layers.Flatten(),\n",
|
||||
" keras.layers.Dense(\n",
|
||||
" 256, activation=\"relu\", kernel_regularizer=keras.regularizers.l2(0.001)\n",
|
||||
" 256,\n",
|
||||
" activation=\"relu\",\n",
|
||||
" kernel_regularizer=keras.regularizers.l2(0.001),\n",
|
||||
" ),\n",
|
||||
" keras.layers.Dense(\n",
|
||||
" 128, activation=\"relu\", kernel_regularizer=keras.regularizers.l2(0.001)\n",
|
||||
" 128,\n",
|
||||
" activation=\"relu\",\n",
|
||||
" kernel_regularizer=keras.regularizers.l2(0.001),\n",
|
||||
" ),\n",
|
||||
" keras.layers.Dense(10, activation=\"softmax\"),\n",
|
||||
" ]\n",
|
||||
" ],\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
@@ -174,7 +185,7 @@
|
||||
" kernel_regularizer=keras.regularizers.l2(lambda_l2),\n",
|
||||
" ),\n",
|
||||
" keras.layers.Dense(10, activation=\"softmax\"),\n",
|
||||
" ]\n",
|
||||
" ],\n",
|
||||
" )\n",
|
||||
" model.compile(\n",
|
||||
" loss=\"sparse_categorical_crossentropy\",\n",
|
||||
@@ -220,7 +231,7 @@
|
||||
" \"lambda_l2\": lambda_l2,\n",
|
||||
" \"history\": pd.DataFrame(history.history),\n",
|
||||
" \"n_epochs\": n_epochs,\n",
|
||||
" }\n",
|
||||
" },\n",
|
||||
" )"
|
||||
]
|
||||
},
|
||||
|
||||
@@ -58,7 +58,10 @@
|
||||
"from sklearn.model_selection import train_test_split\n",
|
||||
"\n",
|
||||
"X_train, X_valid, y_train, y_valid = train_test_split(\n",
|
||||
" X_train_full, y_train_full, test_size=0.2, random_state=42\n",
|
||||
" X_train_full,\n",
|
||||
" y_train_full,\n",
|
||||
" test_size=0.2,\n",
|
||||
" random_state=42,\n",
|
||||
")\n",
|
||||
"print(X_train.shape, y_train.shape)\n",
|
||||
"print(X_valid.shape, y_valid.shape)"
|
||||
@@ -181,7 +184,7 @@
|
||||
" keras.layers.Dense(256, activation=\"relu\"),\n",
|
||||
" keras.layers.Dense(128, activation=\"relu\"),\n",
|
||||
" keras.layers.Dense(10, activation=\"softmax\"),\n",
|
||||
" ]\n",
|
||||
" ],\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
@@ -563,7 +566,7 @@
|
||||
" keras.layers.Dense(256, activation=\"relu\"),\n",
|
||||
" keras.layers.Dense(128, activation=\"relu\"),\n",
|
||||
" keras.layers.Dense(10, activation=\"softmax\"),\n",
|
||||
" ]\n",
|
||||
" ],\n",
|
||||
" )\n",
|
||||
" model.compile(\n",
|
||||
" loss=\"sparse_categorical_crossentropy\",\n",
|
||||
@@ -673,7 +676,10 @@
|
||||
" plt.subplot(1, 2, 1)\n",
|
||||
" plt.plot(history_df[\"val_loss\"], linestyle=\"--\", color=colors[_])\n",
|
||||
" plt.plot(\n",
|
||||
" history_df[\"loss\"], label=f\"LR={learning_rate}\", alpha=0.5, color=colors[_]\n",
|
||||
" history_df[\"loss\"],\n",
|
||||
" label=f\"LR={learning_rate}\",\n",
|
||||
" alpha=0.5,\n",
|
||||
" color=colors[_],\n",
|
||||
" )\n",
|
||||
" plt.xlabel(\"Epochs\")\n",
|
||||
" plt.ylabel(\"Loss\")\n",
|
||||
|
||||
Reference in New Issue
Block a user