Refactor code for improved readability and consistency across multiple Jupyter notebooks

- Added missing commas in various print statements and function calls for better syntax.
- Reformatted code to enhance clarity, including breaking long lines and aligning parameters.
- Updated function signatures to use float type for sigma parameters instead of int for better precision.
- Cleaned up comments and documentation strings for clarity and consistency.
- Ensured consistent formatting in plotting functions and data handling.
This commit is contained in:
2025-12-13 23:38:17 +01:00
parent f89ff4a016
commit d5a6bfd339
50 changed files with 779 additions and 449 deletions

View File

@@ -92,6 +92,7 @@
"outputs": [],
"source": [
"import numpy as np\n",
"\n",
"import tensorflow as tf\n",
"\n",
"tf.keras.utils.set_random_seed(42)\n",
@@ -346,7 +347,7 @@
" tf.keras.layers.Dense(300, activation=\"relu\", kernel_initializer=\"he_normal\"),\n",
" tf.keras.layers.Dense(100, activation=\"relu\", kernel_initializer=\"he_normal\"),\n",
" tf.keras.layers.Dense(10, activation=\"softmax\"),\n",
" ]\n",
" ],\n",
")"
]
},
@@ -691,7 +692,9 @@
"outputs": [],
"source": [
"model.compile(\n",
" loss=\"sparse_categorical_crossentropy\", optimizer=\"adam\", metrics=[\"accuracy\"]\n",
" loss=\"sparse_categorical_crossentropy\",\n",
" optimizer=\"adam\",\n",
" metrics=[\"accuracy\"],\n",
")"
]
},
@@ -1101,11 +1104,13 @@
" tf.keras.layers.Dense(300, activation=\"relu\", kernel_initializer=\"he_normal\"),\n",
" tf.keras.layers.Dense(100, activation=\"relu\", kernel_initializer=\"he_normal\"),\n",
" tf.keras.layers.Dense(10, activation=\"softmax\"),\n",
" ]\n",
" ],\n",
")\n",
"\n",
"model_10.compile(\n",
" loss=\"sparse_categorical_crossentropy\", optimizer=\"adam\", metrics=[\"accuracy\"]\n",
" loss=\"sparse_categorical_crossentropy\",\n",
" optimizer=\"adam\",\n",
" metrics=[\"accuracy\"],\n",
")\n",
"\n",
"model_10.fit(X_train01, y_train, epochs=10, validation_data=(X_val01, y_val))"
@@ -1270,7 +1275,8 @@
],
"source": [
"early_stopping_cb = tf.keras.callbacks.EarlyStopping(\n",
" patience=5, restore_best_weights=True\n",
" patience=5,\n",
" restore_best_weights=True,\n",
")\n",
"\n",
"model = tf.keras.Sequential(\n",
@@ -1280,11 +1286,13 @@
" tf.keras.layers.Dense(300, activation=\"relu\", kernel_initializer=\"he_normal\"),\n",
" tf.keras.layers.Dense(100, activation=\"relu\", kernel_initializer=\"he_normal\"),\n",
" tf.keras.layers.Dense(10, activation=\"softmax\"),\n",
" ]\n",
" ],\n",
")\n",
"\n",
"model.compile(\n",
" loss=\"sparse_categorical_crossentropy\", optimizer=\"adam\", metrics=[\"accuracy\"]\n",
" loss=\"sparse_categorical_crossentropy\",\n",
" optimizer=\"adam\",\n",
" metrics=[\"accuracy\"],\n",
")\n",
"\n",
"history2 = model.fit(\n",
@@ -1598,10 +1606,12 @@
" tf.keras.layers.Input(shape=[28, 28]),\n",
" tf.keras.layers.Flatten(),\n",
" tf.keras.layers.Dense(10, activation=\"softmax\"),\n",
" ]\n",
" ],\n",
")\n",
"reg_log.compile(\n",
" loss=\"sparse_categorical_crossentropy\", optimizer=\"adam\", metrics=[\"accuracy\"]\n",
" loss=\"sparse_categorical_crossentropy\",\n",
" optimizer=\"adam\",\n",
" metrics=[\"accuracy\"],\n",
")\n",
"reg_log.fit(X_train01, y_train, epochs=90, validation_data=(X_val01, y_val))"
]
@@ -1709,10 +1719,12 @@
" tf.keras.layers.Dense(300, activation=\"relu\", kernel_initializer=\"he_normal\"),\n",
" tf.keras.layers.Dense(100, activation=\"relu\", kernel_initializer=\"he_normal\"),\n",
" tf.keras.layers.Dense(10, activation=\"softmax\"),\n",
" ]\n",
" ],\n",
")\n",
"model_ter.compile(\n",
" loss=\"sparse_categorical_crossentropy\", optimizer=\"adam\", metrics=[\"accuracy\"]\n",
" loss=\"sparse_categorical_crossentropy\",\n",
" optimizer=\"adam\",\n",
" metrics=[\"accuracy\"],\n",
")\n",
"model_ter.fit(X_train, y_train, epochs=30, validation_data=(X_val, y_val))"
]
@@ -1820,10 +1832,12 @@
" tf.keras.layers.Dense(300, activation=\"relu\", kernel_initializer=\"he_normal\"),\n",
" tf.keras.layers.Dense(100, activation=\"relu\", kernel_initializer=\"he_normal\"),\n",
" tf.keras.layers.Dense(10, activation=\"softmax\"),\n",
" ]\n",
" ],\n",
")\n",
"model_5.compile(\n",
" loss=\"sparse_categorical_crossentropy\", optimizer=\"adam\", metrics=[\"accuracy\"]\n",
" loss=\"sparse_categorical_crossentropy\",\n",
" optimizer=\"adam\",\n",
" metrics=[\"accuracy\"],\n",
")\n",
"\n",
"X_train_far_too_small, X_val_far_too_small = X_train / 25500.0, X_val / 25500.0\n",
@@ -1938,16 +1952,22 @@
" tf.keras.layers.Input(shape=[28, 28]),\n",
" tf.keras.layers.Flatten(),\n",
" tf.keras.layers.Dense(\n",
" 300, activation=\"sigmoid\", kernel_initializer=\"he_normal\"\n",
" 300,\n",
" activation=\"sigmoid\",\n",
" kernel_initializer=\"he_normal\",\n",
" ),\n",
" tf.keras.layers.Dense(\n",
" 100, activation=\"sigmoid\", kernel_initializer=\"he_normal\"\n",
" 100,\n",
" activation=\"sigmoid\",\n",
" kernel_initializer=\"he_normal\",\n",
" ),\n",
" tf.keras.layers.Dense(10, activation=\"softmax\"),\n",
" ]\n",
" ],\n",
")\n",
"model_sig_norm.compile(\n",
" loss=\"sparse_categorical_crossentropy\", optimizer=\"adam\", metrics=[\"accuracy\"]\n",
" loss=\"sparse_categorical_crossentropy\",\n",
" optimizer=\"adam\",\n",
" metrics=[\"accuracy\"],\n",
")\n",
"model_sig_norm.fit(X_train01, y_train, epochs=30, validation_data=(X_val, y_val))"
]
@@ -2043,16 +2063,22 @@
" tf.keras.layers.Input(shape=[28, 28]),\n",
" tf.keras.layers.Flatten(),\n",
" tf.keras.layers.Dense(\n",
" 300, activation=\"sigmoid\", kernel_initializer=\"he_normal\"\n",
" 300,\n",
" activation=\"sigmoid\",\n",
" kernel_initializer=\"he_normal\",\n",
" ),\n",
" tf.keras.layers.Dense(\n",
" 100, activation=\"sigmoid\", kernel_initializer=\"he_normal\"\n",
" 100,\n",
" activation=\"sigmoid\",\n",
" kernel_initializer=\"he_normal\",\n",
" ),\n",
" tf.keras.layers.Dense(10, activation=\"softmax\"),\n",
" ]\n",
" ],\n",
")\n",
"model_sig_un_norm.compile(\n",
" loss=\"sparse_categorical_crossentropy\", optimizer=\"adam\", metrics=[\"accuracy\"]\n",
" loss=\"sparse_categorical_crossentropy\",\n",
" optimizer=\"adam\",\n",
" metrics=[\"accuracy\"],\n",
")\n",
"model_sig_un_norm.fit(X_train, y_train, epochs=30, validation_data=(X_val, y_val))"
]
@@ -2220,17 +2246,19 @@
" tf.keras.layers.Dense(300, activation=\"relu\"),\n",
" tf.keras.layers.Dense(100, activation=\"relu\"),\n",
" tf.keras.layers.Dense(10, activation=\"softmax\"),\n",
" ]\n",
" ],\n",
")\n",
"model_high_variance.layers[1].set_weights(\n",
" [200 * np.random.randn(28 * 28, 300) / 100, np.zeros(300)]\n",
" [200 * np.random.randn(28 * 28, 300) / 100, np.zeros(300)],\n",
")\n",
"model_high_variance.layers[2].set_weights(\n",
" [200 * np.random.randn(300, 100) / 100, np.zeros(100)]\n",
" [200 * np.random.randn(300, 100) / 100, np.zeros(100)],\n",
")\n",
"\n",
"model_high_variance.compile(\n",
" loss=\"sparse_categorical_crossentropy\", optimizer=\"adam\", metrics=[\"accuracy\"]\n",
" loss=\"sparse_categorical_crossentropy\",\n",
" optimizer=\"adam\",\n",
" metrics=[\"accuracy\"],\n",
")\n",
"\n",
"model_high_variance.fit(X_train01, y_train, epochs=60, validation_data=(X_val01, y_val))"