mirror of
https://github.com/ArthurDanjou/ArtStudies.git
synced 2026-01-14 15:54:13 +01:00
Refactor code for improved readability and consistency across multiple Jupyter notebooks
- Added missing commas in various print statements and function calls for better syntax. - Reformatted code to enhance clarity, including breaking long lines and aligning parameters. - Updated function signatures to use float type for sigma parameters instead of int for better precision. - Cleaned up comments and documentation strings for clarity and consistency. - Ensured consistent formatting in plotting functions and data handling.
This commit is contained in:
@@ -27,9 +27,10 @@
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import yfinance as yf\n",
|
||||
"\n",
|
||||
"import numpy as np\n",
|
||||
"import pandas as pd\n",
|
||||
"import yfinance as yf"
|
||||
"import pandas as pd"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -406,7 +407,7 @@
|
||||
"print(f\"Standard deviation sd_T: {sd_T}\")\n",
|
||||
"print(f\"Allocation pi_T: {pi_T}\")\n",
|
||||
"print(\n",
|
||||
" f\"We can verify that the allocation is possible as the sum of the allocations for the different indices is {sum(pi_T)}, that is very close to 1\"\n",
|
||||
" f\"We can verify that the allocation is possible as the sum of the allocations for the different indices is {sum(pi_T)}, that is very close to 1\",\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
@@ -452,9 +453,9 @@
|
||||
"for i in range(len(std)):\n",
|
||||
" print(f\"The annualized volatilities of the index {Tickers[i]} is {std[i]}\")\n",
|
||||
" print(\n",
|
||||
" f\"The annualized expected returns of the index {Tickers[i]} is {mean[Tickers[i]]}\"\n",
|
||||
" f\"The annualized expected returns of the index {Tickers[i]} is {mean[Tickers[i]]}\",\n",
|
||||
" )\n",
|
||||
" print(\"\")\n",
|
||||
" print()\n",
|
||||
"\n",
|
||||
"print(f\"The annualized volatility of the Tangent Portfolio is {sd_T * np.sqrt(252)}\")\n",
|
||||
"print(f\"The annualized expected return of the Tangent Portfolio is {m_T * 252}\")"
|
||||
@@ -494,7 +495,7 @@
|
||||
"\n",
|
||||
"for i in range(4):\n",
|
||||
" print(\n",
|
||||
" f\"the sharpe ratio of the index {Tickers[i]} is {(mean[Tickers[i]] - r) / std[i]}\"\n",
|
||||
" f\"the sharpe ratio of the index {Tickers[i]} is {(mean[Tickers[i]] - r) / std[i]}\",\n",
|
||||
" )"
|
||||
]
|
||||
}
|
||||
|
||||
@@ -13,9 +13,10 @@
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import yfinance as yf\n",
|
||||
"\n",
|
||||
"import numpy as np\n",
|
||||
"import pandas as pd\n",
|
||||
"import yfinance as yf"
|
||||
"import pandas as pd"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -530,7 +531,7 @@
|
||||
"\n",
|
||||
"# Self financing portfolio\n",
|
||||
"m_w = np.sqrt(\n",
|
||||
" (mean - b / a * vec1).T.dot(inv_sigma).dot(mean - b / a * vec1)\n",
|
||||
" (mean - b / a * vec1).T.dot(inv_sigma).dot(mean - b / a * vec1),\n",
|
||||
") # Expected return\n",
|
||||
"\n",
|
||||
"# Tangent portfolio\n",
|
||||
@@ -580,7 +581,7 @@
|
||||
"range_sup = np.max(mean) + 1\n",
|
||||
"y = np.linspace(range_inf, range_sup, 50)\n",
|
||||
"x_1 = np.array(\n",
|
||||
" [np.sqrt(((y - m_a) / m_w) ** 2 + sd_a**2)]\n",
|
||||
" [np.sqrt(((y - m_a) / m_w) ** 2 + sd_a**2)],\n",
|
||||
") # Sigma values for the frontier\n",
|
||||
"x_2 = np.array([(y - r) / (m_T - r) * sd_T]) # Sigma values for the Capital Market Line\n",
|
||||
"\n",
|
||||
|
||||
Reference in New Issue
Block a user