diff --git a/M2/Linear Models/Biaised Models/Code_Lec3.Rmd b/M2/Linear Models/Biaised Models/Code_Lec3.Rmd index eab533d..c0d2a6d 100644 --- a/M2/Linear Models/Biaised Models/Code_Lec3.Rmd +++ b/M2/Linear Models/Biaised Models/Code_Lec3.Rmd @@ -229,7 +229,7 @@ dfc_test %>% ```{r} set.seed(602) # grid_Lasso <- seq(0.001, 0.1, length = 100) -grid_Lasso <- 10^seq(0, 0.1, length = 100) +grid_Lasso <- 10^seq(-4, 1, length = 100) Lasso <- train(sugars ~ ., cookie.train, method = "glmnet", tuneGrid = expand.grid(alpha = 1, lambda = grid_Lasso), diff --git a/M2/Linear Models/Biaised Models/Code_Lec3.html b/M2/Linear Models/Biaised Models/Code_Lec3.html index 8094372..809b252 100644 --- a/M2/Linear Models/Biaised Models/Code_Lec3.html +++ b/M2/Linear Models/Biaised Models/Code_Lec3.html @@ -5204,35 +5204,36 @@ margin: 10px 0;
We begin by loading the necessary packages for this analysis.
-library(glmnet) # for regularized regression
-library(caret) # for training and evaluating models
-library(ggplot2) # for data visualization
-library(ggfortify) # to extend ggplot2 features for autoplot
-library(reshape2) # for reshaping data
-library(Metrics) # for calculating metrics like RMSE
-library(vip) # for variable importance visualization
-library(dplyr) # for data manipulation
-library(tidyverse) # includes ggplot2, dplyr, and other useful packageslibrary(glmnet) # for regularized regression
+library(caret) # for training and evaluating models
+library(ggplot2) # for data visualization
+library(ggfortify) # to extend ggplot2 features for autoplot
+library(reshape2) # for reshaping data
+library(Metrics) # for calculating metrics like RMSE
+library(vip) # for variable importance visualization
+library(dplyr) # for data manipulation
+library(tidyverse) # includes ggplot2, dplyr, and other useful packagesset.seed(602)
-linear.mod <- train(sugars~.,cookie.train,
- method='lm',
- preProc = c("center", "scale"),
- trControl=custom)
-linear.mod$resultsset.seed(602)
+linear.mod <- train(sugars ~ ., cookie.train, method = "lm", preProc = c("center", "scale"), trControl = custom)
+linear.mod$resultsYtrain <- cookie.train$sugars
-dfc_train <- data.frame(ytrain=Ytrain, linear.mod = fitted(linear.mod))
-dfc_train %>% rmarkdown::paged_table()Ytrain <- cookie.train$sugars
+dfc_train <- data.frame(ytrain = Ytrain, linear.mod = fitted(linear.mod))
+dfc_train %>% rmarkdown::paged_table()dfc_train %>%
- ggplot(aes(x = ytrain, y = linear.mod)) +
- geom_point(size = 2, color = "#983399") +
- geom_smooth(method = "lm", color = "#389900") +
- ggtitle("Train Dataset") +
- ylab("Fitted Values") +
- xlab("Actual Values (Y)") dfc_train %>%
+ ggplot(aes(x = ytrain, y = linear.mod)) +
+ geom_point(size = 2, color = "#983399") +
+ geom_smooth(method = "lm", color = "#389900") +
+ ggtitle("Train Dataset") +
+ ylab("Fitted Values") +
+ xlab("Actual Values (Y)")Ytest<-cookie.test$sugars
-dfc_test<-data.frame(ytest=Ytest)
-dfc_test$linear.mod<-predict(linear.mod,newdata = cookie.test)
-#dfc_test%>%rmarkdown::paged_table()
-
-dfc_test %>%
- ggplot(aes(x = ytest, y = linear.mod)) +
- geom_point(size = 2, color = "#983399") +
- geom_smooth(method = "lm", color = "#389900") +
- ggtitle("Test Dataset") +
- ylab("Fitted Values") +
- xlab("Actual Values (Y)")Ytest <- cookie.test$sugars
+dfc_test <- data.frame(ytest = Ytest)
+dfc_test$linear.mod <- predict(linear.mod, newdata = cookie.test)
+# dfc_test%>%rmarkdown::paged_table()
+
+dfc_test %>%
+ ggplot(aes(x = ytest, y = linear.mod)) +
+ geom_point(size = 2, color = "#983399") +
+ geom_smooth(method = "lm", color = "#389900") +
+ ggtitle("Test Dataset") +
+ ylab("Fitted Values") +
+ xlab("Actual Values (Y)")set.seed(602)
-#grid_Lasso <- seq(0.001, 0.1, length = 100)
-grid_Lasso <- 10^seq(-4, -1, length = 100)
-Lasso <- train(sugars ~ ., cookie.train,
- method = 'glmnet',
- tuneGrid = expand.grid(alpha = 1, lambda = grid_Lasso),
- preProc = c("center", "scale"),
- trControl = custom)set.seed(602)
+# grid_Lasso <- seq(0.001, 0.1, length = 100)
+grid_Lasso <- 10^seq(-4, 1, length = 100)
+Lasso <- train(sugars ~ ., cookie.train,
+ method = "glmnet",
+ tuneGrid = expand.grid(alpha = 1, lambda = grid_Lasso),
+ preProc = c("center", "scale"),
+ trControl = custom
+)par(mfrow=c(1, 2))
-plot(Lasso$finalModel, xvar = "lambda", label = TRUE)
-plot(Lasso$finalModel, xvar = "dev", label = TRUE)par(mfrow = c(1, 2))
+plot(Lasso$finalModel, xvar = "lambda", label = TRUE)
+plot(Lasso$finalModel, xvar = "dev", label = TRUE)coef_lasso <- data.frame(
- Variable = rownames(as.matrix(coef(Lasso$finalModel, Lasso$bestTune$lambda))),
- Coefficient = as.matrix(coef(Lasso$finalModel, Lasso$bestTune$lambda))[,1]
-)
-coef_lasso %>% subset(Coefficient != 0) %>% rmarkdown::paged_table()coef_lasso <- data.frame(
+ Variable = rownames(as.matrix(coef(Lasso$finalModel, Lasso$bestTune$lambda))),
+ Coefficient = as.matrix(coef(Lasso$finalModel, Lasso$bestTune$lambda))[, 1]
+)
+coef_lasso %>%
+ subset(Coefficient != 0) %>%
+ rmarkdown::paged_table()par(mfrow=c(1, 2))
-plot(ridge$finalModel, xvar = "lambda", label = TRUE)
-plot(ridge$finalModel, xvar = "dev", label = TRUE)par(mfrow = c(1, 2))
+plot(ridge$finalModel, xvar = "lambda", label = TRUE)
+plot(ridge$finalModel, xvar = "dev", label = TRUE)par(mfrow=c(1, 2))
-plot(ElNet$finalModel,xvar="lambda",label=T)
-plot(ElNet$finalModel,xvar="dev",label=T)par(mfrow = c(1, 2))
+plot(ElNet$finalModel, xvar = "lambda", label = T)
+plot(ElNet$finalModel, xvar = "dev", label = T)coef_elnet <- data.frame(
- Variable = rownames(as.matrix(coef(ElNet$finalModel, ElNet$bestTune$lambda))),
- Coefficient = as.matrix(coef(ElNet$finalModel, ElNet$bestTune$lambda))[,1]
-)
-coef_elnet %>% subset(Coefficient != 0) %>% rmarkdown::paged_table()coef_elnet <- data.frame(
+ Variable = rownames(as.matrix(coef(ElNet$finalModel, ElNet$bestTune$lambda))),
+ Coefficient = as.matrix(coef(ElNet$finalModel, ElNet$bestTune$lambda))[, 1]
+)
+coef_elnet %>%
+ subset(Coefficient != 0) %>%
+ rmarkdown::paged_table()